
Let e be an expression. If e is

v:A

1

: � � � :A

k

E(e) := (fv:A

1

: � � � :A

k

g; ;)

e

1

op e

2

10

E(e) := (P(e

1

) [P(e

2

); ;))

f(e

1

; : : : ; e

n

) E(e) := (P(f) � R(v

1

:= e

1

) � : : : � R(v

n

:= e

n

); ;)

e

0

:f(e

1

; : : : ; e

n

) E(e) := (P(f) � R(v

1

:= e

1

) � : : : � R(v

n

:= e

n

)

�R(self := e

0

); ;)

with f de�ned as de�ne f(v

1

; : : : ; v

n

) body;

Let s be a statement. If s is

s

1

; : : : ; s

n

; E(s) := E(s

1

) � : : : � E(s

n

)

v := e; E(s) := ((P(e); fv ! zjz 2 P(e)g)

foreach v in e do s

0

; E(s) := (P(e); fv ! zjz 2 P(e)g) � E(s

0

)

if e then s

1

else s

2

; E(s) := E(e) � (P(s

1

) [P(s

2

); R(s

1

) [R(s

2

))

while e do s

0

; E(s) := E(e) � E(s

0

) � E(e)

return e; E(s) := E(e)

Let f be a function de�ned as

de�ne f(v

1

; : : : ; v

n

) body; E(f) := E(body)

Figure 16: De�nition of path extraction structures

a last step, we rewrite all variables v

i

in P(f) by t

i

if t

i

is the type of v

i

. Further, all paths of

the form t:A

1

: � � � :A

k

in P(f) are cut into path expressions with a maximal length of two.

Example: This example illustrates the extraction of the relevant path expressions from the

function Cuboid .length that invokesVertex .dist. The statements of both functions are numbered.

To each statement the appropriate path extraction structure is assigned. Note that all identi�ers

must be unique|thus, self

c

and self

v

are introduced.

Statement Path Extraction Structure

de�ne length is

1 return self.V1.dist(self.V2); E

1

:= (P(dist) � R(vertex2 := self

c

.V2) � R(self

v

:= self

c

.V1), ;)

end de�ne length;

de�ne dist(vertex2) is

var dx, dy, dz:
oat;

begin

2 dx := self.X � vertex2.X; E

2

:= (fself

v

.X, vertex2.Xg, fdx ! self

v

.X, dx ! vertex2.Xg)

3 dy := self.Y � vertex2.Y; E

3

:= (fself

v

.Y, vertex2.Yg, fdy ! self

v

.Y, dy ! vertex2.Yg)

4 dz := self.Z � vertex2.Z; E

4

:= (fself

v

.Z, vertex2.Zg, fdz ! self

v

.Z, dz ! vertex2.Zg)

5 return sqrt(dx

2

+ dy

2

+ dz

2

); E

5

:= (fdx, dy, dzg, ;)

end de�ne dist;

Now, E(length) is given as E

1

, and E(dist) is given as E

2

� E

3

� E

4

� E

5

:

E

2

� E

3

� E

4

� E

5

= (fself

v

.X, self

v

.Y, self

v

.Z, vertex2.X, vertex2.Y,vertex2.Zg, : : :)

E

1

= (fself

v

.X, self

v

.Y, self

v

.Z, vertex2.X,vertex2.Y,vertex2.Zg � fvertex2 ! self

c

.V2g � fself

v

!self

c

.V1g, ;)

= (fself

c

.V1.X, self

c

.V1.Y, self

c

.V1.Z, self

c

.V2.X, self

c

.V2.Y, self

c

.V2.Zg, ;)

3

37

Appendix: Extracting the Relevant Path Expressions

Subsequently we present a formal method to determine the set RelAttr(f) for a materialized

function f : t

1

; : : : ; t

n

! t

n+1

. This method is based on the extraction of relevant path expres-

sions from f . A path expression t

i

:A

1

: � � � :A

k

(1 � i � n, k � 1) is relevant to f if f uses

the value of v:A

1

: � � � :A

k

for some variable v of type t

i

to compute its result. For example, the

path expression Cuboid :V 1:X is relevant to the function Cuboid .volume , as the X coordinate of

Vertex V 1 of a cuboid is used to determine the volume of the cuboid.

To determine the relevant path expressions of a function f we assign a path extraction

structure E(S) = (P

S

;R

S

) to each syntactic structure S, i.e., expression, statement or function,

that appears in the body of f . Herein, P

S

is the set of path expressions which can be extracted

from S.

9

R

S

is a term rewriting system, as examined by Huet in [8], containing rules of the

form v ! p where v is a variable and p is a path expression. The application of a rule v ! p to

a path expression v:A

1

: � � � :A

k

replaces v by p. The occurrence of a rule v ! p in R

S

indicates

that an assignment of the form v := e occurs in S or in any function that is called by S. Here,

e is an expression and p can be extracted from e.

The relevant path expressions of a sequence of statements s

1

; : : : ; s

n

are extracted by com-

bining the path extraction structures E(s

1

); : : : ; E(s

n

) using the overloaded operator �, which is

introduced by De�nition 8.1. E(s

1

; : : : ; s

n

) is then given as E(s

1

)�: : :�E(s

n

)|the �rst component

of E(s

1

; : : : ; s

n

) contains the set of relevant path expressions of s

1

; : : : ; s

n

.

De�nition 8.1 Let P, P

1

and P

2

be sets of path expressions, R, R

1

and R

2

rewrite systems

and E

1

= (P

1

;R

1

) and E

2

= (P

2

;R

2

) path extraction structures.

R

1

� R

2

:= fx ! z

0

j x !

R

1

z; z !

R

2

z

0

g [fx! z 2 R

1

j 8z

0

: x 6!

R

2

z

0

g

P � R := fz

0

j z 2 P ; z !

R

z

0

g [fz 2 P j 8z

0

: z 6!

R

z

0

g

E

1

� E

2

:= ((P

2

� R

1

) [P

1

; (R

2

� R

1

) [(R

1

n fx ! z 2 R

1

j 9z

0

: x !

R

2

z

0

g))

� is left associative. Thus, a sequence E

1

� E

2

� : : : � E

n

is evaluated from left to right. 2

The meaning of the terms R

1

�R

2

and P �R is obvious. To understand the meaning of E

1

� E

2

,

remember that E

1

� E

2

yields the path extraction structure of a sequence of two statements,

say s

1

and s

2

. Note that s

1

is executed before s

2

. The �rst component of E

1

� E

2

contains the

path expressions of s

2

after being rewritten by R

1

and all path expressions of s

1

. The path

expressions of s

2

have to be rewritten as they may start with a variable that is mapped to

another path expression by a rule in R

1

. The second component of E

1

� E

2

contains the rules

of R

2

after rewriting by the rules of R

1

. Further, all rules of R

1

are contained in the rewriting

system of E

1

� E

2

except for those rules, that have the same left hand side as any rule in R

2

. To

understand this, remember that every rule v ! p indicates the occurence of an assignment of

some expression to the variable v. Thus, if s

2

re-assigns a variable v that has already been used

before, then all rules in R

1

that re
ect the old value of v have to be abandoned.

As mentioned before, the path extraction structure of an assignment v := e is given by

E(v := e) := (P(e); fv ! zjz 2 P(e)g). The de�nition of path extraction structures for all

expressions, statements, and function declarations is given in Figure 16. For simplicity we

assume that none of the used functions is recursive and that none of the used functions has any

side-e�ects. In general, P(f) is a superset of the set of path expressions which are evaluated

during an invocation of f .

The set of path expressions relevant to a materialized function f is used to determine the

set RelAttr(f). Thus, we are only interested in path expressions of the form t:A. Therefore, in

9

The extraction process has to be de�ned recursively!

10

op can be any binary operator, e.g. +, �, �, <, =, : : :

36

[14] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid �le: An adaptable, sym-

metric multikey �le structure. ACM Trans. on Database Systems, 9(1):38{71, 1984.

[15] D. Rosenkrantz and H. Hunt. Processing conjunctive predicates and queries. In

Proc. of The Conf. on Very Large Data Bases, pages 64{72, Montreal, 1980.

[16] T. K. Sellis. Intelligent caching and indexing techniques for relational database sys-

tems. Information Systems, 13(2):175{186, 1988.

[17] M. Stonebraker, J. Anton, and E. Hanson. Extending a database system with pro-

cedures. ACM Trans. Database Systems, 12(3):350{376, Sep 1987.

[18] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures,

caching and views in data base systems. In Proc. of the ACM SIGMOD Conf., pages

281{290, Atlantic City, NJ, May 90.

[19] M. Stonebraker and L. Rowe. The design of POSTGRES. In Proc. of the ACM

SIGMOD Conf., pages 340{355, Washington, D.C., 1986.

35

Acknowledgements

Peter C. Lockemann's continuous support of our rersearch is gratefully acknowledged.

Andreas Horder carried out the computer geometry benchmark; Michael Steinbrunn par-

ticipated in the design and prototypical realization of the concepts.

References

[1] M. E. Adiba and B. G. Lindsay. Database snapshots. In Proc. of The Conf. on Very

Large Data Bases, pages 86{91, Montreal, Canada, Aug 80.

[2] M. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier, and S. Zdonik.

The object-oriented database system manifesto. In Proc. Int. Conf on Deductive and

Object-Oriented Databases, pages 40{57, Kyoto, Japan, Dec 1989.

