
The VLDB Journal
DOI 10.1007/s00778-017-0476-3

SPECIAL ISSUE PAPER

Efficient generation of query plans containing group-by, join, and
groupjoin

Marius Eich1 · Pit Fender2 · Guido Moerkotte1

Received: 13 January 2017 / Revised: 27 July 2017 / Accepted: 2 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract It has been a recognized fact for many years that
query execution can benefit from pushing grouping opera-
tors down in the operator tree and applying them before a
join. This so-called eager aggregation reduces the size(s) of
the join argument(s), making join evaluation faster. Lately,
the idea enjoyed a revival when it was applied to outer joins
for the first time and incorporated in a state-of-the-art plan
generator. However, the recent approach is highly dependent
on the use of heuristics because of the exponential growth
of the search space that goes along with eager aggregation.
Finding an optimal solution for larger queries calls for effec-
tive optimality-preserving pruningmechanisms to reduce the
search space size as far as possible. By a more thorough
investigation of functional dependencies and keys, we pro-
vide a set of new pruning criteria and extend the idea of eager
aggregation further by combining it with the introduction of
groupjoins. We evaluate the resulting plan generator with
respect to runtime and memory consumption.

Keywords Aggregation · Join ordering · Dynamic
programming · Query optimization

1 Introduction

The idea of reordering grouping operators and joins was sug-
gested more than two decades ago [2,16–19]. However, it
was always limited to inner joins only. In previous work

B Marius Eich
marius.eich@uni-mannheim.de

1 School of Business Informatics and Mathematics, University
of Mannheim, Mannheim, Germany

2 Oracle Labs, Redwood Shores, CA, USA

[8], we revived the topic by showing that the optimal place-
ment of grouping operators is possible in the presence of
non-inner joins as well, thus enabling the application of this
technique to a whole new class of queries. Aside from the
required algebraic equivalences,we also proposed aplangen-
erator capable of reordering grouping and a wide range of
different join operators. Figure 1 shows an example query
against the TPC-H schema. We measured the runtime of this
query at a TPC-H scale factor of one on a disk-based and
a main-memory system. The results were 54,797 ms on the
disk-based system and 7974 ms on the main-memory sys-
tem. By rewriting the query such that the arguments of the
full outer join are grouped before the join, we reduced the
runtime to 55 ms on the disk-based system and 16 ms on the
main-memory system. This execution order corresponds to
the plan produced by our plan generator. The rewritten query
is shown in Fig. 2.

While the aforementioned plan generator performs well
for small queries, queries with more than ten relations can
only be handled by abandoning optimality and relying on
heuristics. The reason for this limitation is the lack of an
effective optimality-preserving pruning criterion limiting the
size of the search space and thereby allowing the optimiza-
tion of larger queries. A quick complexity analysis shows
the importance of pruning in this context. A binary opera-
tor tree with n relations contains 2n − 2 edges, and we can
attach a grouping to each of these edges and on top of the
root, resulting in 2n − 1 possible positions for a grouping.
If one considers all valid combinations of these positions for
every tree, the additional overhead caused by the optimal
placement of grouping operators is a factor of O(22n−1).
On the other hand, if one can infer at a certain position
in the operator tree that the grouping attributes constitute a
superkey, then a grouping at this position does not need to be
considered.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0476-3&domain=pdf
http://orcid.org/0000-0003-4374-8417

M. Eich et al.

se lect s nat ionkey , c nat ionkey ,
count (distinct s suppkey) ,
count (distinct c cu s tk ey)

from
s upp l i e r fu l l outer join customer
on s nat i onkey = c nat ionkey

group by s nat ionkey , c nat ionkey ;

Fig. 1 Query containing full outer join and group-by

se lect s nat ionkey , c nat ionkey ,
scnt , ccnt

from
(se lect s nat ionkey ,
count (distinct s suppkey) as scnt
from s upp l i e r
group by s nat i onkey) as s

fu l l outer join
(se lect c nat ionkey ,
count (distinct c cu s tk ey) as ccnt
from customer
group by c nat ionkey) as c

on s . s nat i onkey = c . c nat ionkey ;

Fig. 2 Rewritten query with pushed-down grouping

Recently, we gave an in-depth analysis of five optimali-
ty-preserving pruning criteria [5]. They were derived by
a careful investigation of keys and functional dependen-
cies. The experimental evaluation of the different pruning
approaches showed that they can speed up the plan generator
by orders of magnitude.

In this paper,we provide some additional information con-
cerning the aforementioned pruning criteria. We also extend
the plan generator further by incorporating a transformation
described in previous work [14]. It consists of replacing a
sequence of a grouping and a join by a single operator called
groupjoin. Once the plan generator is capable of reordering
grouping operators and joins, the introduction of groupjoins
seems obvious, but some conditions have to be fulfilled to
make the groupjoin applicable. A detailed description of
these conditions and how compliance with them can be
ensured during plan generation is one of the contributions
of this paper.

The paper is organized as follows: Sect. 2 covers some
basic concepts such as properties of aggregate functions and
algebraic operators.We then continuewith an overviewof the
equivalences needed to reorder join and grouping in Sect. 3.
This section also covers the introduction of groupjoins during
plan generation. In Sect. 4, we recap the basics of a dynamic
programming-based plan generator and the extensions that
are necessary to implement eager aggregation, the introduc-
tion of groupjoins, and optimality-preserving pruning in such
a plan generator. Section 5 is dedicated to the plan proper-
ties needed for our pruning approaches and how they can be
captured during plan generation. The pruning criteria them-

selves are covered in Sects. 6, 7, 8 and 9. Section 10 contains
experimental results. Section 11 concludes the paper.

2 Preliminaries

We start with different characteristics of aggregate functions.
Subsequently, we will introduce the algebraic operators used
throughout the rest of the paper.

2.1 Aggregate functions and their properties

Aggregate functions are applied to a group of tuples to aggre-
gate their values in one common attribute to a single value.
Some standard aggregate functions supported by SQL are
sum, count, min, max and avg. Additionally, it is possible to
specify how duplicates are treated by these functions using
the distinct keyword as in sum(distinct), count(distinct) and
so on. Since several aggregate functions are allowed in the
select clause of a SQL query, we deal with vectors of aggre-
gate functions, such as F = (b1 : sum(a), b2 : count(∗)).
Here, a denotes an attribute which is aggregated via sum and
b1, b2 are attribute names for the aggregation results. If F1

and F2 are two vectors of aggregate functions, we denote
their concatenation by F1 ◦ F2.

The set of attributes provided by an expression e (e.g., a
base relation) is denoted by A(e) and the set of attributes
that occur freely in a predicate p or aggregation vector F
is denoted by F(p) or F(F), respectively. The following
properties of aggregate functions will be illustrated by some
examples in the next section.

2.1.1 Splittability

The following definition captures the intuition that we can
split a vector of aggregate functions into two parts if each
aggregate function accesses only attributes from one of two
given alternative expressions.

Definition 1 An aggregation vector F is splittable into F1

and F2 with respect to expressions e1 and e2 if

1. F = F1 ◦ F2,
2. F(F1) ∩ A(e2) = ∅ and
3. F(F2) ∩ A(e1) = ∅.

In this case we can evaluate F1 on e1 and F2 on e2. A special
case occurs for count(∗), which accesses no attributes and
can thus be added to both F1 and F2.

123

Efficient generation of query plans containing group-By, join, and groupjoin

2.1.2 Decomposability

Another property of aggregate functions that is of particular
interest in this paper is decomposability [3]:

Definition 2 An aggregate function agg is decomposable
if there exist aggregate functions agg1 and agg2 such that
agg(Z) = agg2(agg1(X), agg1(Y)) for bags of values X ,
Y and Z where Z = X ∪ Y .

In other words, if agg is decomposable, agg(Z) can be com-
puted independently on arbitrary subbags of Z , and the partial
results can be aggregated to yield the correct total result.
For some aggregate functions, decomposability can easily
be seen:

min(X ∪ Y) = min(min(X), min(Y))

max(X ∪ Y) = max(max(X), max(Y))

count(X ∪ Y) = sum(count(X), count(Y))

sum(X ∪ Y) = sum(sum(X), sum(Y))

In contrast to the functions above, sum(distinct) and
count(distinct) are not decomposable.

The treatment of avg is only slightly more complicated.
If there are no null values present, SQL’s avg is equivalent to
avg(X) = sum(X)/count(X). Since both sum and count are
decomposable, we can decompose avg as follows:

avg(X ∪ Y) = sum(sum(X), sum(Y))

sum(count(X), count(Y))
.

If there exist null values, we need a slightly modified ver-
sion of count that only counts tuples where the aggregated
attribute is not null. We denote this function by countN N and
use it to decompose avg as follows:

avg(X ∪ Y) = sum(sum(X), sum(Y))

sum(countN N (X), countN N (Y))
.

2.1.3 Treatment of duplicates

We have already seen that duplicates play a central role in
correct aggregate processing. Thus, we define the following.
An aggregate function f is called duplicate-agnostic if its
result does not depend on whether there are duplicates in its
argument, or not. Otherwise, it is called duplicate-sensitive.
Yan and Larson use the terms Class C for duplicate-sensitive
functions and Class D for duplicate-agnostic functions [16].

For SQL aggregate functions, we have that

– min, max, sum(distinct), count(distinct),
avg(distinct) are duplicate-agnostic and

– sum, count, avg are duplicate-sensitive.

If we want to decompose an aggregate function that is
duplicate-sensitive, some care has to be taken. We express
this through an operator prime (′) as follows. Let F = (b1 :
agg1(a1), . . . , bm : aggm(am)) be an aggregation vector.
Further, let c be some other attribute. In our case, c is an
attribute holding the result of count(∗). Then, we define F⊗c
as

F ⊗ c := (b1 : agg′
1(e1), . . . , bm : agg′

m(em))

with

agg′
i (ei) =

⎧
⎨

⎩

aggi (ei) if aggi is duplicate-agnostic,
aggi (ei ∗ c) if aggi is sum,

sum(c) if aggi (ei) = count(∗),

and if aggi (ei) is count(ei), then agg′
i (ei) := sum(ei =

null ? 0 : c).

2.2 Algebraic operators

In this subsection, we introduce the algebraic operators used
throughout the rest of the paper. Although set notation is used
in the definitions, all operators work on bags of tuples.