[3] J. Blakeley, N. Coburn, and P. Larson. Updating derived relations: Detecting irrel-

evant and autonomously computable updates. ACM Trans. on Database Systems,

14(3):369{400, Sep 89.

[4] J. Blakeley, P. Larson, and F. Tompa. E�ciently updating materialized views. In

Proc. of the ACM SIGMOD Conf., pages 61{71, Washington, D.C., 1986.

[5] M. Carey et al. Objects and �le management in the EXODUS extensible database

system. In Proc. of The Conf. on Very Large Data Bases, Kyoto, Japan, Aug 86.

[6] E. Hanson. A performance analysis of view materialization strategies. In Proc. of

the ACM SIGMOD Conf., pages 440{453, San Francisco, CA, May 87.

[7] E. Hanson. Processing queries against database procedures. In Proc. of the ACM

SIGMOD Conf., Chicago, May 88.

[8] G. Huet. Con
uent reductions: Abstract properties and applications of term rewrit-

ing systems. Journal of the ACM, 27(4):797{821, 1980.

[9] A. Jhingran. A performance study of query optimization algorithms on a database

system supporting procedures. In Proc. of The Conf. on Very Large Data Bases,

pages 88{99, L.A., CA, Sep 1988.

[10] A. Kemper and G. Moerkotte. Access support in object bases. In Proc. of the ACM

SIGMOD Conf., pages 364{374, Atlantic City, NJ, May 1990.

[11] A. Kemper and G. Moerkotte. Advanced query processing in object bases using

access support relations. In Proc. of The Conf. on Very Large Data Bases, pages

290{301, Brisbane, Australia, Aug 1990.

[12] A. Kemper, G. Moerkotte, H.-D. Walter, and A. Zachmann. GOM: a strongly

typed, persistent object model with polymorphism. In Proc. of the German Conf. on

Databases in O�ce, Engineering and Science (BTW), pages 198{217, Kaiserslautern,

Mar 1991. Springer-Verlag, Informatik Fachberichte Nr. 270.

[13] V. Lum. Multi-attribute retrieval with combined indexes. CACM, 13:660{665, 1970.

34

update operations increases, leading to a tremendous performance gain of Lazy rematerial-

ization with respect to Immediate rematerialization. In fact, the supported version under

Lazy rematerialization performs as well as the unsupported version for 0:5 < P

up

� 0:9.

For update probabilities between 0:0 and 0:9 the program version using a compen-

sating action outperforms the other three versions. This is due to the fact that using a

compensating action an update does not lead to the recomputation of the whole matrix.

For high update probabilities (P

up

> 0:9), the Lazy version becomes superior to the ver-

sion using the compensating action, as under the Lazy strategy subsequent updates do

not lead to a rematerialization.

From this benchmark two conclusions can be drawn:

1. Lazy rematerialization is always superior to immediate rematerialization if all ma-

terialized objects are a�ected by updates and if several updates are performed sub-

sequently.

2. Compensating actions may drastically reduce the update costs and thus decrease

the penalty paid by the rematerialization mechanism.

8 Conclusion

In this paper we developed an architecture and e�cient algorithms for the maintenance

of materialized functions in object-oriented databases. Our architecture provides for easy

incorporation of function materialization into existing object base systems because it is

largely based on rewriting the schema. In the design of the maintenance algorithms we

placed particular emphasis on reducing the invalidation and rematerialization overhead.

By exploiting the object-oriented paradigm|namely object typing, object identity, and

encapsulation|we were able to achieve �ne-grained control over the invalidation require-

ments and, thus, to lower the invalidation and rematerialization penalty incurred by

update operations. The recomputation overhead for invalidated results can be further

reduced by providing compensating actions.

In addition, one can tune the system by switching between immediate and lazy re-

materialization. The latter strategy can be used to decrease the penalty during update-

intensive phases even further|for example, in a database to store engineering artifacts

where periodically some of the objects are extensively being modi�ed (design phase)

whereas the remaining time the object base remains mostly static.

On an experimental basis we incorporated function materialization|currently lim-

ited to single function GMRs|in our object base management system GOM. The �rst

quantitative analyses gathered from two benchmark sets, one from the computer geome-

try domain and one from a more traditional administrative application are very promis-

ing. Especially when functions are utilized in search predicates|our so-called backward

queries|the materialization constitutes a tremendous performance gain, even for rather

high update probabilities.

Currently, we are extending our rule-based query optimizer [11] to generate query

evaluation plans that utilize materialized values instead of recomputing them.

33

only recomputed if they are accessed. The costs for the Lazy strategy decreases for P

up

between 0:6 and 1:0 as the probability to access an invalidated function result decreases

for higher update probabilities. In this benchmark the break even point of the program

version WithoutGMR with respect to the supported versions lies at P

up

= 0:1 for the

immediate rematerialization strategy and at P

up

= 0:2 for the lazy rematerialization

strategy.

The previous two benchmarks showed that the break-even point for the materialization

of rather simple functions accessing only a small part of the object base is dependent on

the number of backward queries contained in the query mix. In the next benchmark we

investigate the materialization of a more costly function, the computation of the project

department matrix of a company. To benchmark the function matrix , the size of the

company referenced by comp has been decreased to 5 departments and 100 projects.

Each department has 10 employees, and 5 employees are involved in one project. The

number of jobs per employee remains invariant (10). As we have only one company in

our object base the GMR hhmatrix ii contains just one materialized result.

0:01

:1

1

10

100

1000

0 :2 :4 :6 :8 1

Time

[sec]

Update-Probability

Breakeven-Point

Without GMR

3

3

3

3 3

3

3

3

3

3

3

3

Immediate

+

+

+

+

+

+

+

+

+

+

+

+

Lazy
2

2

2

2

2

2

2

2

2

2

2

2

Comp. Action �

�

�

�

�

�

�

�

�

�
�

�

#ops 10

Q

mix

Q

sel;m

1.0

U

mix

N

1.0

P

up

0 to 1 step 0.1

Figure 15: The Bene�ts of Compensating Actions

The operation mix used in this benchmark consists of selections on the project de-

partment matrix (Q

sel;m

) and of insert operations that introduce new projects (N). Four

versions of the program were considered: Without GMR, with the GMR hhmatrix ii un-

der Lazy and under Immediate rematerialization and with a compensating action that

compensates for the insertion of a new project.

The update probability ranges from 0.0 to 1.0. For each update probability 10 opera-

tions were performed. As there exists just one materialized result every update operation

leads to the invalidation of this result. Under the program versions using the Immediate

strategy or the compensating action every update leads to the recomputation of the ma-

trix. The results of this benchmark are shown in Figure 15.

For P

up

below 0.5 the curves Immediate and Lazy are very close, as every update

eventually leads to the recomputation of comp.matrix in both versions (under lazy rema-

terialization the recomputation is triggered by the access to the invalidated matrix after

an update). With increasing update probability the probability of two or more subsequent

32

0:01

:1

1

10

100

1000

0 :2 :4 :6 :8 1

Time

[sec]

Update-Probability

Breakeven-Point

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

3

Immediate

+

+

+

+

+

+

+

+

+

+

+

+

Lazy
2

2

2

2

2

2

2

2

2

2

2

2

#ops 10

Q

mix

Q

bw;r

1.0

U

mix

P

1.0

P

up

0 to 1 step 0.1

Figure 13: Cost of Backward Queries

The �rst benchmark illustrates the performance gain for backward queries obtained

from the materialization of ranking . The update probability varies between 0:0 and 1:0;

for each update probability 10 operations are performed. The operation mix consists of

backward queries and update operations, i.e., the promotion of employees. The benchmark

results are shown in Figure 13. For update probabilities below 0:95 both versions using the

GMR outperform the non-supported version. The Lazy and Immediate rematerialization

strategies show no performance di�erence in this benchmark except for P

up

= 1:0. This

is due to the fact that for backward queries all materialized results have to be valid.

1

10

100

1000

0 :2 :4 :6 :8 1

Time

[sec]

Update-Probability

Breakeven-Point

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

3

Immediate

+

+

+

+

+

+

+

+

+

+

+

+

Lazy
2

2

2

2

2

2

2

2

2

2

2

2

#ops 1000

Q

mix

Q

fw;r

1.0

U

mix

P

1.0

P

up

0 to 1 step 0.1

Figure 14: Cost of Forward Queries

In the next benchmark depicted in Figure 14 we investigated the costs of an operation

mix consisting of forward queries and update operations, i.e., the promotion of employess.

For each update probability, 1000 operations have been performed. Here, Lazy remateri-

alization achieves a peformace gain of about a factor 2 to 12 with respect to Immediate

rematerialization, as|under Lazy rematerialization|invalidated results of ranking are

31

Company

Department

Project

Employee

Job

-

Projs

-

-

Emps

-

?

Deps

?

?

Programmers

?

�

�

�

�

�>

JobHistory

�

�

�

�

�>

Z

Z

Z

Z

Z}

Proj

Figure 12: Reference Graph of Types in the Company Example

The query mix consists of forward queries and backward queries on the (materialized)

function ranking , and of selections on the result of the function matrix . It is speci�ed

by the set of three weighted queries Q

mix

= f(w

1

; Q

fw;r

); (w

2

; Q

bw;r

); (w

3

; Q

sel;m

)g where

w

1

+ w

2

+ w

3

= 1. Q

fw;r

and Q

bw;r

denote forward and backward queries on ranking ,

respectively. Q

fw;r

and Q

bw;r

are speci�ed as follows, with randomNo and r randomly

chosen and " being some small constant:

Q

fw;r

� range e: Employee

retrieve e.ranking

where e.EmpNo = randomNo

Q

bw;r

� range e: Employee

retrieve e

where r � " < e.ranking < r + "

The result of an invocation comp.matrix is a set of tuples of type MatrixLine, i.e.,

tuples of the type [Dep;Proj ;Emps]. The query Q

sel;m

selects all tuples of comp.matrix

that contain a randomly chosen Department, and retrieves the appropriate Proj �eld:

Q

sel;m

� range d: Department, l: MatrixLine

retrieve l.Proj

where l in comp.matrix and

d in l.Dep and

d.DepNo = randomNo

The update mix is speci�ed by the set U

mix

= f(w

0

1

; N); (w

0

2

; P)g with w

0

1

+ w

0

2

= 1.

N denotes the insertion of a new instance of type Employee. P denotes the promotion or

degradation of a randomly chosen employee a�ecting his or her status.

Analogous to the previous benchmark P

up

denotes the probability that one operation

is an update rather than a query, and #ops denotes the number of operations performed

in the described benchmarks.

Benchmark Results

We measured the following program versions to evaluate the materialization of ranking :

� WithoutGMR: the \normal" program without any function materialization.

� Immediate: the program version which maintains the GMR hhrankingii under im-

mediate rematerialization

� Lazy: the program version which maintains the GMR hhrankingii under lazy rema-

terialization

30

7.2 Benchmarking the Company Example

Description

This example is based on the matrix organisation of a company and the ranking of em-

ployees. For lack of space we do not describe the GOM types involved in this example in

full detail.

An object of type Company consists of the name of the company, all departments of the

company and the set of projects that are carried out within the company. A Department

is described by its name and the set of its employees. Projects are modelled by the project

name, the status of the project, the size of the project and the set of programmers that

are involved in the project. We consider only software projects. Thus, the size of a project

is modelled by the lines of code it comprises. The status of a project is given by a decimal

value that ranges between �1000 and 1000. A negative status denotes a delay and a loss

that is caused by the project, a positive status denotes that the project is pro�table.

The type Employee is a subtype of the type Person. Each Employee has a unique

employee number, a salary and a history of jobs, which is modelled as a set of jobs. A

Job describes the part of a Project that has been delegated to a particular Employee.

Therefore, each Job contains a reference to the Project , the number of lines of code that

have been written by the Employee and two Boolean values that denote the status of the

Employee. The attributes of the type Job are used to compute an assessment value|the

ranking of an Employee is then given by the average of the assessment values of all jobs in

the employee's job history. The function ranking is associated with type Employee. This

function is materialized for the subsequent benchmark.

The second function whose materialization has been benchmarked is the function

matrix associated with the type Company. This function computes the department

project matrix for a company. A department project matrix is de�ned as a set of tu-

ples of the type MatrixLine, de�ned as

[Dep : Department;Proj : Project;Emps : SetofEmployee]

One tuple � of type MatrixLine states that the employees contained in the set �:Emps

are employed in department �:Dep and work in project �:Proj . The matrix contains only

MatrixLine instances � with �:Emps 6= fg.

The reference graph depicted in Figure 12 elucidates the types involved in the bench-

mark. An arrow leading from type t

1

to type t

2

means that objects of type t

1

contain an

attribute of type t

2

. Double pointed arrows denote that objects of the �rst type contain

set-valued attributes with elements of the second type. Arrows leading from t

1

to t

2

are

labeled with the name of the appropriate attribute.

Speci�cation of the Application Pro�les

The database contains one Company instance and 20 Departments , each of which has 100

Employees. 1000 Projects are stored in the database. In the following we assume that the

considered company is referenced by the variable comp. On the average every employee

has been involved in 10 projects.

Again, the operation mix is described as a quadruple

M = (Q

mix

; U

mix

; P

up

;#ops)

29

10

100

1000

10000

0 500 1000 1500 2000 2500

Time

[sec]

Number of Rotations

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

WithGMR

+

+

+

+

+

+

+

+

+

+

+

Lazy
2

2

2

2

2

2

2

2

2

2

2

InfoHiding �

�

�

�

�

�

�

�

�

�

�

#ops 250 to 2500

Q

mix

|

U

mix

R

1.0

P

up

1.0

Figure 10: Invalidation Overhead Incurred by Materialized volume

being an update consisting of scale and rotate operations. We simultaneously increase the

probability that a scale (S) is chosen from 0 to 1 and decrease the probability that a rotate

(R) operation is performed from 1 to 0|increments and decrements being 0:05. The re-

sults are plotted in Figure 11. It turns out|as expected|that the costs for WithoutGMR

and WithGMR are almost invariant to the varying ratio of scale to rotate operations. The

InfoHiding version bene�ts from the operation mix that predominantly contains rotate

operations because the InfoHiding version \detects" that rotates are irrelevant for mate-

rialized volume results. Therefore, the InfoHiding curve starts close to the WithoutGMR

curve and steadily climbs towards the WithGMR cost curve as the number of scale op-

erations in the operation mix is increased. But the overhead of InfoHiding remains well

below the overhead of WithGMR because under InfoHiding each scale operation induces

only one invalidate whereas the \normal" GMR-maintenance triggers 12 invalidations.

10

100

1000

0 50 100 150 200 250 300 350 400

Time

[sec]

Number of Scalations

(400 � Number of Rotations)

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

WithGMR

+

+

+
+

+

+
+

+

++

+

+
+

++

+
+

+

+

+

+

+

InfoHiding

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

#ops 400

Q

mix

|

U

mix

S

0 step .05 to 1

R

1 step �:05 to 0

P

up

1.0

Figure 11: The Bene�ts of Information Hiding

28

the number of forward queries, the only operation performed in this benchmark. The

results are shown in Figure 9. We observe that the exploitation of the GMR hhvolumeii

constitutes a performance gain of about a factor 4 to 5. The reader should notice, however,

that in this benchmark only queries and no updates were performed.

1

10

100

0 500 1000 1500 2000

Time

[sec]

Number of Forward-Queries

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

WithGMR

+

+ +

+

+

+

+

+

+

+

+

#ops 200 to 2000

Q

mix

Q

fw

1.0

U

mix

|

P

up

0.0

Figure 9: Cost of Forward Queries

The subsequent benchmark was designed to investigate the overhead of invalidation

and rematerialization incurred by function materialization. For this purpose we used an

application pro�le that consists of only rotate operations, the number of which is steadily

increased. The results are visualized in Figure 10. Aside from the three previously

introduced program versions WithGMR, WithoutGMR and InfoHiding, we incorporated

into this benchmark a fourth system con�guration, called Lazy. In this con�guration we

maintained the GMR hhvolumeii under lazy rematerialization. Under Lazy all materialized

volume results had been invalidated before the benchmark was started|this causes the

RRR and the sets ObjDepFct to be emtpy with respect to hhvolumeii. Nevertheless, this

con�guration still imposes a penalty on performing a geometric transformation due to the

checks that have to be made within objects of type Vertex|to determine that the set

ObjDepFct is empty. From Figure 10 we conclude that this penalty is, however, rather low

since the curves WithoutGMR and Lazy run very close. This means that switching from

immediate rematerialization to lazy rematerialization drastically decreases the update

penalty. This makes our materialization concept even viable for application domains

where occasional \bursts of updates" are followed by prolonged periods of a rather static

behavior, e.g., the life cycle of an engineering artifact.

The InfoHiding version induces an overhead that is similar to Lazy|remember that

we only perform rotate operations which, under information hiding, do not require an

invalidation. However, if the benchmark consisted of scale operations the InfoHiding

con�guration would have much higher overhead than the Lazy version.

We remember that the \normal" WithGMR version cannot detect that rotate is ir-

relevant for materialized volume results. Therefore, a substantial penalty is incurred due

to the invalidation and rematerialization. The penalty constitutes almost a factor 10 as

compared to the unsupported version.

In the last benchmark we investigate the bene�ts of information hiding with respect

to reducing the invalidation overhead. For this purpose we perform 400 operations, each

27

0.1

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

Time

[sec]

Update-Probability

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

WithGMR

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

InfoHiding
2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

#ops 40

Q

mix

Q

bw

Q

fw

0.5 0.5

U

mix

I S

0.5 0.5

P

up

0 step .05 to 1

Figure 7: Performance of GMR under Varying Update Probabilities

In the next benchmark a slightly di�erent application pro�le was utilized: now we

perform 500 operations where each operation is either a backward query or a scale|

the relative number depending on the update probability. The update probability is

varied between 0:94 and 1:0 with the �rst two increments being 0:02 and the remaining

increments being 0:002. The results of this benchmark are visualized in Figure 8. Again

we compare the three program versions WithoutGMR, WithGMR, and InfoHiding. In

this example application the break even point of the WithGMR version versus the non-

supported WithoutGMR version is around 0:96, and the break-even point between the

unsupported program and GMR with information hiding (InfoHiding) is at an update

probability of about 0:975.