We denote the grouping operator by Γ . It can be defined
as

ΓθG;b: f (e) := {y ◦ [b : x] | y ∈ Π D
G (e),

x = f ({z|z ∈ e, z.G θ y.G})}

for some set of grouping attributes G, a single attribute b,
an aggregate function f and a comparison operator θ ∈ {=,

=,≤,≥,<,>}. Tuple concatenation is denoted by ◦. We
denote byΠ D

A (e) the duplicate-removing projection onto the
set of attributes A, applied to the expression e. The resulting
relation only contains values for those attributes that are con-
tained in A and no duplicates. The function f is then applied
to groups of tuples taken from this expression. The groups
are determined by the comparison operator θ . Afterward, a
new tuple consisting of the grouping attributes’ values and an
attribute b holding the corresponding value returned by the
aggregate function f is constructed. The grouping criterion
may be defined on several attributes. If all θ equal ‘=’, we
abbreviate Γ=G;b: f by ΓG;b: f .

The grouping operator can also introduce more than one
new attribute by applying several aggregate functions. We
define

ΓθG;b1: f1,...,bk : fk (e) := {y ◦ [b1 : x1, . . . , bk : xk] |
y ∈ ΠG(e), xi = fi ({z|z ∈ e, z.G θ y.G})},

where the attribute values b1, . . . , bk are obtained by apply-
ing the aggregation vector F = (f1, . . . , fk), consisting of
k aggregate functions, to the tuples grouped according to θ .

123

M. Eich et al.

The map operator χ extends every input tuple by new
attributes:

χa1:e1,...,an :en (e) := {t ◦ [a1 : e1(t), . . . , an : en(t)]|t ∈ e}

As usual, selection is defined as

σp(e) := {x |x ∈ e, p(x)}.

The join operators we consider are the (inner) join (B), left
semijoin (N), left antijoin (T), left outer join (E), full outer
join (K), and groupjoin (Z). The definitions of these oper-
ators are given in Fig. 3. Most of these operators are rather
standard. However, both the left and the full outer join are
generalized such that for tuples not finding a join partner,
default values can be provided instead of null padding. More
specifically, let Di = di

1 : ci
1, . . . , di

k : ci
k(i = 1, 2) be

two vectors assigning constants ci
j to attributes di

j . The def-
initions of the left and full outer join with defaults are given
in 7 and 8, respectively. There,⊥A denotes a tuple containing
the value null in all attributes from attribute set A. Figure 4
provides examples.

The last row defines the left groupjoin Z, introduced by
von Bültzingsloewen [1]. First, for a given tuple t1 ∈ e1, it
determines the set of all join partners for t1 in e2, using the
join predicate p. Then, it applies the aggregate function f to
these tuples and extends t1 by a new attribute b, containing
the result of this aggregation. Figure 4 gives an example.

3 Equivalences

This section is organized into three parts. The first part shows
how to push down or pull up a grouping operator, the second

Fig. 3 Join operators

Fig. 4 Examples of different join operators

part shows how to eliminate an unnecessary top grouping
operator. The third part covers the replacement of a sequence
consisting of a join and a grouping by a groupjoin.

3.1 Pushing group-by

Since the work by Yan and Larson [16–20] is the most gen-
eral, we take it as the basis for our work. Figure 5 shows all
known and new equivalences. The nine equivalences already
known from Yan and Larson can be recognized by the inner
join on their left-hand sides. The different section headings
within the figures were also proposed by Yan and Larson
(except for Others). A special case of Eqv. 20 is already
known from previous work [9]. The proofs of all equiva-
lences are provided in our technical report [7].

Within the equivalences, a couple of simple abbreviations
as well as some conventions occur. We introduce them in this
short paragraph and illustrate them by means of two exam-
ples afterward. By G we denote the set of grouping attributes,
by F a vector of aggregate functions, and by p a join predi-
cate. The grouping attributes coming from expression ei are
denoted by Gi , i.e., Gi = A(ei)∩G. The join attributes from
expression ei are denoted by Ji , i.e., Ji = ⋃

p F(p)∩A(ei),
with p being a join predicate contained in the input query. The
union of the grouping and join attributes from ei is denoted
by G+

i = Gi ∪ Ji . If F1 and F2 occur in an equivalence, then
the equivalence assumes that F is splittable into F1 and F2.
If F1 or F2 does not occur in some equivalence, it is assumed
to be empty. If for some i ∈ {1, 2}, F1

i and F2
i occur in some

equivalence, the equivalence requires that Fi is decompos-
able into F1

i and F2
i . Last but not least,⊥ abbreviates a special

tuple that returns the null value for every attribute.

123

Efficient generation of query plans containing group-By, join, and groupjoin

Fig. 5 Equivalences for eager and lazy aggregation

123

M. Eich et al.

3.1.1 Example 1: join

Figure 6 shows two relations e1 and e2, which will be used
to illustrate Eqv. 10 as well as Eqv. 12.

Let us start with Eqv. 10. For now, we only look at the
top equivalences above each relation and ignore the tuples
below the separating horizontal line. Relations e1 and e2 at
the top of Fig. 6 serve as input. The calculation of the result
of the left-hand side of Eqv. 10 is rather straightforward.
Relation e3 gives the result of the join e1 B j1= j2 e2. The
result is then grouped by Γg1,g2;F (e3) for the aggregation
vector F = k : count(∗), b1 : sum(a1), b2 : sum(a2). The
result is given as e4. In our example, it consists of a single
tuple. We have intentionally chosen an example with a single
group, sincemultiple groups make the example longer but do
not give more insights.

Before we start the calculation of the right-hand side
of Eqv. 10, we take apart the grouping attributes and the
aggregation vector F . Among the grouping attributes G =
{g1, g2}, only g1 occurs in e1. The only join attribute in the
join predicate j1 = j2 from e1 is j1. Thus, G+

1 = {g1, j1}.
The aggregation vector F can be split into F1, which refer-
ences only attributes in e1, and F2, which references only
attributes in e2. This gives us F1 = (k : count(∗), b1 :
sum(a1)) and it does not matter whether we add k to F1 or
F2, since it does not reference any attributes. Next, we need
to decompose F1 into F1

1 and F2
1 according to the insights of

Sect. 2.1. This results in F1
1 = (k′ : count(∗), b′

1 : sum(a1))
and F2

1 = (k : sum(k′), b1 : sum(b′
1)). The inner group-

ing operator of Eqv. 10 requires us to add an attribute
c1 : count(∗) to F1

1 , which we abbreviate by FX . Since
there already exists one count(∗), the result of which is
stored in k′, we keep only one of them in Fig. 6 and call
it k′/c1. This finishes our preprocessing on the aggregate
functions of the inner grouping operator. Its result, consist-
ing of two tuples, is given as relation e5 in Fig. 6. The next
step consists of calculating the join e5 B j1= j2 e2. As this
is rather straightforward, we just give the result (relation
e6). The final step is again a little more complex. Eqv. 10
requires us to calculate F2 ⊗ c1. Looking back at the end
of Sect. 2.1, we see that sum is duplicate-sensitive and that
F2 ⊗ c1 = b2 : sum(c1 ∗ a2). Concatenating this aggre-
gation vector with F2

1 , as demanded by Eqv. 10, gives us
FY , as specified in Fig. 6. The final result of the right-hand
side of Eqv. 10, calculated as e7 = Γg1,g2;FY (e6), is given in
Fig. 6. Note that it is equal to the result of the left-hand side
(e4).

3.1.2 Example 2: full outer join

The second example reuses the relations e1 and e2 given
in Fig. 6. But this time we calculate the full outer join
instead of the inner join, and we apply Eqv. 12. The cor-

Fig. 6 Example for Eqvs. 10 and 12

responding expressions are given in the lower header line of
each relation. Now all tuples in each ei are relevant, includ-
ing those below the separating horizontal line. The result
of e1 K j1= j2 e2 is given in e′

3, whereby we denote null
by ‘-’. We can reuse all the different aggregation vectors
derived in the previous example. The only new calculation
that needs to be done is the one for the default values for
the full outer join on the right-hand side of Eqv. 12. The
equivalence defines default values in case a tuple t from
e2 does not find a join partner from the other side. All c1
values of orphaned e2 tuples become 1. Further, F1

1 ({⊥})
evaluates to 1 for k (count(*) on a relation with a single
element), and null for a2, since SQL’s sum returns null for
sets containing only null values. Thus prepared, we can cal-
culate the right-hand side of Eqv. 12 via e5 and e′

6. For
the latter, we use a full outer join with default. Finally, e′

7
is calculated by grouping e′

6, leading to the same result as
e′
4.

123

Efficient generation of query plans containing group-By, join, and groupjoin

3.1.3 Remarks

Themain equivalences are those under the headingEager and
Lazy Group-by–Count. They fall into two classes depending
on whether the grouping is pushed into the left or the right
argument of the join. For commutative operators, such as
inner join and full outer join, deriving one from the other
is simple. For non-commutative operators like the left outer
join, an additional proof is necessary. Now, instead of push-
ing the grouping operator into only one argument, we can
combine both equivalences to push it into both arguments.
The resulting equivalences are given under the headingEager
and Lazy Split. The equivalences between these two blocks
are specializations in case an aggregation vector F accesses
attributes from only one input. In this case, either F1 or F2 is
empty, and the equivalences can be simplified. These simpli-
fications are shown in the blocks Eager and Lazy Group-By,
Eager and Lazy Count, Double Eager and Double Lazy. The
block termed Others shows how to push the grouping opera-
tor into the left semijoin, left antijoin, and the groupjoin. The
latter requires another arbitrary aggregation vector F . All
have in common that after they are applied, only the attributes
from their left input are accessible. Thus, the grouping oper-
ator can only be pushed into their left argument.

3.2 Eliminating the top grouping

We wish to eliminate a top grouping from an expression of
the form ΓG,F (e) with an aggregation vector F = (b1 :
agg1(a1), . . . , bk : aggk(ak)). Clearly, this is only possible if
G is a superkey for e and e is duplicate-free, since in this case,
there exists exactly one tuple in e for each group. The only
detail left is to calculate the aggregation vector F . This can
be done via a map operator as in the following expression:

ΓG;F (e) ≡ ΠC (χF̂ (e)), (42)

with C = G ∪ {b1, . . . , bk} and F̂ an aggregation vector
meant to calculate the results of some aggregate functions
applied to single values:

F̂ := (b1 : agg1({a1}), . . . , bk : aggk({ak})).

Remark In general, K is a superkey for relation R if K →
A(R) holds. In SQL, a declaration of a primary key or a
uniqueness constraint implies not only a superkey but also
that the relation is duplicate-free.

3.3 Replacing group-by and left outer join by groupjoin

We can replace a sequence of a grouping and a left outer join
by a single groupjoin [14]:

ΓG;F (e1 EA1=A2 e2) ≡ ΠC (e1 ZA1=A2;F e2) (43)

if

1. G → G+
2 holds in e1 EA1=A2 e2,

2. G1, G+
2 → TID(e1) holds in e1 EA1=A2 e2,

3. A2 → G+
2 holds in e2,

4. F(F) ⊆ A(e2), and
5. F(∅) = F({⊥}).

We denote by TID(e) the tuple identifier for e. All these
requirements are mandatory [14].