10

100

1000

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

Time

[sec]

Update-Probability

WithoutGMR

3

3

3

3

3

3

3

3

3

3

3

3

3

3

WithGMR

+

+++++
+++

+
+

+

+
+

InfoHiding
2

2

2

22

22

2
2
2
2

2
2

2

#ops 500

Q

mix

Q

bw

1.0

U

mix

S

1.0

P

up

0.94 to 1.0

Figure 8: Determining the Break-Even Point of Function Materialization

From these two �rst benchmarks we can conclude that materialization achieves a

tremendous performance gain for backward queries. In the next benchmark we want to

investigate the costs of forward queries for which the gain due to materialization is less

dramatic but|as it turns out|still signi�cant. In this benchmark we steadily increase

26

and Q

fw

(forward query)|are outlined as follows, where r and randomID are randomly

chosen and " is a small constant:

Q

bw

� range c: Cuboid

retrieve c

where r � " < c:volume < r + "

Q

fw

� range c: Cuboid

retrieve c.volume

where c.CuboidID

7

= randomID

8

The update mix U

mix

= f(w

0

1

;D); (w

0

2

; I); (w

0

3

; S); (w

0

4

; R); (w

0

5

; T)g consists of weighted

update operations. The letters represent the following updates: D denotes the deletion of

a randomly chosen Cuboid ,

8

I denotes the creation of a new Cuboid of randomly chosen

dimensions, and S , R and T represent scalation, rotation and translation of a randomly

chosen Cuboid , respectively. Again the sum of all weights has to be 1, i.e.,

P

5

i=1

w

0

i

= 1.

The weights indicate the relative probability that one particular update (query) is cho-

sen from the set of possible updates (queries). For example, if a query is to be performed

it will be the backward query Q

bw

with probability w

1

.

The update probability P

up

determines the ratio between updates and queries in the

benchmarked application. For example, a value P

up

= 0:1 determines that|on the

average|out of 100 operations we will encounter 10 updates which are randomly cho-

sen from the set U

mix

|according to the weights w

0

1

; : : : ; w

0

5

|and 90 queries which are

randomly chosen from the set Q

mix

|according to the weights w

1

and w

2

.

The variable #ops denotes the total number of operations performed in the described

benchmark.

Benchmark Results

The �rst benchmark determines the performance of function materialization for an ap-

plication pro�le under varying update probabilities. The update probability was varied

from 0 to 1 with increments of 0:05. For each update probability 40 operations were exe-

cuted on the object base. The application pro�le and the performance measurements are

graphically visualized in Figure 7|operations whose associated weight is 0 are omitted

from the operation mix speci�cation. The update probability is plotted against the x-axis

and the time to perform the 40 operations is plotted against the logarithmically scaled

y-axis. We measured three di�erent program versions:

� WithoutGMR: the \normal" program without any function materialization.

� WithGMR: in this con�guration the GMR hhvolumeii is maintained under immediate

rematerialization and utilized to evaluate the queries.

� InfoHiding: in this version the GMR hhvolumeii is maintained under information

hiding|as described in Section 5.3|to reduce the invalidation and rematerialization

overhead.

From the plot in Figure 7 we can deduce that up to an update probability of about 0:9

the GMR-version outperforms the non-supported version. Exploiting information hiding

in the GMR maintenance moves the break even point to about P

up

= 0:95.

7

CuboidID is an additional user-supplied identi�er to uniquely select a particular Cuboid.

8

Finding the qualifying Cuboid was supported by an index.

25

declare weight: Cuboid jj
oat !
oat;

de�ne weight (gravitation) is

return self.volume � self.Mat.SpecWeight � gravitation = 9:81;

If we want to materialize the weight of all Cuboid instances for all planets of our solar

system, we can do that by introducing the restricted GMR hhweight ii

p

with the restriction

predicate p de�ned as

p � (gravitation = 9:81 _ : : : _ gravitation = 22:01)

There are two ways to restrict arguments of atomic types: An argument x of an atomic

type is called range-restricted, if it is restricted by a predicate of the form lb � x � ub. x

is called value-restricted if its restriction predicate is of the form x = v

1

_ : : :_x = v

k

. To

value-restrict an argument x the database programmer can build a set-object containing

the values v

1

; : : : ; v

k

x

|the restriction predicate for x is then given as x 2 fv

1

; : : : ; v

k

x

g.

oat-valued arguments of a materialized function must always be value-restricted,

whereas int -valued arguments may be value- or range-restricted.

7 Benchmarking two Example Applications

This section sketches the results of a �rst quantitative analysis of the function materi-

alization concept, using two example applications. The �rst application is based on the

Cuboid example that has been used in the previous sections to illustrate our algorithms

and data structures. The second application is derived from a more traditional database

domain: the personell and project administration in a large company.

The benchmarks were run on our experimental object base system GOM that is built

on top of the EXODUS storage manager [5]. The database was stored on a DEC disk (with

25 ms average transfer time) directly connected to a DEC Station 3100 with 16 MByte

main memory running under the Ultrix operating system. The reported times correspond

to the user times, i.e., the actual times a user has to wait to obtain the result. The

benchmark was run in single user mode, thus eliminating interaction by concurrent users.

Since the described applications are rather small we decided to use a correspondingly

small database bu�er of 600 kBytes to compensate for the small database volume.

7.1 Benchmarking the Cuboid Example

Speci�cation of the Application Pro�les

This analysis is based on the Cuboid example that has been used in the previous sections

to illustrate our algorithms and data structures. All subsequent results were measured on

a database containing 8000 Cuboid instances, each Cuboid referencing 8 Vertex instances

and one Material instance.

The operation mix is described as a quadruple

M = (Q

mix

; U

mix

; P

up

;#ops)

Here, the query mix Q

mix

is the set of (two) weighted queries of the form Q

mix

=

f(w

1

; Q

bw

); (w

2

; Q

fw

)g where w

1

+ w

2

= 1. The two queries|Q

bw

(backward query)

24

Consider, for example, the GMR hhvolume,weight ii

p

with p de�ned as O

1

:Mat:Name =

\Iron" (the attributeO

1

of the GMR hhvolume,weight ii

p

is of type Cuboid). In the database

extension depicted in Figure 2 the Cuboid instance id

3

is made of gold and, therefore,

its volume and weight are not contained in hhvolume,weight ii

p

. If the material of id

3

is

changed from gold to iron the GMR hhvolume,weight ii

p

has to be adapted.

Let f

1

; : : : ; f

m

be functions with the argument types t

1

; : : : ; t

n

. A restriction predicate

p of the GMR hhf

1

; : : : ; f

m

ii

p

can be viewed as a materialized function declared as

p : t

1

; : : : ; t

n

! bool

Obviously, p is already materialized within hhf

1

; : : : ; f

m

ii

p

since the following equation

holds:

p(o

1

; : : : ; o

n

) �

�

(o

1

; : : : ; o

n

) 2�

O

1

;:::;O

n

hhf

1

; : : : ; f

m

ii

p

�

The materialization of a restriction predicate is invalidated by updates of the object base in

the same way as \normal" materialized functions. Thus, to keep the \materialization" of a

restriction predicate up to date, the algorithms outlined in Section 4 are employed. Every

function invoked by the evaluation of the restriction predicate p is modi�ed. During the

materialization process entries are inserted into the RRR which represent objects accessed

during the evaluation of p.

If an update of some object is conveyed to the GMRmanager that a�ects the evaluation

of a restriction predicate, the following algorithm is performed byGMR Manager.invalidate :

predicate(o) � foreach triple [o; p; ho

1

; : : : ; o

n

i] in RRR do

(1) remove [o; p; ho

1

; : : : ; o

n

i] from RRR

(2) recompute p(o

1

; : : : ; o

n

) and

� remember all accessed objects fo

0

1

; : : : ; o

0

p

g

� if p(o

1

; : : : ; o

n

) = true

then

insert [o

1

; : : : ; o

n

; f

1

(o

1

; : : : ; o

n

); true; : : : ; f

m

(o

1

; : : : ; o

n

); true]

into hhf

1

; : : : ; f

m

ii

p

(if not present)

else

remove [o

1

; : : : ; o

n

; F

1

; V

1

; : : : ; F

m

; V

m

]

from hhf

1

; : : : ; f

m

ii

p

(if present)

(3) foreach v in fo

0

1

; : : : ; o

0

p

g do

� insert the triple [v; p; ho

1

; : : : ; o

n

i] into RRR (if not present)

Steps 1 and 3 of this algorithm are similar to steps 1 and 3 of the immediate rematerializa-

tion algorithm described in Subsection 4.1. In step 2 the predicate result is recomputed.

If the result is true the appropriate function results are materialized. Otherwise, the

appropriate GMR entries are removed (if present).

6.2 Materialized Functions with Atomic Argument Types

A function with an atomic argument type, e.g.,
oat or int , cannot be materialized for all

argument combinations|a restriction predicate must be speci�ed to determine the set of

argument values for which results are materialized. For example, consider the function

Cuboid.weight that is now modi�ed to compute the weight of a Cuboid instance with

respect to the gravitational force of the site where the cuboid resides:

23

Here, � is one of f=; 6=; <;>;�;�g, x and y are variables and c is a constant. A predicate

p belongs to the considered subclass if (1) p is a Boolean combination of comparisons of

the above types and (2) the disjunctive normal form of p after eliminating all negations

does not contain the comparison operator 6= in any comparison of Type 2 or 3. For this

subclass of predicates, a polynominal algortihm to decide satis�ability is given in [15].