The preconditions for Equivalence 43 refer to func-
tional dependencies holding in the join result. As we will
see subsequently, we may choose to avoid the complexity
of computing functional dependencies and maintain only
information about superkeys instead. Therefore, we pro-
vide a simplified set of requirements expressed in terms of
superkeys and prove that they imply the requirements for
Equivalence 43. Note that they are not equivalent.

Theorem 1

ΓG;F (e1 EA1=A2 e2) ≡ ΠC (e1 ZA1=A2;F e2) (44)

if

1. (A2 ⊆ G) ∨ (A1 ⊆ G ∧ G2 = ∅),
2. ∃K ∈ κ(e1), K ⊆ G,
3. (∃K ∈ κ(e2), K ⊆ A2) ∨ (G2 = ∅),
4. F(F) ⊆ A(e2), and
5. F(∅) = F({⊥}).

We denote by κ(e) the set of superkeys for a relation defined
by expression e.

Proof Since the last two constraints for Equivalences 43
and 44 are equal, we only have to prove that the first three
constraints from Equivalence 44 imply the first three from
Equivalence 43. We refer to the different requirements by
the number of the respective equivalence followed by the
number of the requirement. For example, 44::1 refers to the
first requirement listed under Equivalence 44.We prove each
implication in a separate paragraph.
44::1 ⇒ 43::1 This requirement can be fulfilled in twoways.
The first case is if A2 ⊆ G holds, which follows from the
argumentation below:

A2 ⊆ G2

⇒ G2 → A2

⇒ G1, G2 → A2

⇔ G1, G2 → G2, A2

⇔ G → G+
2 .

123

M. Eich et al.

The second case is if G2 = ∅ and A1 ⊆ G. Then, G → G+
2

becomes G → A2. Since A1 = A2 or A2 = ⊥A(A2) after
applying the join, this is fulfilled if A1 ⊆ G holds.We thereby
assume that two attribute values are equal if they are both null,
as suggested by Paulley [15].
44::2 ⇒ 43::2 The second requirement can be strengthened
to G → TID(e1). In other words, G has to be a superkey for
e1. Again,we express this in terms of superkeys:∃K ∈ κ(e1),
K ⊆ G.
44::3 ⇒ 43::3 If G2 = ∅, then G+

2 = A2 and the
third requirement is clearly fulfilled. If G2
= ∅, the third
requirement is fulfilled if in addition A2 is a superkey for
e2, i.e., A2 → A(e2). This can be expressed as follows:
K ∈ κ(e2), K ⊆ A2. ��

3.4 Replacing group-by and inner join by groupjoin

We can replace a sequence of a grouping and an inner join
by a single groupjoin [14]:

ΓG;F (e1 BA1=A2 e2)

≡ ΠC (σc2>0(e1 ZA1=A2;F◦(c2:count (∗)) e2)) (45)

if

1. G → G+
2 holds in e1 BA1=A2 e2,

2. G1, G+
2 → TID(e1) holds in e1 BA1=A2 e2,

3. A2 → G+
2 holds in e2, and

4. F(F) ⊆ A(e2).

Again, we aim to simplify these requirements such that only
information about superkeys is necessary to check them dur-
ing plan generation.

Theorem 2

ΓG;F (e1 BA1=A2 e2)

≡ ΠC (σc2>0(e1 ZA1=A2;F◦(c2:count (∗)) e2)) (46)

if

1. (A2 ⊆ G) ∨ (A1 ⊆ G ∧ G2 = ∅),
2. ∃K ∈ κ(e1), K ⊆ G,
3. (∃K ∈ κ(e2), K ⊆ A2) ∨ (G2 = ∅),
4. F(F) ⊆ A(e2).

The proof is identical to the one for Theorem 1.

Corollary 1

ΓG;F (e1 BA1=A2 e2)

≡ ΠC (e1 ZA1=A2;F◦(c2:count (∗)) e2) (47)

if

1. (A2 ⊆ G) ∨ (A1 ⊆ G ∧ G2 = ∅),
2. ∃K ∈ κ(e1), K ⊆ G,
3. (∃K ∈ κ(e2), K ⊆ A2) ∨ (G2 = ∅),
4. (e1 NA1=A2 e2) = e1, and
5. F(F) ⊆ A(e2).

Proof The only difference between Theorem 2 and Corol-
lary 1 is that the latter omits the selection after the groupjoin.
In Equivalence 46, the selection is needed to remove those
tuples from the groupjoin result that result from a tuple from
e1 not having a join partner in e2. These tuples are contained
in the result of the groupjoin (see Definition 9), but not in the
result of a join followed by a grouping. If the fourth condition
stated above holds, i.e., (e1NA1=A2 e2) = e1, all tuples from
e1 find a join partner in e2 and the selection can be omitted.
This case holds if there is a foreign-key constraint where A1

references A2 and no selection was applied to e2 before the
join. ��

3.5 Some remarks concerning the groupjoin

Information on how to implement the groupjoin can be found
in previous work [14]. There, a straightforward implementa-
tion combining join and grouping is proposed. One system
that currently supports the groupjoin is HyPer [11].

In general, the groupjoin is most effective if the result
of the join is large compared to the result of the following
grouping operator. In this case, combining the two operators
saves the materialization of a large intermediate result.

4 Dynamic programming

We briefly repeat the basics of a plan generator based on
dynamic programming (DP). The plan generator is then
extended to allow for the reordering of joins and grouping
operators, as well as the introduction of groupjoins.

4.1 Plan-generation basics

Figure 7 shows the basic structure of a typical DP-based
plan generator. Its input consists of three major pieces: the
set of relations to be joined and the set of join operators with
associated predicates from the input query as well as a query
hypergraph. A hypergraph is defined as follows:

Definition 3 A hypergraph is a pair H = (V, E) such that

1. V is a non-empty set of nodes and
2. E is a set of hyperedges, where a hyperedge is an

unordered pair (u, v) of non-empty subsets of V (u ⊂ V
and v ⊂ V) with the additional condition that u ∩ v = ∅.

123

Efficient generation of query plans containing group-By, join, and groupjoin

Fig. 7 Plan generator based on DP

The hypergraph is constructed by a conflict detector such
that the nodes of the graph represent the relations referenced
in the input query and every edge in the graph represents a
join predicate between two or more relations. The conflict
detector encodes reordering conflicts as far as possible into
the hypergraph by appropriately extending the relation sets
that make up a hyperedge [12]. This is necessary since inner
joins and outer joins are not freely reorderable.

The major data structure used by the plan generator is the
DP table, which stores an optimal plan for every plan class. A
plan class comprises all plans that are equivalent with respect
to an equivalence relation. In a typical DP-based plan gen-
erator like the one shown in the figure, plans are considered
to be equivalent if they produce the same result. However,
different equivalence criteria are possible and we will see an
example of this in the following subsection. Plan properties
can be classified into logical and physical properties, where
logical properties are those that are equal for all plans in the
same plan class and physical properties are those that can
differ between plans in the same class.

The plan generator consists of four major components.
The first component initializes the DP table with the access
paths for single relations, such as table scans and index
accesses (Line 1,2). The second one enumerates connected-
subgraph-complement pairs (ccp for short) of the hypergraph
H (Line 3), where a ccp is defined as follows:

Definition 4 Let H = (V, E) be a hypergraph and S1, S2
two subsets of V . (S1, S2) is a ccp if the following three
conditions hold:

1. S1 ∩ S2 = ∅,
2. S1 and S2 induce connected subgraphs of H , and
3. ∃(u, v) ∈ E, u ⊆ S1 ∧ v ⊆ S2, that is, S1 and S2 are

connected by some edge.

The ccps are enumerated in an order suitable for DP; that is,
before a pair (S1, S2) is emitted, all ccps contained in S1 and
S2 are emitted. Such an enumerator has been described in
previous work [13].

The third component (Line 5) is an applicability test
for operators. It builds upon the conflict representation and
checks whether some operator �p can be safely applied. This
check is necessary since it is not possible to exactly cover all
reordering conflictswithin a hypergraph representation of the
query [12].

The fourth component (BuildPlan) is a procedure that
builds plans using some operator �p as the top operator and
the optimal plans for the subsets of relations S1 and S2, which
can be looked up in the DP table. Finally, the optimal plan is
returned (Line 9).

This basic algorithm can be extended in such a way that it
can reorder not only join operators but also join and grouping
operators.

4.2 Extending the plan generator

We introduce the new routine OpTrees shown in Fig. 8. Its
arguments are two join trees T1 and T2, and a join operator
�p. The result consists of a set of up to nine different trees
joining T1 and T2 with newly introduced grouping operators
and groupjoins.

The relation sets S1 and S2 are obtained from T1 and T2,
respectively, by extracting their leaf nodes. The first tree is
the onewhich joins T1 and T2 using �p without any grouping.

When a join tree containing all the relations in the query
is created, that is, (S1 ∪ S2) = R, we have to add another
grouping on top of �p if the grouping attributes do not com-
prise a superkey (see Sect. 3). NeedsGrouping checks this
condition.

Thenext tree is the one that groups the left argument before
the join. In order to do so, we have tomake sure that the corre-
sponding transformation is valid, i.e., it corresponds to one of
the equivalences from Sect. 3. The Valid subroutine checks
for this correspondence. Additionally, we have to avoid the
case in which the grouping attributes G+

i form a superkey for
the set Si , with i ∈ {1, 2}, because then the grouping would
be a waste. And again, if necessary, we have to add a group-
ing on top. Up to three more trees are built with different
combinations of grouping the left or right input of the join
until the subroutineGroupjoinTrees is called in the last line
of OpTrees. If the introduction of groupjoins is not desired,
we can simply return the set Trees at the end of OpTrees.

123

M. Eich et al.

Fig. 8 OpTrees and NeedsGrouping

The pseudocode for GroupjoinTrees is given in Fig. 9.
As argument we pass the relation set S and the set Trees
which at this point contains up to four different join trees
for S, as depicted on the left-hand side of Fig. 10. For each
tree, contained in the set, we consider introducing a groupjoin
instead of a sequence of (left outer) join and grouping. The

existing trees can be top-level trees joining subtrees T1 and
T2, possibly with a final grouping on top, or lower-level
trees consisting only of a join between T1 and T2. For each
tree, we check if the left, right or both arguments of the
join are grouped, i.e., if a grouping has been pushed down
through the join. If this is the case, we check whether we
can replace the join followed by a grouping by a groupjoin.
That is, we check the requirements for Equivalences 43/45
or 44/46 from Sect. 3, depending on whether we have full
information about functional dependencies or only superkeys
available. A call to the routine IsGroupjoinApplicable

checks if the aforementioned requirements are met. If the
routine returns true, we add the resulting tree to the set
GroupjoinTrees. In the pseudocode, we include all selec-
tions that may be necessary according to the equivalences
for the groupjoin. We refer to the left and right subtree of
T1 by T1,1 and T1,2, respectively. For each newly produced
groupjoin tree, we also have to check if it is a top-level tree
with a grouping on top. If this is the case, we might be
able to replace the final join and grouping by a groupjoin.
Again, we have to check the requirements before doing so.
Finally, we return the union of Trees and GroupjoinTrees,
i.e., the set of all possible trees including the ones with
groupjoins.