Rosenkrantz and Hunt [15] show further, that the problem of deciding the satis�abilty of

predicates becomes NP-hard if the comparison operator 6= is included.

Let �

0

be the relevant part of the selection predicate of a backward query Q

bw

. The

p-restricted GMR hhf

1

; : : : ; f

m

ii

p

is applicable to evaluate Q

bw

, if the following conditions

hold:

1. :p belongs to the above de�ned class of predicates (p does not contain comparisons

of the form x = y or x = y + c).

2. �

0

belongs to the above de�ned class of predicates (�

0

does not contain comparisons

of the form x 6= y or x 6= y + c).

3. :p ^ �

0

is not satis�able.

The validity of the above conditions can be decided in O(k

3

) time where k is the number

of variables in :p ^ �

0

.

Example: Assume the function distance to be declared as follows:

declare distance: Cuboid, Cuboid !
oat;

As distance(c

1

; c

1

) = 0:0 and distance(c

1

; c

2

) = distance(c

2

; c

1

) for any Cuboid instances

c

1

and c

2

, it is convenient to restrict the materialization of distance by the following

predicate:

p(c

1

; c

2

) � (c

1

6= c

2

) ^ (c

1

:V 1:X � c

2

:V 1:X)

The backward query

range c: Cuboid

retrieve c

where (distance(c, id

99

) < 100.0 ^ c 6= id

99

^ c.V1.X � id

99

.V1.X) _

(distance(id

99

, c) < 100.0 ^ c 6= id

99

^ id

99

.V1.X � c.V1.X)

can be evaluated using the GMR hhdistanceii

p

. 3

In the subsequent subsections we describe techniques to keep restricted GMRs consis-

tent and we point out the impact of materialized functions with atomic argument types

on the restriction predicate.

6.1 Keeping Restricted GMRs Consistent

In Section 4 we have outlined the algorithms to keep (unrestricted) GMRs up to date

while the object base is being modi�ed. These techniques apply also to restricted GMRs.

But restricted GMRs must further be adapted if an update of the object base a�ects the

restriction predicate.

22

range c: Cuboid

materialize c.volume, c.weight

where c.Mat.Name = \Iron"

The following de�nition introduces restricted GMRs:

De�nition 6.1 (Restricted GMRs)

Let p : t

1

; : : : ; t

n

! bool be a predicate over the argument types t

1

; : : : ; t

n

of the GMR

hhf

1

; : : : ; f

m

ii. We denote the p-restricted GMR for functions f

1

; : : : ; f

m

as hhf

1

; : : : ; f

m

ii

p

.

An extension of hhf

1

; : : : ; f

m

ii

p

is consistent i� the following two conditions hold:

(1) �

O

1

;:::;O

n

hhf

1

; : : : ; f

m

ii

p

=

f[o

1

; : : : ; o

n

] j [o

1

; : : : ; o

n

] 2 ext(t

1

)� : : :� ext (t

n

) ^ p(o

1

; : : : ; o

n

)g

(2) 8� 2 hhf

1

; : : : ; f

m

ii

p

: �:V

j

= true) �:f

j

= f

j

(�:O

1

; : : : ; �:O

n

)

2

Analogously to De�nition 3.2 the extension of a restricted GMR is consistent if (1) it

contains one entry for each argument combination that satis�es the restriction predicate p

(and no other entry) and (2) each stored result is either invalidated, i.e., the corresponding

validity
ag is set to false, or the result is correct with respect to the current state of the

object base.

Restricted GMRs can be used to evaluate forward queries in the same way as unre-

stricted GMRs|when a function result is needed that is not materialized as its arguments

do not ful�ll the restriction predicate, the result will be computed using the \normal"

function.

Further, each GMR provides an access path to the results of the materialized functions

that can be used to evaluate backward queries. Thus, a restricted GMR can be taken

as a partial index on the function results as examined in [16]. Consider the following

prototypical backward query:

range o

1

: t

1

; : : : ; o

n

: t

n

retrieve o

1

; : : : ; o

n

where �

First, the selection predicate � is transformed into disjunctive normal form. As we have

a backward query, � must contain an invocation f(o

i

1

; : : : ; o

i

k

) (fi

1

; : : : ; i

k

g � f1; : : : ; ng)

of some materialized function f . Those conjuncts of � containing variables of the set

fo

i

1

; : : : ; o

i

k

g are called the relevant parts of the selection predicate � and are denoted by

�

0

.

Contrary to forward queries, a p-restricted GMR can be used to evaluate a backward

query only if the restriction predicate p covers the relevant parts of the selection predicate,

i.e., �

0

) p is valid for any instance of the database [16]. This is, in general, an undecidable

problem. However, for a simple but in practice useful subclass of predicates that is

presented in [15] the equivalent problem of deciding the satis�ability of :p^�

0

is decidable.

In [15] three types of comparisons are considered:

Comparison with a constant: x � c (Type 1),

Comparison between variables: x � y (Type 2),

Comparison with an o�set: x � y+c (Type 3).

21

If for an update operation t:u and a materialized function f a compensating action is

speci�ed, i.e., f 2 CompensatedFct(t:u), GMR manager .compensate is invoked instead of

GMR manager .invalidate. Then, an invocation

o:u(o

0

1

; : : : ; o

0

k

);

of the update operation t:u with arguments o; o

0

1

; : : : ; o

0

k

triggers the invocation of the

operation GMR manager .compensate as follows:

GMR Manager.compensate(ho; o

0

1

; : : : ; o

0

k

i, t:u, RelevFct);

with RelevFct = o:ObjDepFct \ CompensatedFct(t:u). For each function f 2 RelevFct

the compensating action c for u and f is retrieved from CA. The new values of the results

of f invalidated by the invocation of u are computed by invocations of the form

o:c(o

0

1

; : : : ; o

0

k

; old);

where old is the old GMR value. The update operation u is modi�ed to initiate the trigger-

ing of GMR Manager.compensate . Contrary to GMR Manager.invalidate , the operation

GMR Manager.compensate is invoked before the update is executed. Thus, all compen-

sating actions can access the state of the object base before being modi�ed. The following

example illustrates the modi�cation of update operations in case of compensating actions.

Example: Assume that the compensating action increase total (as de�ned above) is

speci�ed for the function total volume and the update operation Workpieces.insert , i.e.,

total volume 2 CompensatedFct(Workpieces.insert). Then,Workpieces.insert is modi�ed

as follows:

declare insert: Workpieces jj Cuboid ! void

code insert

0

;

de�ne insert

0

(cub) is

begin

RelevFct := self.ObjDepFct \ CompensatedFct(Workpieces.insert);

if RelevFct 6= fg then

GMR Manager.compensate(hself, cubi, insert, RelevFct);

self.system insert(cub);

RelevFct := self.ObjDepFct \ SchemaDepFct(Workpieces.insert) n RelevFct;

if RelevFct 6= fg then

GMR Manager.invalidate(self, RelevFct);

end de�ne insert

0

;

3

6 Restricted GMRs

Suppose we are interested only in Cuboids made of iron and do not consider Cuboids made

of gold. In this case, we need to materialize volume and weight only for Cuboid instances

c that satisfy the predicate p � c:Mat.Name = \Iron". In GOMql, the p-restricted

materialization of volume and weight is initiated by the following statement:

20

Based on Figure 2, assume Cuboid id

1

to be a member of the set id

59

of typeWorkpieces.

The invocation id

59

:remove(id

1

) removes id

1

from the set id

59

|due to our RRR main-

tenance algorithm, id

1

remains marked. Thus, if Cuboid id

1

is scaled subsequently, the

invocation of the speci�ed compensating action is triggered|leading to a wrong result,

as id

1

is no longer a member of id

59

.

Further, compensating actions can only be speci�ed for modi�ed update operations,

i.e., update operations that are extended by statements to inform the GMRmanager about

updates. If an argument type t is strictly encapsulated only public update operations

of t are modi�ed. Otherwise, if t is not strictly encapsulated, the elementary update

operations t.set A (if t is tuple-structured) or t.insert and t.remove (if t is set-structured)

are modi�ed.

The following de�nition formalizes the concept of compensating actions.

De�nition 5.4 (Compensating Action)

Let f : t

1

; : : : ; t

n

! t

n+1

be a materialized function, and let u : t

i

jjt

0

1

; : : : ; t

0

k

! void be an

update operation with 1 � i � n and f 2 SchemaDepFct (t

i

:u) or f 2 InvalidatedFct (t

i

:u).

A function

c : t

i

jjt

0

1

; : : : ; t

0

k

; t

n+1

! t

n+1

is called a compensating action for function f and update operation t

i

:u, if the following

two sequences of statements are equivalent for any objects o

i

of type t

i

(1 � i � n), o

0

j

of

type t

0

j

(1 � j � k) and any variable x of type t

n+1

:

2

4

o

i

:u(o

0

1

; : : : ; o

0

k

);

x := f(o

1

; : : : ; o

n

);

3

5

�

2

4

x := o

i

:c(o

0

1

; : : : ; o

0

k

; f(o

1

; : : : ; o

n

));

o

i

:u(o

0

1

; : : : ; o

0

k

);

3

5

2

Compensating actions have to be supplied by the database programmer. As the equiva-

lence of the two sequences of statements in the above de�nition is not decidable it is the

database programmer's responsibility to guarantee the correctness of the compensating

action.