The right-hand side of Fig. 10 shows the five additional
groupjoin trees that can be derived from the three orig-
inal operator trees with pushed-down grouping operators.
Together with the pure join tree without eager aggregation,
we end up with a total number of nine possible operator trees
for joining T1 and T2. We omit possibly necessary selection
operators in the figure. The figure also does not show the
special case where T1 and T2 contain all relations contained
in the query. In that case, there may be even more trees in the
set returned byGroupjoinTrees, because a grouping on top
of the join may be necessary for some or all of the depicted
trees. We may then be able to apply a top-level groupjoin
(see Fig. 9).

Fig. 9 GroupjoinTrees

123

Efficient generation of query plans containing group-By, join, and groupjoin

Fig. 10 Trees enumerated by OpTrees and GroupjoinTrees

To find the best possible join tree taking eager aggregation
into account, we have to keep all subtrees found by our plan
generator, combine them to produce all possible trees for our
query and pick the best one. That is, we cannot just keep
the cheapest plan for each plan class, as is typically the case
when only reordering join operators. This is because Bell-
man’s principle of optimality, which is needed to make DP
applicable, does not apply once eager aggregation is taken
into consideration. If we push a grouping operator into one
or both arguments of a join operator, this can influence two
properties of the respective subtree: The cardinality of the
tree’s result may be reduced and the functional dependencies
holding in the result may be altered. A reduced cardinality
can reduce the cost of subsequent operations and thereby
(more than) compensate the cost of the additional grouping
operator. The functional dependencies, on the other hand,
determine whether or not we need a final grouping on top to
fix the query result (see Sect. 3). This final grouping causes
an additional cost that can destroy the optimality of the plan.
Consequently, we have to keep the more expensive subplans
for each intermediate result because they might turn out to
be a part of the optimal solution. Please refer to our previous
work for more details and an example [8].

For this reason, the dynamic programming table is mod-
ified to store for each plan class not only one plan but a set
of plans. In addition to this, the plans of one class are no
longer equivalent in the sense that they all produce the same
result. Instead, we use the following equivalence relation for
defining plan classes: All plans in one class produce the same
result if a grouping is added on top of each plan. The set of
grouping attributes G+ is unambiguously defined for each
plan class. Following our definition of logical and physical

Fig. 11 BuildAllPlans

plan properties, we thus consider the cardinality of a plan
a physical property since it can differ between plans of the
same class. The same is true for the key properties and func-
tional dependencies holding in the result of a plan.

Figure 11 shows the routine BuildAllPlans, which is
derived from the routine BuildPlans depicted in Fig. 7
and illustrates the modifications necessary to take these
new aspects into account. As before, we enumerate all ccps
(S1, S2) with S = S1 ∪ S2. We then call BuildAllPlans
instead of BuildPlan in Lines 6 and 8 of the algorithm
shown in Fig. 7. In the new subroutine, every tree for S1 is
combined with every tree for S2 using two loops. We call
OpTrees for each pair of join trees, which results in up to
nine different trees for every combination. The newly created
trees are added to the tree set for S.

Eventually, we face the situation where S = R holds
and we need to build a join tree for the complete query.

123

M. Eich et al.

Fig. 12 PruneDominatedPlans

At this point, we call another subroutine named InsertTo-

pLevelPlan. Inside this routine, we compare the join trees
for S to find the one with minimal cost because there are no
subsequent join operators that need to be taken into account.
Before we can do this, we have to decide whether we need
a top-level grouping by calling NeedsGrouping (Fig. 8). In
contrast to the other relation sets, we do not have to keep a set
of trees for R, but only the best tree found so far and replace
it if a better one is found.

For n relations, the runtime complexity of this algorithm
is O(22n−1#ccp) if #ccp denotes the number of ccps for the
query (see Definition 4).

4.3 Optimality-preserving pruning

As we have seen in the previous section, keeping all possi-
ble trees in the solution table guarantees an optimal solution
but causes such a big overhead that it is impractical for most
queries. This leads us to the question whether we can find a
way to reduce the number of DP table entries while preserv-
ing the optimality of the resulting solution. In otherwords,we
are looking for an optimality-preserving pruning criterion.

To this end, we introduce the notion of dominance. Intu-
itively, if a tree is dominated by another tree, it will definitely
not be contained in the optimal solution and can be discarded.
The dominating tree, on the other hand, may be contained in
the optimal solution, so we have to keep it.

Figure 12 shows the routine PruneDominatedPlans,
which discards all trees that are dominated by some other
tree already stored in the respective tree set. The routine
expects as arguments a set of relations S and a join tree
T for this set. It is called from inside BuildallPlans.
For this purpose, we replace Line 8 in BuildAllPlans

by PruneDominatedPlans(S, T). The loop beginning in
Line 1 runs through the existing join trees for S taken from
the DP table and compares each of them with the new tree T .
If there is an existing tree Told , which dominates the new tree
T , then the latter is discarded. Therefore, the routine returns
without adding T to the tree set for S. If T dominates an
existing tree Told , then Told is deleted from the DP table. In
this case, the loop continues because more dominated trees
that can be discarded may exist. Finally, T is added to the set
for S.

Fig. 13 Configuration options for the plan generator

In Sects. 6, 7, 8 and 9, we discuss different notions of dom-
inance and evaluate them with respect to their effectiveness
as a pruning criterion.

To summarize this section, Fig. 13 provides an overviewof
the possible configurations of our plan generator. Every path
in the tree leads to a valid plan generator with certain capa-
bilities, such as reordering grouping and join (marked by Γ),
introduction of groupjoins (marked byZ), and dominance-
pruning.

5 Interesting plan properties and their derivation

In this section we provide rules for computing properties of
query plans that we use to determine dominance.

5.1 Interesting properties

Keys We denote by κ(e) the set of keys for a relation defined
by an expression e. Note that a single key is a set of attributes.
Therefore, κ is a set of sets. Subsequently, we will use the
term key for what is actually a superkey and only distinguish
the two where it matters. Note also that attributes contained
in the keys resulting from the full and left outer join can
have the value null. We therefore assume that null values are
treated as suggested by Paulley, i.e., two attributes values are
equal if they are both null [15]. We assume that we know the
keys of the base relations from the database schema.

Functional dependencies We denote by FD(e) the set of
functional dependencies (FDs) holding in expression e.
Again, we adopt Paulley’s definition of functional depen-
dency, where two attributes with value null are treated as
equal [15]. Initially, FDs for a base relation are deduced from
the keys declared in the database schema. Below, we will fre-

123

Efficient generation of query plans containing group-By, join, and groupjoin

quently use the closure1 of a given set of FDs, denoted by
FD+.

Equality constraints We denote by EC(e) the set of equality
constraints holding in expression e. Equality constraints are
captured in equivalence classes. An equivalence class is a set
of attributes {a1, a2, . . . , an} where the attributes a1 through
an are known to have equal values. Note that this definition
makesEC a set of sets.Below,wedefine a set of operations for
accessing and modifying a given set of equality constraints.

We denote by EC[a] the equivalence class containing
attribute a: EC[a] = {c|c ∈ EC, a ∈ c}.

We denote by EC ← (a = b) the insertion of the equality
constraint a = b into EC, with a and b being two attributes:

EC ← (a = b)

≡ EC \ {EC[a], EC[b]} ∪ {EC[a] ∪ EC[b]}.

Initially, EC contains a singleton for each available attribute
a1 to an across relations:

EC = {{a1}, {a2}, . . . , {an}}.

Definite attributes We denote by NN(e) the set of definite
attributes in an expression e. Definite attributes are attributes
that never have the value null. If e is a base relation, NN(e)
contains the attributes that are declared as “not null” in the
database schema.

5.2 Deriving interesting properties

We provide rules for computing the four sets bottom-up in an
operator tree possibly containing all algebraic operators cov-
ered in Sect. 2.2. The rules concerning EC and FD are taken
from Paulley [15]. For simplicity, we make some restrictions
on the join predicateswe consider.Weassume (possibly) con-
junctive predicates with each conjunct referencing exactly
two relations. We do not claim that the presented rules are
complete. A bigger set of rules may result in bigger property
sets and thereby in more pruning opportunities. On the other
hand, evaluating more rules leads to a higher overhead for
computing the property sets.

One concept that is useful for the computation of the afore-
mentioned properties is null rejection of a predicate p on
attribute a. It is defined as follows [10]:

Definition 5 A predicate p rejects nulls on attribute a if it
does not evaluate to true if a is null.

NR(p) is the set of attributes on which predicate p rejects
nulls.

1 By closure wemean the set of all dependencies derivable from a given
set of dependencies, as the term is commonly understood.

5.2.1 Inner join

Consider the join of two expressions e1 and e2 with join
predicate p: e1 Bp e2.

Keys We have to distinguish three cases [8]:

– In case {a1} is a key of e1 and {a2} is a key of e2, we have

κ(e1 Ba1=a2 e2) = κ(e1) ∪ κ(e2).

That is, each key from one of the input expressions is a
key for the join result.

– In case {a1} is a key but {a2} is not, we have

κ(e1 Ba1=a2 e2) = κ(e2).

The case where {a2} is a key and {a1} is not is handled
analogously.

– Without any assumption on the ai or the join predicate,
we have

κ(e1 Bp e2) =
⋃

K1∈κ(e1),K2∈κ(e2)

K1 ∪ K2.

In other words, every pair of keys from e1 and e2 forms
a key for the join result.

Functional dependencies In the join result, all FDs from the
two input expressions still hold, resulting in the following
equation:

FD(e1 Bp e2) = FD+(e1) ∪ FD+(e2).

Equality constraints If p is an equality predicate of the form
a1 = a2, with a1 belonging to e1 and a2 belonging to e2, we
know that after the join a1 and a2 are equal.

We capture this information by defining an equivalence
class containing the two attributes. The existing equality con-
straints holding in the join arguments remain valid after the
join, i.e., the following equation holds for an equijoin:

EC(e1 Ba1=a2 e2) = (EC(e1) ∪ EC(e2)) ← (a1 = a2).

For all predicates other than equality conditions, we can state
the following equation: EC(e1 Bp e2) = EC(e1) ∪ EC(e2).

Definite attributes All attributes that are known to be definite
in the join arguments still have this property after the join.
Additionally, all attributes that p rejects nulls on are definite
after the join: NN(e1 Bp e2) = NN(e1) ∪ NN(e2) ∪ NR(p).

123

M. Eich et al.

5.2.2 Left outer join

Consider the left outer join of expressions e1 and e2: e1 Ep

e2. Since the left outer join can introduce null values, we
have to be careful when determining the dependencies and
constraints holding in its result.

Keys Here, we have only two possible cases. If {a2} is a key
of e2, then κ(e1 Ea1=a2 e2) = κ(e1).

Otherwise, we have to combine two arbitrary keys from
e1 and e2 to form a key:

κ(e1 Ep e2) =
⋃

K1∈κ(e1),K2∈κ(e2)

K1 ∪ K2,

where p is an arbitrary predicate.

Functional dependencies All FDs holding in e1, the pre-
served side of the outer join, continue to hold in the join
result. Dependencies from e2, the null-supplying side of the
outer join, only continue to hold if the left-hand side of the
dependency contains an attribute that p rejects nulls on or a
definite attribute. This gives rise to the following equation,
where p is an arbitrary predicate:

FD(e1 Ep e2) = FD+(e1)

∪{(α → β) ∈ FD+(e2) | (α ∩ (NN(e2) ∪ NR(p))
= ∅)}.

In the case of an equality predicate, we do not get a new
equivalence class, as was the case for the inner join. Instead,
we get a new FD with the join attribute from the preserved
join argument on the left-hand side and the one from the
null-supplying argument on the right-hand side. Consider
the following left outer join of expressions e1 and e2, where
a1 belongs to e1 and a2 belongs to e2: e1 Ea1=a2 e2. In this
case, the following equation holds:

FD(e1 Ea1=a2 e2) = FD+(e1)

∪{(α → β) ∈ FD+(e2) | (α ∩ (NN(e2) ∪ NR(p))
= ∅)}
∪{a1 → a2}.

Equality constraints Equality constraints from both join
arguments continue to hold in the join result, resulting in
the following equation:

EC(e1 Ep e2) = EC(e1) ∪ EC(e2).

Definite attributes Since the left outer join can introduce null
values in all attributes from the null-supplying relation (e2 in
our case), no attribute from e2 is definite in the join result.
The only definite attributes remaining are the ones from e1,
the preserved relation: NN(e1 Ep e2) = NN(e1).

5.2.3 Full outer join

Consider the full outer join of expressions e1 and e2: e1Kpe2.

Keys Regardless of the join predicate, we have to combine
two arbitrary keys from e1 and e2 to form a key for the join
expression:

κ(e1 Kp e2) =
⋃

K1∈κ(e1),K2∈κ(e2)

K1 ∪ K2,

where p is an arbitrary join predicate.

Functional dependencies Since in the full outer join both
input relations are null-supplying, we have to apply the
same rules to both join arguments that we used for the null-
supplying argument of the left outer join. In other words, FDs
from either e1 or e2 only continue to hold if the left-hand side
of the dependency contains an attribute p rejects nulls on or
a definite attribute.

FD(e1 Ka1=a2 e2) = {(α → β) ∈ FD+(e1) |
(α ∩ NN(e1)
= ∅) ∨ (p is null-rejecting in

F(p) ∩ A(e1))}
∪ {(α → β) ∈ FD+(e2) | (α ∩ NN(e2)
= ∅)

∨(p is null-rejecting in F(p) ∩ A(e2))}.

Here, we denote byF(p) the set of attributes occurring freely
in predicate p.

Equality constraints As was the case for the left outer join,
equality constraints from both join arguments remain valid
in the result of a full outer join: EC(e1 Kp e2) = EC(e1) ∪
EC(e2).

Definite attributes The full outer join can introduce null
values in all attributes contained in the join result. This
means that there are no definite attributes after the join:
NN(e1 Kp e2) = ∅.

5.2.4 Left semijoin, left antijoin, left groupjoin

Consider a left semijoin (e1Np e2), left antijoin (e1 Tp e2) or
left groupjoin (e1 Zp e2) of expression e1 and e2. According
to our definitions from Sect. 2.2, none of these operators add
new tuples to their result and none of them return tuples from
the right argument. Therefore, the properties from the left
argument generally remain valid in the join result and those
from the right argument do not. Some exceptions occur in
the case of the groupjoin.

123

Efficient generation of query plans containing group-By, join, and groupjoin

Keys κ(e1 � e2) = κ(e1), for � ∈ {N, T, ZG;A:F }.
Functional dependencies FD(e1�p e2) = FD+(e1), for � ∈
{N, T}.

In the left groupjoin, the attributes inG determine the ones
in A: FD(e1 Zp;G;A:F e2) = FD+(e1) ∪ {G → A}.
Equality constraints EC(e1 �p e2) = EC(e1), for � ∈
{N, T, Z}.
Definite attributes NN(e1 �p e2) = NN(e1), for � ∈ {N, T}.

In the left groupjoin, an attribute a ∈ A is definite if the
aggregate function it results from does not return null. This
depends on whether or not the argument of the aggregate
function is definite and on the characteristics of the aggregate
function. For example, count(*) never returns null, whereas
min returns null if all input values are null. If the former is
the case for all f ∈ F , we can state the following equation:
NN(e1 Zp;G;A:F e2) = NN(e1) ∪ A.

5.2.5 Grouping

The result of a grouping applied to an expression e consists
of the attribute set A containing the aggregation results and
those attributes from e that are contained in the grouping
attributes G.

Keys We assume a grouping applied to expression e:
ΓG;A:F (e). The grouping attributes G can be a key of the
grouping’s argument e. In this case, all keys contained in G
remain keys after applying the grouping: κ(ΓG;A:F (e)) =
{K ∈ κ(e)|K ⊂ G}.

Otherwise, the key of the resulting relation consists of the
grouping attributes G: κ(ΓG;A:F (e)) = {G}.
Functional dependencies In the result of the grouping, all
FDs referring only to the grouping attributes or a subset
thereof remain valid. That is, we keep those dependencies
where both sides are contained in the grouping attributes.
Additionally, the grouping attributes determine the aggrega-
tion attributes:

FD(ΓG;A:F (e)) = { f : α → β | f ∈ FD+(e) ∧ α, β ⊆ G}
∪ {G → A}.

Equality constraints Equality constraints referring only to
the grouping attributes or a subset thereof still hold in the
result of a grouping. EC(ΓG(e)) = {c ∩ G | c ∈ EC(e), c ∩
G
= ∅}
Definite attributes A grouping does not introduce new null
values. The aggregation results in attribute set A may be
definite under the same conditions as for the groupjoin. If
this is the case for all attributes in A, the following holds:
NN(ΓG;A:F (e)) = (NN(e) ∩ G) ∪ A.

Fig. 14 AttributeClosure

5.3 Computing the attribute closure

During plan generation,we need to compute the attribute clo-
sure of a set of attributes α, whichwe denote byAC(α). Since
in the case of equijoins, we do not store any FDs between the
join attributes, but instead put them in an equivalence class,
wehave tomakeuse of the equivalence classes to compute the
attribute closure. For each FD α → β, we add all attributes
to the result set that are in the same equivalence class as some
attribute B ∈ β. Next, we have to go through the existing FDs
and see if there is a dependency β ′ → γ with β ′ ⊆ result,
which gives the transitive dependency α → γ . In this case,
we add γ to the result and repeat the whole process until
there are no more changes.

The pseudocode for AttributeClosure is given in
Fig. 14. As arguments, the procedure expects the set of func-
tional dependencies FD, the set of equivalence classes EC
and the attribute set α for which the attribute closure is com-
puted.

5.4 Implementation in a plan generator

Computing and storing the aforementioned plan properties
during plan generation causes some overhead, which can
be mitigated by carefully choosing the data structures and
algorithms used to store and compute them. In our imple-
mentation, we use bitvectors for all attribute sets, such as NN
and equivalence classes in EC, making frequently needed set
operations, such as inclusion tests, very fast. EC itself can
be stored in a union-find data structure [4]. It is optimized
for a fast lookup of equivalence classes with a single array
access. This way, inserting new equivalence classes becomes
more expensive, but we only need to compute equality con-
straints once for every plan class, whereas the lookup needs
to be done much more often, namely whenever two plans are
compared.

We also store in each plan the attribute closure for each
attribute occurring on the left-hand side of some dependency.

123

M. Eich et al.

This way, we only need to update the closure when it changes
instead of computing it from scratch, which can be done with
a single iteration of the algorithm in Fig. 14.

6 Pruning with functional dependencies

First, we define f-dominance [8]:

Definition 6 A join tree T1 f-dominates another join tree T2
for the same set of relations if all of the following conditions
hold:

1. Cost(T1) ≤ Cost(T2)
2. |T1| ≤ |T2|
3. FD+(T1) ⊇ FD+(T2).

We denote by |T | the cardinality of operator tree T ’s result.
It is important to note that the compared trees do not neces-
sarily produce the same result due to the contained grouping
operators. As discussed in Sect. 2, a grouping on top of the
final join may be necessary to compensate this difference.

Theorem 3 Let T2 be an arbitrary operator tree containing
a subtree T sub

2 . Further, let T sub
1 be a tree f-dominating T sub

2 .
Then, the following holds:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub
1 is a subtree of T1.

By T1 ≡ T2 we mean the equivalence of T1 and T2 with
respect to their result when evaluated as an algebraic expres-
sion.

In order to avoid the overhead associated with computing
FD+, which is used to define f-dominance, the plan generator
described in our previous work applies the following pruning
criterion, which we call k-dominance because it is based on
keys [8]:

Definition 7 A join tree T1 k-dominates another join tree T2
for the same set of relations if all of the following conditions
hold:

1. Cost(T1) ≤ Cost(T2)
2. |T1| ≤ |T2|
3. κ(T1) ⊇ κ(T2).

Theorem 4 Let T2 be an arbitrary operator tree containing
a subtree T sub

2 . Further, let T sub
1 be a tree k-dominating T sub

2 .
Then, the following holds:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub
1 is a subtree of T1.

Correctness proofs for Theorems 3 and 4 can be found in
our technical report [6]. In short, the proofs go as follows.
Assume that T1 is constructed from T2 by replacing T sub

2
by T sub

1 . Since T sub
1 is cheaper than T sub

2 and has a smaller
cardinality, T1 has to be cheaper than the original T2. The
only case in which T2 could be less expensive than T1 is
the one where T1 needs a final grouping and T2 does not.
It can be shown that this will never be the case, because all
functional dependencies (or keys) arising in T2 between the
newly inserted T sub

2 and the root of the tree must also arise
in T1.