The GMR manager maintains compensating actions in a table named CA. CA con-

tains one triple [u; f; c] for every compensating action c (and no other entries) with c being

associated with the update operation u and the materialized function f . If the compen-

sating action increase total is speci�ed for Workpieces.insert and total volume CA would

contain the following entry:

CA =

Upd Op Mat Fct Comp Act

Workpieces.insert total volume increase total

.

.

.

.

.

.

.

.

.

Based on CA, we de�ne the set CompensatedFct(u) for each update operation u:

De�nition 5.5 (Compensated Functions)

Let t:u be an update operation associated with type t. We de�ne the set of compensated

(materialized) functions of t:u as

CompensatedFct(t:u) :=�

Mat Fct

�

Upd Op=t:u

CA

2

19

As outlined in Section 4 the materialized function f and all functions invoked by f

are modi�ed to mark all used objects. If for the materialization of a function f a strictly

encapsulated object is used, only this object, but none of its subobjects, have to be

marked. Public functions of strictly encapsulated types are regarded to be atomic|thus,

functions invoked by public functions may remain unchanged.

Example: Consider the type de�nition of Cuboid as presented in Figure 1. Now assume

that the public clause reads as follows:

persistent type Cuboid supertype ANY is

public rotate, scale, translate, volume, weight

: : :

end type Cuboid;

From this type de�nition it can be deduced|by a close observation of the operational

semantics|that the only operation that a�ects a materialized volume is the operation

scale. All other operations do not invalidate the precomputed volume . With respect to

the materialization of volume, scale has to be modi�ed as follows:

declare scale: Cuboid jj Vertex ! void code scale

0

;

de�ne scale

0

(v) is

begin

: : : !! Statements to scale the cuboid !!

RelevFct := self.ObjDepFct \ InvalidatedFct(Cuboid.scale);

if RelevFct 6= fg then GMR Manager.invalidate(self, RelevFct);

end de�ne scale;

3

5.4 Compensating Actions

A materialized result that has been invalidated by an update can be recomputed either by

an invocation of the materialized function or by a specialized function compensating the

update. For example, consider the GMR hhtotal volumeii.

6

When a new Cuboid instance

is inserted into a set of type Workpieces the result of total volume can be recomputed by

adding the volume of the inserted Cuboid to the old result of total volume|instead of

having to recompute volume for all members of the set. For this the database programmer

has to specify a compensating action, i.e., a function that compensates for the insertion

of a new Cuboid into a set of type Workpieces:

declare increase total: Workpieces jj Cuboid,
oat !
oat;

de�ne increase total (new cuboid, old total) is

return old total + new cuboid.volume;

Compensating actions may only be speci�ed for update operations associated with

argument types of materialized functions. It is not allowed to specify a compensating

action for an update operation associated with a non-argument type, as this may lead

to inconsistent GMR extensions. If, for example, a compensating action is speci�ed for

the materialized function total volume and the update operation Cuboid.scale the GMR

hhtotal volumeii could become inconsistent by an invocation of Cuboid.scale.

6

The function total volume is associated with the type Workpieces.

18

Schema Manager

declare set X: Vertex jj
oat ! void

code set X;

de�ne set X(x) is

self.X := x;

?

schema rewrite

declare set X: Vertex jj
oat ! void

code set X

0

;

de�ne set X

0

(x) is

begin

self.X := x;

RelevFct := self.ObjDepFct

\ SchemaDepFct(Vertex.set X);

if RelevFct 6= fgthen

GMR Manager.invalidate(self,RelevFct);

end de�ne set X

0

;

Object Manager

id

3

Cuboid

ObjDepFct: f volume,

weight,

total value g

Mat: id

99

Value: 89.90

V1: id

31

V2: id

32

.

.

.

.

.

.

V7: id

37

V8: id

38

id

31

Vertex

ObjDepFct: f volume,

weight g

X: 0.0

Y: 0.0

Z: 0.0

Figure 6: Interaction between Schema and Object Manager

We can exploit information hiding to avoid the unnecessary overhead incurred by the

three above mentioned problems. Analogous to information hiding in traditional software

design we call an object strictly encapsulated if the direct access to the representation

of this object|including all its subobjects|is prohibited; manipulations may only be

possible by invoking public operations de�ned on the type of that object. These operations

constitute the object interface. In GOM strict encapsulation is realized (1) by disclosing

all access operations for attributes from the public clause, (2) by creating all subobjects

of an encapsulated complex object during the initialization of that object, and (3) by

enforcing that no public operation returns references to subobjects. Thus, no undesired

access to subobjects via, e.g., object sharing is possible.

By enforcing strict encapsulation only updating interface operations have to be mod-

i�ed to perform invalidations. Further, the number of invalidations due to the invocation

of an update operation is reduced to one. Last not least, update operations leaving the

result of a materialized function invariant need not be modi�ed. Thus by specifying and

exploiting a set of Invalidated Functions for each invalidating public operation the above

mentioned problems can easily be eliminated.

De�nition 5.3 (Invalidated Functions)

Let t be a strictly encapsulated type and u be a public operation associated with that type.

We de�ne the set of invalidated (materialized) functions of t:u as

InvalidatedFct (t:u) := ff j f is a materialized function and t:u a�ects results of fg 2

We assume that the set InvalidatedFct (t:u) for each operation t:u is determined by the

database programmer. Then all update operations u for which InvalidatedFct (t:u) 6= fg,

are extended by statements to inform the GMR manager|analogously to the modi�cation

of elementary update operations.

17

declare set A: t jj t

0

! void

code set A

0

;

de�ne set A

0

(x) is

begin

self.A := x;

RelevFct := self.ObjDepFct \

SchemaDepFct(t.set A);

if RelevFct 6= fg then

GMR Manager.invalidate(self,RelevFct);

end de�ne set A

0

;

declare delete: t jj ! void

code delete

0

;

de�ne delete

0

is

begin

if self.ObjDepFct 6= fg then

GMR Manager.forget object(self);

self.system delete;

end de�ne delete

0

;

Figure 5: Modi�cation of Update Operations (Version 2)

Example: Recall the database extension shown in Figure 2. Suppose that the fol-

lowing GMRs were introduced: hhtotal volume ; total weight ii for the type Workpieces,

hhtotal valueii for the type Valuables , and hhvolume ;weight ii for the type Cuboid .

Consider the invocation id

31

:set X (: : :) which modi�es the X coordinate of Vertex

id

31

. Figure 6 shows the modi�cation of the update operation Vertex :set X . The set of

materialized functions that is dependent upon the update id

31

:set X (: : :) is then given by

the intersection of the sets SchemaDepFct (Vertex :set X) and id

31

:ObjDepFct .

SchemaDepFct(Vertex :set X) = fvolume;weight ; total volume ; total weightg

id

31

:ObjDepFct = fvolume;weightg

In this case, the intersection coincides with the set id

31

:ObjDepFct . However, in general

this is not the case, e.g., for the operation Cuboid :set V 1 and the update id

3

:set V 1. 3

5.3 Information Hiding

Despite the improvements of the invalidation mechanism outlined in the previous two

subsections three problems that can be avoided by exploiting information hiding remain.

First, the improvements incorporated so far do not totally prevent the penalization of

operations on objects not involved in any materialization. For example, update operations

de�ned on other geometric objects, e.g., Pyramids, are penalized by the materialization

of Cuboid.volume , if the type Vertex is utilized in the de�nition of both types. This is a

consequence of modifying the update operations of the lower-level types, e.g., Vertex.set X

which is then invoked on every update of attribute X of type Vertex .

Second, a single update operation consisting of a sequence of lower-level operations

may trigger many subsequent rematerializations of the same precomputed result. For

example, one single invocation of id

1

:scale(: : :) triggers 12 (!) invalidations of id

1

:volume

initiated by the set X , set Y and set Z operations of type Vertex . Obviously, one invali-

dation should be enough.

Third, our algorithms detailed so far cannot detect the irrelevance of an update opera-

tion sequentially invoking lower-level operations which neutralize each other with respect

to a precomputed result. For example, the invocation of id

1

:rotate performs 12 invalida-

tions of id

1

:volume despite the fact that no invalidation is required since the volume stays

invariant under rotation.

16

Example: The relevant properties for the function volume are given below:

RelAttr(volume)=fCuboid :V1;Cuboid :V2;Cuboid :V4;Cuboid :V5;Vertex :X;Vertex :Y;Vertex :Z g

From this it follows that the stored results of the function volume can only be invalidated

by the update operations set V1 , set V2 , set V4 and set V5 associated with type Cuboid ,

and by the set X , set Y and set Z operations of type Vertex . 3

5.2 Marking \Used" Objects to Reduce RRR Lookup

The improvement of the invalidation process developed in the preceding subsection ensures

that no more unnecessary invalidations occur.

5

However, one problem still remains: the

GMR manager is invoked more often than necessary to check within the RRR whether

an invalidation has to take place. Suppose object o of type t is updated by operation

o:set A(: : :) and all functions which have used o for materialization are not contained in

SchemaDepFct (t:set A). In this case there cannot be a materialized value that must be

invalidated due to the update o:set A. Consider, for example, the update

id

111

.set X(2.5); !! the Vertex id

111

not being a boundary Vertex of any Cuboid

of the Vertex instance id

111

that is not referenced by any Cuboid . Since the functions vol-

ume and weight are contained in the set SchemaDepFct(Vertex :set X) the GMR manager

is being invoked|only to �nd out by a RRR-lookup that no invalidation has to be per-

formed. This imposes a (terrible) penalty upon geometric transformations of \innocent"

objects, e.g., Cylinders and Pyramids, if the volume of Cuboid has been materialized|due

to the fact that all three types are clients of the same type Vertex .

Our goal is to invoke GMR Manager.invalidate only when an invalidation has to take

place. Therefore, we append to each object o the set-valued attribute ObjDepFct that

contains the identi�ers of all materialized functions that have used o during their mate-

rialization. Now, the set of functions whose results are invalidated by the update o:set A

can be determined exactly by

o:ObjDepFct \ SchemaDepFct (t:set A)

The set-valued attributes ObjDepFct are maintained in the same way as the entries of

the RRR: if an entry [o; f

i

; ho

1

; : : : ; o

n

i] is inserted into (removed from) the RRR, f

i

is

inserted into (removed from) o:ObjDepFct .

Note that conceptually it would be possible to migrate all RRR information into the

individual objects|avoiding the RRR and all RRR lookups altogether. But since a single

object is usually involved in numerous materializations of di�erent functions and di�erent

argument combinations, this requires too much storage space within the objects and, thus,

destroys any kind of object clustering.

Figure 5 shows the modi�ed versions of the update operations that exploit the attribute

ObjDepFct .

5

Actually, under the unlikely condition that the same object type is utilized in the same materialization

in di�erent contexts there may still be an unnecessary invalidation.

15

5.1 Isolation of Relevant Object Properties

Suppose that volume and weight have been materialized. Then these two materialized

functions surely don't depend on the attribute Value. Nevertheless, under the unsophis-

ticated invalidation strategy the operation invocation

id

1

.set Value(123.50);

does lead to the invalidation of id

1

.volume and id

1

.weight, both of which are unnecessary.

Likewise, the operation invocation

id

1

.set Mat(Copper); !! Copper being a variable of type Material

leads to the necessary invalidation of id

1

.weight, but also to the unnecessary invalidation

of id

1

.volume. In order to avoid such unnecessary invalidations the system has to separate

the relevant properties of the objects visited during a particular materialization from the

irrelevant ones. Then invalidations should only be initiated if a relevant property of an

object is modi�ed.

De�nition 5.1 (Relevant Attributes)

Let f : t

1

; : : : ; t

n

! t

n+1

be a materialized function. Then the set RelAttr(f) is de�ned as:

RelAttr(f) = ft :A j there exist o

1

, : : : , o

n

of type t

1

, : : : , t

n

and o of tuple type t

such that o:A is accessed to materialize f(o

1

; : : : ; o

n

)g

2

The relevant properties of a materialized function f are automatically extracted from the

implementation of the function f|of course, also inspecting all functions invoked by f .

The mechanism for extracting the set RelAttr from the implementation of a function is

outlined in the Appendix of this paper.

A materialized function result f(o

1

; : : : ; o

n

) can only be invalidated by an invocation

o:set A(: : :) on some object o of type t and t :A 2 RelAttr(f). The following is the key

de�nition for avoiding unnecessary GMR invalidations:

De�nition 5.2 (Schema Dependent Functions)

Let t be a tuple type and let A be any attribute of t. We de�ne the set of (materialized)

functions which depend on the update operation t:set A as

SchemaDepFct (t:set A) = ff j f is a materialized function and t:A 2 RelAttr(f)g 2

Now, the invalidation overhead can be reduced by (1) modifying only those update

operations t:set A that are relevant to some materialized function, i.e., only those opera-

tions t:set A where SchemaDepFct (t:set A) 6= fg, and (2) informing the GMR manager

not only about the updated object, but also about the set of materialized functions po-

tentially a�ected by the update. Thus, the modi�cation o:set A(: : :) of an object o of

type t triggers the invocation of the GMR manager as follows:

GMR Manager.invalidate(o, SchemaDepFct(t.set A));

The set SchemaDepFct (t:set A) is inserted as a set-valued constant into the body of the

modi�ed update operation o:set A|thus, the expression SchemaDepFct (t:set A) has not

to be evaluated each time o:set A(: : :) is invoked.

14

GMR Manager.forget object(self);

that is invoked before the object is deleted.

In the next section we show how the set of update operations that have to be modi�ed

can be drastically reduced.

declare set A: t jj t

0

! void

code set A

0

;

de�ne set A

0

(x) is

begin

self.A := x;

GMR Manager.invalidate(self);

end de�ne set A

0

;

declare delete: t jj ! void

code delete

0

;

de�ne delete

0

is

begin

GMR Manager.forget object(self);

self.system delete;

end de�ne delete

0

;

Figure 4: Modi�cation of Update Operations (Version 1)

5 Strategies to Reduce the Invalidation Overhead

The invalidation mechanism described so far is (still) rather unsophisticated and, there-

fore, induces unnecessarily high update penalties upon object modi�cations. In the fol-

lowing we will describe four dual techniques to reduce the update penalty|consisting

of invalidation and rematerialization|by better exploiting the potential of the object-

oriented paradigm. The techniques described in this section are based on the following

ideas:

1. isolation of relevant object properties: Materialized results typically depend on only

a small fraction of the state of the objects visited in the course of materialization.

For example, the materialized volume certainly does not depend on the Value and

Mat attributes of a Cuboid .

2. reduction of RRR lookups: The unsophisticated version of the invalidation process

has to check the RRR each time any object o is being updated. This leads to many

unnecessary table lookups which can be avoided by maintaining more information

within the objects being involved in some materialization|and thus restricting the

lookup penalty to only these objects.

3. exploitation of strict encapsulation: By strictly encapsulating the representation of

objects used by a materialized function the number of update operations that need

be modi�ed can be reduced signi�cantly. Since internal subobjects of a strictly

encapsulated object cannot be updated separately|without invoking an outer-level

operation of the strictly encapsulated object|we can drastically reduce the number

of invalidations by triggering the invalidation only by the outer-level operation.

4. compensating updates: Instead of invoking the materialized function to recompute

an invalidated result, specialized compensating actions can be invoked that use the

old result and the parameters of the update operation to recompute the result in a

more e�cient way.

13

contain a reference to the deleted object in their argument list. Those entries can only

be found by exhaustively searching the RRR or by using a supplementary index on the

RRR. However, we will utilize a lazy maintenance algorithm by leaving those so-called

blind references in the RRR. When a RRR entry containing a blind reference is accessed

the blind reference is detected by not �nding the referenced argument combination in the

appropriate GMR|the entry will then be removed analogously to the left-over entries

discussed in the previous RRR maintenance algorithms.

4.3 The Update Noti�cation Mechanism

The operations of the GMR manager to keep the GMR extensions up to date (invalidate ,

new object , forget object) could be invoked either by the object manager or by the updat-

ing operation.

The object manager can inform the GMR manager about relevant object modi�cations

when the updated object is stored in the object base. This approach makes the adaptation

of the object manager necessary which may be prohibitively di�cult in existing systems.

Further, the adaptation of the object manager has the following shortcomings:

� Every user of the object base will be penalized by the materialization of functions|

even if only parts of the object base are accessed not involved in any materialization.

� As applications may �rst modify some objects and then access materialized results

being a�ected by the former updates, all updates must immediately be propagated

to the object manager in order to keep the GMR extensions consistent. This need

to store updated objects immediately prevents optimization strategies based on

defering the storage of modi�ed objects.

Therefore, in GOM we chose the schema rewrite approach which is based on analyzing

the materialized functions and modifying the relevant parts of the object base schema, i.e.,

those update operations that a�ect materialized results. In GOM, the state of the object

base can only be modi�ed by the elementary update operations t:create and t:delete

for any type t, t:set A for any tuple-structured type t and any attribute A of t, and

t:insert and t:remove for any set-structured type t. Every elementary update operation

associated with some type t involved in the materialization of any function is modi�ed

and recompiled, such that each time the update operation is invoked, the invocation of

one of the functions invalidate , new object , and forget object will be triggered.

The approach of injecting the noti�cation mechanism into the updating operations

has the advantage that no adaptation of the object manager is needed. Instead it requires

a modi�cation of the updating functions and their recompilation. Further, the schema

rewrite approach guarantees that the GMR manager is immediately informed when an

update occurs|by that, the extensions of the GMRs will remain consistent.

Figure 4 shows the modi�ed versions of the update operation t:set A for a tuple-

structured type t with attribute A and of the delete operation t:delete . The operation

t:set A is extended by the statement

GMR Manager.invalidate(self);

such that the invalidation occurs after the value of attribute A has been updated. If the

materialized results are invalidated before the update the immediate rematerialization

strategy would lead to wrong results. The delete operation is extended by the statement

12

visit di�erent sets of objects. Let [w; f

i

; ho

1

; : : : ; o

n

i] be such a leftover entry meaning

that in an earlier materialization of f

i

(o

1

; : : : ; o

n

) the object w was visited; but the current

materialized result of f

i

(o

1

; : : : ; o

n

) is not dependent on the state of w. Then the next

(seemingly relevant) update on w will remove the triple [w; f

i

; ho

1

; : : : ; o

n

i] from the RRR

by step 1 of the above outlined algorithm while steps 2 and 3 do not inject any new

information that is not already present in the GMR and the RRR.