With the following example, we show that there are cases
where one tree f-dominates another tree, but does not k-
dominate it. In such cases, it can be beneficial to use FDs
instead of keys for the pruning. Figure 15 shows two operator
trees for the same query on relations R0, . . . , R3. We assume
that each relation Ri has two attributes: one key attribute ki

and one non-key attribute ni , with i ∈ (0, . . . , 3). In addition
to the operators, the trees shown in Fig. 15 contain special
nodes displaying the keys valid at the respective point in the
tree according to the key computation rules from Sect. 5.
We assign numbers to the operators to make them easier to
identify.

Assume that during plan generation we compare the sub-
trees for the relation set {R0, R1, R2} to decide if one of
them can be discarded. To this end, we have to check if one
of the trees dominates the other according to our definition
of k-dominance (Def. 7). Assume further that the tree on
the right has lower cost than the one on the left, and equal
cardinality. Therefore, the only criterion for k-dominance
remaining to be checked is the third one, i.e, we have to

(a) (b)

Fig. 15 Two operator trees with keys

123

Efficient generation of query plans containing group-By, join, and groupjoin

Table 1 Functional
dependencies for Fig. 15

Figure 15a Figure 15b

AC+ EC AC+ EC

R0 {k0} → {k0, n0} ∅ {k0} → {k0, n0} ∅
R1 {k1} → {k1, n1} ∅ {k1} → {k1, n1} ∅
R2 {k2} → {k2, n2} ∅ {k2} → {k2, n2} ∅
R3 {k3} → {k3, n3} ∅ {k3} → {k3, n3} ∅
Γ 1 {n0} → {n0} ∅ – ∅
B1 {{n0, k1}} → {{n0, k1}, n1} {n0, k1} {{n0, k1}} → {{n0, k1}, n1} {n0, k1}
Γ 2 – {n0, k1} {n0, n1} → {n0, n1} ∅

{n0} → {n0, n1}
B2 {{n0, k1}} → {{n0, k1}, {n1, k2}, n2} {n0, k1} {n0} → {n0, {n1, k2}, n2} {n1, k2}

{{n1, k2}} → {{n1, k2}, n2} {n1, k2} {n0, n1} → {n0, {n1, k2}, n2}
{{n1, k2}} → {{n1, k2}, n2}

check if κ(B2a) ⊆ κ(B2b) holds. Here and in the following
examples we write κ(�)/FD+(�) instead of κ(T)/FD+(T),
respectively, where � is the operator at the root of T . Obvi-
ously, the aforementioned condition is not fulfilled and we
decide to keep the more expensive subtree. We will now use
f-dominance as the pruning criterion.

Table 1 shows the FDs and equivalence classes for each
intermediate result of the join trees depicted in Fig. 15. For
each operator, the table gives the set of non-empty attribute
closures AC+ holding in the operator’s result, computed
according to the algorithm described in Sect. 5. We use AC+
instead of FD+, since the former is much smaller and pro-
vides all the information needed for our purposes.

For base relations, the only dependencies we have are
given by the key constraints from the relations’ schemas.
Once the grouping on top of R0 is applied in Fig. 15a, we
lose the key constraint of R0 because the key is not part of the
grouping attributes. Instead, we get a new dependency from
the grouping attribute n0 to all other attributes in the result,
namely the grouping attributes and the attributes containing
the aggregation results. We omit the latter because they are
of no importance for our observations.

The evaluation of the first join predicate results in an
equivalence class containing the join attributes n0 and k1.
Since the two attributes are equivalent, we can replace one
by the other in all our FDs. We denote this by replacing all
occurrences of an attribute by its equivalence class. This way,
the FD {{n0, k1}} → {{n0, k1}, n1} subsumes the following
dependencies:

{n0} → {n0, k1, n1},
{k1} → {n0, k1, n1}.

Applying the closure computation algorithm from Sect. 5
and replacing attributes by their equivalence classes yields
the dependencies and equivalence classes shown in the table.

Wecannow return to our original question:Canwediscard
the more expensive tree from Fig. 15a in favor of the one
in Fig. 15b by considering the FDs holding in both trees
instead of the keys? That is, we need to check if the following
relationship holds:

FD+(B2a) ⊆ FD+(B2b). (48)

Instead of computing the closure for both trees, we can go
through all FDs in AC+(B2a) and check if they hold in the
right tree as well. This is where the equivalence classes come
in handy. Consider the following dependency from the left
join tree:

{{n0, k1}} → {{n0, k1}, {n1, k2}, n2}.

We do not have to find an exact match for this dependency
in the right tree. Instead, we have to find one in which at
least one member of each equivalence class contained in the
above dependency occurs on the same side of the matching
dependency. The following dependency from the right side
of the table meets these requirements:

{n0} → {n0, {n1, k2}, n2}.

In our example, we find a match for every dependency from
the left side of the table, leading us to the conclusion that
Eq. 48 holds.We can therefore safely discard themore expen-
sive tree.

Taking a closer look at Table 1, we also see that κ(B2b) =
{{n0}}, since all attributes present in the tree are determined
by n0. The key resulting from the key computation shown in
Fig. 15 is therefore not minimal, i.e., it is a superkey only.

This example represents the situation where using f-
dominance does allow the elimination of a subtree, while
k-dominance does not. However, there are also cases where

123

M. Eich et al.

(a) (b)

Fig. 16 Two operator trees with keys

the opposite holds, especially in the presence of non-inner
joins. We present an example in Fig. 16.

We assume the same relation schemas as in the previous
example, and we are again interested in discarding the tree in
Fig. 16a because it is more expensive with equal cardinality
as the one in Fig. 16b. Comparing the key sets of B2a and
B2b, we see that they are equal, i.e., the tree on the left-hand
side can be discarded according to Definition 7. On the other
hand, the requirements for f-dominance are not fulfilled, as
can be seen in Table 2, which contains the FDs and equality
constraints up to B2, the root of the two subtrees we are
comparing.

The dependency {{k0, n1}} → {n3}, which is contained
in AC+(B2a), is not contained in AC+(B2b). This is because

attribute n3 is not available in the latter, since it is removed
by Γ 3. To see that this is caused by the left outer join E1,
we replace it by an inner join. This results in an equiva-
lence class {n1, n3}, which is later extended to {k0, n1, n3}.
Thereby, the problematic dependency from above is turned
into {{k0, n1, n3}} → {{k0, n1, n3}}. Since we only need to
find one attribute from each equivalence class on the correct
side of another dependency, the conditions for f-dominance
are satisfied by the dependency {{k0, n1}} → {{k0, n1}} hold-
ing in B2b.

7 Pruning with restricted keys

Using f-dominance instead of k-dominance often is ben-
eficial as it enables more opportunities for pruning. But
computing and comparing the needed properties is more
expensive. In this section, we propose a third pruning
approach that makes use of keys and at the same time allows
for an effective pruning. Again, we provide an example, con-
sisting of two alternative join trees for the same query. They
are shown in Fig. 17.

As before, we are comparing the subtrees for relation set
{R0, R1, R2}, and we are interested in discarding the sub-
tree in Fig. 17a, assuming that it is more expensive than its
counterpart on the right side and both have equal cardinality.
Using the key set as the pruning criterion, we notice that the
tree on the left has a set containing three keys, whereas the
one on the right only has two keys. Therefore, we decide to
keep both trees, since the third criterion for k-dominance is
not met.

Going one level higher in the tree, we see that there is in
fact no reason to keep the more expensive tree. In both trees,
the final grouping on {k2} has no effect because {k2} is a key
of the tree rooted atB3. Since the left tree contains a subtree
that is more expensive than that contained in the tree on the
right, the complete plan on the left can only be cheaper than

Table 2 Functional
dependencies for Fig. 16

Figure 16a Figure 16b

AC+ EC AC+ EC

R0 {k0} → {k0, n0} ∅ {k0} → {k0, n0} ∅
R1 {k1} → {k1, n1} ∅ {k1} → {k1, n1} ∅
R3 {k3} → {k3, n3} ∅ {k3} → {k3, n3} ∅
Γ 1 {n1} → {n1} ∅ {n1} → {n1} ∅
Γ 2 {n3} → {n3} ∅ – ∅
E1 {n1} → {n1, n3} ∅ {n1} → {n1, n3} ∅

{n3} → {n3} {k3} → {k3, n3}
Γ 3 – ∅ {n1} → {n1} ∅
B2 {{k0, n1}} → {{k0, n1}, n0, n3} {k0, n1} {{k0, n1}} → {{k0, n1}, n0} {k0, n1}

{n3} → {n3}

123

Efficient generation of query plans containing group-By, join, and groupjoin

(a) (b)

Fig. 17 Two Operator Trees with Keys

the one on the right if it can omit the final grouping while the
right plan cannot. This is not the case and, therefore, we could
have removed the red subtree on the left, but k-dominance
does not allow this.

We claim that the attribute set {k0} contained in κ(B2a)

but not in κ(B2b), which inhibits the pruning, can be ignored,
since it is not referenced in any predicate further up in the tree.
Therefore, it does not influence the key constraints that hold
in the following intermediate results, which in turn deter-
mine the necessity of the final grouping. The same argument
implies that we can also ignore {n1}. Applying this to both
κ(B2a) and κ(B2b), we see that the only remaining key in
both sets is {k2}. The sets are therefore equal and the third
criterion for k-dominance is fulfilled, meaning that we can
discard the more expensive subtree. This leads to a third
notion of dominance. Before we define it, we define the
restricted key set κ− as follows:

κ−(T) = {K |K ∈ κ(T) ∧ K ⊆ G+(T)}.

We can now define rk-dominance:

Definition 8 A join tree T1 rk-dominates another join tree T2
for the same set of relations if all of the following conditions
hold:

1. Cost(T1) ≤ Cost(T2)
2. |T1| ≤ |T2|
3. κ−(T1) ⊇ κ−(T2).

Theorem 5 Let T2 be an arbitrary operator tree containing
a subtree T sub

2 . Further, let T sub
1 be a tree rk-dominating

(a) (b)

Fig. 18 Two operator trees

T sub
2 . Then, the following must hold:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub
1 is a subtree of T1.

8 Pruning with restricted FDs

So far, we have observed that we can often prune more
subplans with FDs than with keys, but restricting the key
set increases the effectiveness of key-based pruning. Apply-
ing the same principle to FDs by using a restricted FD set
promises to further improve the pruning capabilities of our
plan generator.

Again, we start by giving an example, consisting of two
operator trees as shown in Fig. 18, where we assume that
the subtree for relation set {R0, R2, R3} in Fig. 18a is more
expensive than the one in Fig. 18b. Table 3 contains the
FDs and equality constraints holding in each intermediate
result up to the root nodes of the two subtrees. The FDs
contained in AC+(B2a) are not contained in AC+(B2b), nor
is AC+(B2b) a subset of AC+(B2a). Thus, we cannot dis-
card either of the two trees based on f-dominance. More
precisely, there are two dependencies that hinder the prun-
ing: {k3} → {k3, {k0, n2, n3}, n0}, which only holds in the
left tree, and {k2} → {k2, {k0, n2, n3}, n0}, which only holds
in the right tree.

The attributes k2 and k3 are not referenced in any of the
join predicates above B2, the root node of the two subtrees
of interest. They are also not part of the grouping attributes
at the topmost grouping operator. The only attribute from
this subtree that is “still needed” further up in the tree is n2.
If we only consider those dependencies where the left-hand
side contains n2 for the comparison of the two trees, we can
discard the subtree from Fig. 18a. In analogy to the restricted

123

M. Eich et al.

key set κ−, we define the restricted set of FDs FD− as

FD−(T) = { f : α → β | f ∈ FD+(T) ∧ α ⊆ G+(T)}.

This leads to the definition of rf-dominance:

Definition 9 A join tree T1 rf-dominates another join tree T2
for the same set of relations if all of the following conditions
hold:

1. Cost(T1) ≤ Cost(T2)
2. |T1| ≤ |T2|
3. FD−(T1) ⊇ FD−(T2).

Theorem 6 Let T2 be an arbitrary operator tree containing
a subtree T sub

2 . Further, let T sub
1 be a tree rf-dominating

T sub
2 . Then, the following must hold:

∃T1 : T1 ≡ T2 ∧ Cost(T1) ≤ Cost(T2),

where T sub
1 is a subtree of T1.

Correctness proofs for both theorems referring to restricted
property sets (Theorems 5 and 6) can be found in our tech-
nical report [6]. In short, they can be proved by showing
that functional dependencies or keys not contained in the
restricted sets are never propagated in such a way that they
end up in one of the restricted property sets further up in the
tree.

9 Pruning with keys and FDs

Our observations from the previous sections suggest that we
can benefit from using (r)f-dominance as the pruning crite-
rion instead of (r)k-dominance, since it sometimes allows for
the pruning of more subplans. On the other hand, there is also
a cost associated with this approach, which lies in the higher
complexity of computing and comparing the (restricted) clo-
sure instead of the (restricted) key set. This iswhywepropose

a combination of rk-dominance and rf-dominance that maxi-
mizes the pruning capabilities of the plan generator and at the
same timeminimizes the overhead for evaluating the pruning
criterion.

The idea is to always test rk-dominance first and only
compute and compare the restricted closures of both plans if
this test fails. Since in many cases rk-dominance is sufficient
to discard a suboptimal plan, we only need to compute the
closure for a fraction of all considered plans.We use the term
rkrf-dominance when referring to this combined approach,
even though it does not define a new form of dominance in
the sense that it utilizes a new set of properties.

10 Evaluation

We evaluate our algorithms with respect to runtime, mem-
ory consumption and plan quality. However, since the plans
without groupjoins produced by the different plan genera-
tors are all equivalent in terms of plan quality, we do not
compare their costs. Adding groupjoins, we can sometimes
reduce the costs further. We therefore provide a compari-
son of resulting plan costs between the algorithms with and
without groupjoins.Memory consumption ismeasured as the
number of entries in theDP table after successful plan genera-
tion.This number also hints at the effectiveness of the pruning
criteria.

We implemented all pruning approaches discussed in the
previous sections in the plan generator DPHypE, which
is based on the plan generator DPHyp [13] and capable
of reordering non-inner joins and grouping operators. We
denote by f /k/rk/rf /rkrf the plan generator employing f-/k-
/rk-/rf-/rkrf-dominance, respectively. In addition to this, we
extended rk and rf to enable the introduction of groupjoins.
The resulting algorithms are referred to as gjrk and gjrf.

The workload consists of randomly generated join trees,
cardinalities for the base relations, and selectivities. A
grouping operator with a randomly chosen set of grouping

Table 3 Functional
dependencies for Fig. 18

Figure 18a Figure 18b Figure 18a/18b
AC+ AC+ EC

R0 {k0} → {k0, n0} {k0} → {k0, n0} ∅
R2 {k2} → {k2, n2} {k2} → {k2, n2} ∅
R3 {k3} → {k3, n3} {k3} → {k3, n3} ∅
Γ 1 – {n3} → {n3} ∅
B1 {{k0, n3}} → {{k0, n3}, n0} {{k0, n3}} → {{k0, n3}, n0} {k0, n3}

{k3} → {k3, {k0, n3}}
Γ 2 {n2} → {n2} – ∅
B2 {{k0, n2, n3}} → {{k0, n2, n3}, n0} {{k0, n2, n3}} → {{k0, n2, n3}, n0} {k0, n2, n3}

{k3} → {k3, {k0, n2, n3}, n0} {k2} → {k2, {k0, n2, n3}, n0}

123

Efficient generation of query plans containing group-By, join, and groupjoin

attributes is placed at the top of the join tree. The results
given in this section are averages for 10,000 queries for a
given number of relations in the join tree. For each input
tree, a new subset of relations is randomly chosen from a
set of 20 base relations, each with one key attribute and two
non-key attributes. The relations differ in their cardinalities
and attribute values. The join predicates are binary equality
predicates. With respect to the join operators, we distinguish
two cases: trees with only inner joins and trees where at each
inner node one operator � ∈ {B,E,K} is randomly chosen.
All experiments were conducted on an Intel Xeon E5-2690
V2 @ 3.00 GHz.

We do not classify the workload by the shape of the query
graph, as it is usually done when evaluating plan generators
for pure join reordering. The focus of our work does not lie
on join reordering, which has been thoroughly investigated
in prior work and is in its complexity highly influenced by
the query shape. Instead, we are interested in the complexity
added by the optimization techniques discussed in this paper,
which is strongly influenced by other factors, such as the
number of foreign-key–key predicates.

For an evaluation of the general effectiveness of reorder-
ing grouping and join operators, the reader is referred to
previous work [8,16–19] containing experiments not only
for a synthetic workload, but also for selected benchmark
queries. For the general effectiveness of the groupjoin, the
reader is referred to the previous work on the topic, where
its impact on the runtimes of TPC-H queries is investigated
[14].

10.1 Plan generator without groupjoins

The following subsections deal with the plan generators
applying eager aggregation without the introduction of
groupjoins.

10.1.1 Runtime

Figures 19 and 20 show the runtimes of the five plan genera-
tors without groupjoins for queries with 5 to 15 relations. The
runtimes shown in Fig. 19 result fromqueries containing only
inner joins, while Fig. 20 depicts queries containing inner,
left outer and full outer joins. The search space for queries
with only inner joins is larger than for queries containing
non-inner joins, since inner joins are freely reorderable. This
is why the runtimes in Fig. 19 are higher than the ones in
Fig. 20. Since the runtimes of k and f are so high, we did not
run them for larger numbers of relations.

In both cases, we fix the proportion of foreign-key–key
join predicates to 80%. The proportion of foreign-key–key
joins has an impact on the runtime of the plan generators,
especially the ones dealing with unrestricted property sets,
since these predicates tend to keep the sets of keys and FDs

Fig. 19 Runtimes with inner joins

Fig. 20 Runtimes with inner and outer joins

small, making the comparison of said sets faster and increas-
ing the chance of one plan dominating another. We consider
80% a rather cautious assumption and assume this number
to be higher in most real queries.

Both figures confirm that a more effective pruning cri-
terion generally results in faster plan generation. While
the difference is marginal for small queries, it grows with
an increasing number of relations. For queries with 15
relations and different join operators, k needs 1.4 s on aver-
age, while rkrf requires only 0.0015 s, making it almost
three orders of magnitude faster. We can also see that the
three algorithms working with restricted property sets have
almost equal runtimes. However, rk and rkrf are faster
than rf, which can be explained by the higher overhead
for computing and comparing the closure, as demanded by
rf-dominance.

To give an impression of how big this overhead is, we
divided the runtimes of the different plan generators by the
number of plan comparisons performed during plan gen-
eration. For queries with 15 relations and arbitrary join
operators, we measured the following numbers for “time per
plan comparison”: 23 / 306 / 2073 / 3705 / 3077 nanoseconds
for k- / f- / rk- / rf- / rkrf-dominance, respectively. Note that
these numbers are based on the assumption that the plan com-

123

M. Eich et al.

Fig. 21 Runtimes for 10 relations with inner joins

Fig. 22 Runtimes for 10 relations with inner and outer joins

parisons are the dominating influence on the plan generator’s
runtime, which may not always be true.

When considering queries containing only inner joins, we
observe the following trend for larger queries (see Fig. 19):
Since the search space is so large for these queries, the
search space restriction achieved by the pruning criterion
becomes more critical, causing rk-dominance to become less
and less efficient when compared to rf-dominance and rkrf-
dominance.

As stated above, the proportion of foreign-key–key join
predicates has a significant impact on the runtime of the dif-
ferent plan generators. Figures 21 and 22 show the runtimes
for queries with 10 relations and an increasing percentage of
foreign-key–key joins from 0 to 100 with 10,000 input trees
each.

10.1.2 Memory usage

The reasons for the runtime differences between k and the
rest become obvious when we look at the number of DP
table entries produced by the different algorithms, as depicted
in Figs. 23 and 24. As suggested by our observations in
the previous sections, the least effective pruning criterion is
k-dominance and the most effective is rf-dominance. Com-

Fig. 23 Table entries with inner joins

Fig. 24 Table entries with inner and outer joins

bining the latter with rk-dominance results in the same
number of table entries, since they are equivalent in their
pruning capability and differ only in the way they achieve it.
If we allow outer joins, the average number of table entries
is 1800 / 82 for k / rkrf for 15 relations. Queries limited
to inner joins have a much bigger search space, resulting in
more table entries, which is reflected in the results of our
experiments: Here, we have 12,000 / 270 table entries on
average for the same two plan generators and queries with 10
relations.

10.2 Plan generator with groupjoins

The following subsections deal with the plan generators
applying eager aggregation and groupjoins.

10.2.1 Optimal plan cost

Once we enable the introduction of groupjoins in our plan
generator, we are sometimes able to achieve better plans
than with “pure” eager aggregation. In this case, we also
observe differences between the plans resulting from a key-
based algorithm and the ones produced by an algorithmbased
on functional dependencies. This is because, as explained

123

Efficient generation of query plans containing group-By, join, and groupjoin

Fig. 25 Percentage of optimal plans containing groupjoins with inner
joins

Fig. 26 Percentage of optimal plans containing groupjoins with inner
and outer joins

in Sect. 3, we cannot precisely check the requirements for
applying a groupjoin if we only consider keys. Thus, we
may fail to introduce a groupjoin if only keys are known,
even though it would be possible. Figures 25 and 26 illustrate
this by showing the percentage of optimal plans containing
a groupjoin resulting from either of the two algorithms. For
example, out of the 10,000 input queries with only inner
joins and ten relations, 38% of the plans produced by gjrf
contain at least one groupjoin. For gjrk this number amounts
to 21%.

Table 4 contains the costs achieved by gjrk and gjrf in
relation to the cost achieved without groupjoins for 7, 10
and 15 relations. We only provide the minimum value, i.e.,
the best relative cost achieved over all 10,000 queries of one
size. That is because groupjoins can only be applied in a frac-
tion of the considered queries and the cost savings achieved
by introducing groupjoins fluctuates considerably depend-
ing on the characteristics of the query (see Sect. 3.5 and
[14]). But as we will see subsequently, groupjoins do not
add much complexity on top of eager aggregation, so there
is no real downside of introducing them. Therefore, the val-
ues shown in the table give an impression of the potential
that is wasted by doing without them. As the values indicate,

Table 4 Relative plan cost groupjoins/no groupjoins

Relations Inner joins Inner/outer joins

gjrk gjrf gjrk gjrf

7 0.72 0.45 0.79 0.74

10 0.72 0.53 0.83 0.83

15 0.75 0.53 0.90 0.7

we can sometimes reduce the plan cost to less than 50%.
The differences between gjrk and gjrf reveal that we may
no longer be able to find the optimal plan by relying on keys
instead of functional dependencies as soon as groupjoins are
considered.

Due to the random nature of our workload, the grouping
attributes are not necessarily equal to the attributes referenced
in the join predicates contained in the query. In real queries,
the grouping attributes and the join attributes often overlap,
which enables the application of the groupjoin. Thus, the
groupjoin can only replace a fraction of the joins in our input
queries and its benefits are sometimes outweighed by the
costs of the remaining joins. As can be seen in the table, this
effect is most pronouncedwhen the key-based plan generator
is applied to queries containing outer joins, because in this
scenario few groupjoins can be applied.

For a demonstration of the groupjoin’s effectiveness when
applied to benchmark queries, the reader is referred to the
previous work, where a speedup factor of more than three is
reported for TPC-H query 13 after introducing groupjoins.
The complete benchmark is sped up by a factor of 1.5 [14].

10.2.2 Runtime

Figures 27 and 28 show the runtimes of the two plan
generators with groupjoins and their counterparts without
groupjoins. The figures show that the difference in runtimes
between the respective variants is marginal. This proves
that the overhead caused by the introduction of groupjoins
is negligible and outweighed by the potential cost savings
demonstrated in the previous subsection, even if they only
occur in a fraction of the tested queries. This can be explained
by the fact that the main overhead caused by the new exten-
sion lies in checking the requirements for introducing a
groupjoin. However, the dominating influence factor on the
runtimes of our algorithms is the number of plans in the plan
table. As we will see in the next subsection, this number is
little affected by the introduction of groupjoins.

10.2.3 Memory usage

Figures 29 and 30 show the number of table entries stored
in the DP table after plan generation for the algorithms with

123

M. Eich et al.

Fig. 27 Runtime with groupjoins and inner joins

Fig. 28 Runtime with groupjoins, inner and outer joins

groupjoins and their counterparts without. The numbers are
almost equal, which can be explained as follows: When a
groupjoin is applied to replace a sequence of a left outer join
or inner join and a grouping, the resulting subplan has the
same properties (cardinality, keys and functional dependen-
cies) as the original one. The only difference lies in the plan
cost. Thus, inmany cases, the groupjoin plan just replaces the
corresponding plan with pushed-down grouping. But there
are also cases where a plan containing a grouping and a join
is dominated by some other plan and would not have been
inserted into the plan table in the first place, whereas the cor-
responding groupjoin plan is inserted because of its lower
cost. In these cases, the introduction of groupjoins increases
the number of plans stored in the DP table.

11 Conclusion

We presented a complete framework for the optimization
of queries containing joins and grouping. To this end, we
extended the concept of eager aggregation to make it appli-
cable to a variety of join operators. This forms the foundation
for designing a plan generator that is capable of optimizing
not only the join order, but also the placement of grouping

Fig. 29 Table entries with groupjoins and inner joins

Fig. 30 Table entries with groupjoins, inner and outer joins

operators. We then enabled the introduction of groupjoins
to further improve the resulting plans. Defining a set of
optimality-preserving pruning criteria allows the application
of these optimization techniques to large queries. To this end,
we first analyzed the plan properties needed for pruning and
how they can be derived during plan generation. We then
showed that using functional dependencies instead of keys, as
proposed in previous work [8], reveals better pruning oppor-
tunities. Restricting the set of functional dependencies and
keys to contain only the information crucial to guarantee an
optimal solution makes the resulting pruning criteria even
more effective.

Our experiments reveal the influence of pruning on the
runtime of the plan generator, leading to a speed up factor of
up to several orders of magnitude when compared to the only
existing approach. The additional introduction of groupjoins
allows to further reduce the cost of the resulting plans, while
at the same time imposing almost no additional overhead.
However, when groupjoins are considered, the plan genera-
tors relying on keys instead of functional dependencies are
no longer guaranteed to find the optimal plan.

Acknowledgements We thank Simone Seeger for her help preparing
the manuscript and the reviewers for their helpful feedback.

123

Efficient generation of query plans containing group-By, join, and groupjoin

References

1. von Bültzingsloewen, G.: Optimizing SQL queries for parallel exe-
cution. SIGMOD Rec. 18, 17–22 (1989)

2. Chaudhuri, S., Shim,K.: Including group-by in query optimization.
In: Proceedings of International Conference on Very Large Data
Bases (VLDB), vol 94, pp. 354–366 (1994)

3. Cluet, S., Moerkotte, G.: Efficient evaluation of aggregates on bulk
types. In: International Workshop on Database Programming Lan-
guages (1995)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

5. Eich, M., Fender, P., Moerkotte, G.: Faster plan generation through
consideration of functional dependencies and keys. In: Proceedings
of International Conference onVeryLargeDataBases (VLDB), vol
9(10), pp. 756–767 (2016)

6. Eich, M., Fender, P., Moerkotte, G.: Efficient generation of query
plans containing group-by, join, and groupjoin. Technical report,
University of Mannheim (2017)

7. Eich, M., Moerkotte, G.: Dynamic programming: The next step.
Technical report, University of Mannheim (2014)

8. Eich, M., Moerkotte, G.: Dynamic programming: the next step. In:
Proceedings of IEEE Conference on Data Engineering, pp. 903–
914 (2015)

9. Galindo-Legaria, C., Joshi, M.: Orthogonal optimization of sub-
queries and aggregation. In: Proceedings of the ACM SIGMOD
Conference on Management of Data, pp. 571–581 (2001)

10. Galindo-Legaria, C., Rosenthal, A.: Outerjoin simplification and
reordering for query optimization. ACM Trans. Database Syst.
22(1), 43–74 (1997)

11. Kemper, A., Neumann, T.: Hyper: A hybrid OLTP & OLAP main
memory database system based on virtual memory snapshots. In:
Proceedings of IEEE Conference on Data Engineering, pp. 195–
206 (2011)

12. Moerkotte, G., Fender, P., Eich, M.: On the correct and complete
enumeration of the core search space. In: Proceedings of the ACM
SIGMODConferenceonManagement ofData, pp. 493–504 (2013)

13. Moerkotte, G., Neumann, T.: Dynamic programming strikes back.
In: Proceedings of theACMSIGMODConference onManagement
of Data, pp. 539–552 (2008)

14. Moerkotte, G., Neumann, T.: Accelerating queries with group-by
and join by groupjoin. In: Proceedings of International Conference
on Very Large Data Bases (VLDB), vol 4(11) (2011)

15. Paulley, G.: Exploiting functional dependence in query optimiza-
tion. Ph.D. thesis, University of Waterloo (2000)

16. Yan,W.: Rewriting optimization of SQL queries containing group-
by. Ph.D. thesis, University of Waterloo (1995)

17. Yan, W., Larson, P.A.: Performing group-by before join. Techni-
cal Report CS 93-46, Dept. of Computer Science, University of
Waterloo, Canada (1993)

18. Yan, W., Larson, P.A.: Performing group-by before join. In: Pro-
ceedings of IEEE Conference on Data Engineering, pp. 89–100
(1994)

19. Yan, W., Larson, P.A.: Eager aggregation and lazy aggregation. In:
Proceedings of International Conference onVery Large Data Bases
(VLDB), vol 95, pp. 345–357 (1995)

20. Yan,W., Larson, P.A.: Interchanging the order of grouping and join.
Technical Report CS 95-09, Dept. of Computer Science, University
of Waterloo, Canada (1995)

123

	Efficient generation of query plans containing group-by, join, and groupjoin
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Aggregate functions and their properties
	2.1.1 Splittability
	2.1.2 Decomposability
	2.1.3 Treatment of duplicates

	2.2 Algebraic operators

	3 Equivalences
	3.1 Pushing group-by
	3.1.1 Example 1: join
	3.1.2 Example 2: full outer join
	3.1.3 Remarks

	3.2 Eliminating the top grouping
	3.3 Replacing group-by and left outer join by groupjoin
	3.4 Replacing group-by and inner join by groupjoin
	3.5 Some remarks concerning the groupjoin

	4 Dynamic programming
	4.1 Plan-generation basics
	4.2 Extending the plan generator
	4.3 Optimality-preserving pruning

	5 Interesting plan properties and their derivation
	5.1 Interesting properties
	5.2 Deriving interesting properties
	5.2.1 Inner join
	5.2.2 Left outer join
	5.2.3 Full outer join
	5.2.4 Left semijoin, left antijoin, left groupjoin
	5.2.5 Grouping

	5.3 Computing the attribute closure
	5.4 Implementation in a plan generator

	6 Pruning with functional dependencies
	7 Pruning with restricted keys
	8 Pruning with restricted FDs
	9 Pruning with keys and FDs
	10 Evaluation
	10.1 Plan generator without groupjoins
	10.1.1 Runtime
	10.1.2 Memory usage

	10.2 Plan generator with groupjoins
	10.2.1 Optimal plan cost
	10.2.2 Runtime
	10.2.3 Memory usage

	11 Conclusion
	Acknowledgements
	References