In most cases an object will be re-used after an update|thus, the same RRR entry

that has been removed in step 1 of the above algorithm will be re-inserted into the RRR.

This situation could be remedied by a second chance algorithm, that is based on marking

RRR entries instead of removing them in step 1.

With respect to removing left-over entries our RRR maintenance algorithm can be

termed lazy because left-over entries are removed only when the corresponding object is

updated. An alternative to this strategy would be a periodic reorganization of the RRR.

The rematerialization of function results that constitute complex objects may lead to

the creation of new objects. Invalidated result objects cannot be deleted by the GMR

manager as they may be referenced in other contexts independently of the materialization

of the function. Thus, to minimize the number of unreferenced but undeleted result

objects GMRs with complex result types should be maintained under lazy materialization.

A garbage collection mechanism can be employed to remove unreferenced objects.

4.2 The Creation and Deletion of Argument Objects

If a new object of an argument type of some materialized function|or a subtype thereof|

is created, new GMR entries have to be inserted into the appropriate GMRs in order to

keep the extensions of those GMRs consistent. Therefore, the following statement is

invoked with o being the new object and t being the type of o:

GMR Manager.new object(o, t);

For each GMR a�ected by the creation of the new object function results are computed

for all argument combinations containing the new object o; the appropriate tuples are

inserted into the GMR.

The deletion of an object o that has been used as an argument during the material-

ization of any result initiates the invocation of the following statement:

GMR Manager.forget object(o);

Here, o is the identi�er of the object that is to be deleted. The following algorithm is

performed by an invocation of GMR Manager.forget object :

foreach tuple [o; f; ho

1

; : : : ; o

n

i] in RRR

(1) if o 2 fo

1

; : : : ; o

n

g and hhf

1

; : : : ; f

m

ii exists with f 2 ff

1

; : : : ; f

m

g then

remove [o

1

; : : : ; o

n

; F

1

; V

1

; : : : ; F

m

; V

m

] from hhf

1

; : : : ; f

m

ii

(2) remove [o; f; ho

1

; : : : ; o

n

i] from RRR

All RRR entries that contain a reference to the deleted object in their �rst attribute

are visited. Step 1 of this algorithm tests, if the deleted object is an argument object of the

materialized result referenced by the RRR entry [o; f; ho

1

; : : : ; o

n

i]. If the test is positive,

i.e., o 2 fo

1

; : : : ; o

n

g, the appropriate GMR entry is removed. In step 2 of the algorithm,

the RRR entry is removed. Note that there may exist further entries in the RRR that

11

RRR

O F A

id

1

volume hid

1

i

id

1

weight hid

1

i

id

1

distance hid

1

; id

4

i

id

1

distance hid

1

; id

5

i

.

.

.

.

.

.

.

.

.

id

5

distance hid

1

; id

5

i

id

5

distance hid

2

; id

5

i

id

5

distance hid

3

; id

5

i

.

.

.

.

.

.

.

.

.

id

35

volume hid

3

i

id

35

weight hid

3

i

id

38

distance hid

3

; id

4

i

id

38

distance hid

3

; id

5

i

id

77

weight hid

1

i

id

77

weight hid

2

i

id

99

weight hid

3

i

hhvolume ;weight ii

O

1

volume V

1

weight V

2

id

1

300.0 true 2358.0 true

id

2

200.0 true 1572.0 true

id

3

100.0 true 1900.0 true

Storage Structure:

MDS
O

1

volume weight V

1

V

2

hhdistanceii

O

1

O

2

distance V

1

id

1

id

4

10.2 true

id

1

id

5

213.0 true

id

2

id

4

85.2 true

id

2

id

5

5.0 true

id

3

id

4

0.9 true

id

3

id

5

220.0 true

Storage Structure:

MDS
O

1

O

2

distance V

1

Figure 3: The Data Structures of the GMR Manager

Step 2 of the algorithm|i.e., the removal of the RRR entry|ensures that for the same,

repeatedly performed object update the invalidation is done only once. Subsequent inval-

idations due to updates of o will be blocked at the beginning of lazy(o) by not �nding the

RRR entry which was removed upon the �rst invalidation|thus the unnecessary penalty

of accessing the tuple in the GMR to re-invalidate an already invalidated result is avoided.

By the next rematerialization of f(o

1

; : : : ; o

n

) all relevant RRR entries are (re-)inserted

into the RRR|analogously to the immediate rematerialization algorithm shown below.

Under the immediate rematerialization strategy we have to recompute the a�ected

function results:

immediate(o) � foreach triple [o; f

i

; ho

1

; : : : ; o

n

i] in RRR do

(1) remove [o; f

i

; ho

1

; : : : ; o

n

i] from RRR

(2) recompute f

i

(o

1

; : : : ; o

n

) and

� remember all accessed objects fo

0

1

; : : : ; o

0

p

g

� replace the old value of f

i

(o

1

; : : : ; o

n

) in hhf

1

; : : : ; f

i

; : : : ; f

m

ii

(3) foreach v in fo

0

1

; : : : ; o

0

p

g do

� insert the triple [v; f

i

; ho

1

; : : : ; o

n

i] into RRR (if not present)

We will explain step 1 of this algorithm last. In step 2 we recompute the function result

f

i

(o

1

; : : : ; o

n

) and remember all objects visited in this process in order to insert them into

the RRR in step 3. However, it cannot be guaranteed that the RRR does not contain

any obsolete entries which constitute \leftovers" from the previous materialization(s) of

f

i

(o

1

; : : : ; o

n

)|this happens whenever two subsequent materializations of f

i

(o

1

; : : : ; o

n

)

10

modi�ed object o has been accessed during the materialization of f(o

1

; : : : ; o

n

). Note that

in GOM, as in most other object bases, references are maintained only uni-directional|

there is no e�cient way to determine from an object o the set of objects that reference o

via a particular path. Therefore, the GMR manager maintains reverse references from all

objects that have been used in some materialization to the appropriate argument objects

in a relation called Reverse Reference Relation (RRR). The RRR contains tuples of the

following form:

[o; f; ho

1

; : : : ; o

n

i]

Herein, o is a reference to an object utilized during the materialization of the result

f(o

1

; : : : ; o

n

). Note that o needs not be one of the arguments o

1

; : : : ; o

n

; it could be some

object related (via attributes) to one of the arguments. Thus, each tuple of the RRR

constitutes a reference from an object o in
uencing a materialized result to the tuple of

the appropriate GMR in which the result is stored. We call this a reverse reference as

there exists a reference chain in the opposite direction in the object base.

De�nition 4.1 (Reverse Reference Relation)

The Reverse Reference Relation RRR is a set of tuples of the form

[O : OID; F : FunctionId ; A : hOIDi]

For each tuple r 2 RRR the following condition holds: The object (with the identi�er)

r:O has been accessed during the materialization of the function r:F with the argument

list r:A. 2

The reverse references are inserted into the RRR during the materialization process.

Therefore, each materialized function f and all functions invoked by f are modi�ed|the

modi�ed versions are extended by statements that inform the GMR manager about the

set of accessed objects. During a (re-)materialization of some result the modi�ed versions

of these functions are invoked.

Example: Let the GMRs hhvolume ;weight ii and hhdistanceii be de�ned (again, this ex-

ample is based on the extension shown in Figure 2). The extensions of the RRR and the

two GMRs are shown in Figure 3. Note that two Robots with the identi�ers id

4

and id

5

are assumed to exist in the object base. 3

Based on the RRR we can now outline the algorithms for invalidating or rematerializing

a stored function result, i.e., the computations that have to be performed by the GMR

manager when an object o has been updated. The GMR manager is noti�ed about an

update by the following statement:

GMR Manager.invalidate(o);

The algorithms below re
ect the two di�erent possibilities of lazy rematerialization and

immediate rematerialization.

The lazy rematerialization algorithm only invalidates the a�ected GMR entries:

lazy(o) � foreach triple [o; f

i

; ho

1

; : : : ; o

n

i] in RRR do

(1) set V

i

:= false of the appropriate tuple in hhf

1

; : : : ; f

i

; : : : ; f

m

ii

(2) remove [o; f

i

; ho

1

; : : : ; o

n

i] from RRR

9

Every invocation of a materialized function occurring in some function or operation

de�nition is mapped to a forward query that will be evaluated by the GMR manager. For

example, an invocation f

i

(o

1

; : : : ; o

n

) with i 2 f1; : : : ;mg would be transformed in the

following algebraic expression if the GMR hhf

1

; : : : ; f

m

ii is present:

�

f

i

�

O

1

=o

1

^:::O

n

=o

n

hhf

1

; : : : ; f

m

ii

To exploit GMRs for GOMql queries, every invocation of a materialized function that

appears in the query must also be transformed into an algebraic expression on the GMR.

However, this is the task of the query optimizer and will not be discussed in this paper.

3.3 Storage Representation of GMRs

In order to avoid exhaustive search the access to a GMR has to be accelerated by index

structures. For that, well-known indexing techniques from relational database technology

can be utilized. The easiest way to support the
exible and e�cient access to any combi-

nation of GMR �elds would be a single multi-dimensional index structure, denoted MDS ,

over the �elds O

1

, : : : , O

n

, f

1

, : : : , f

m

:

MDS

O

1

: : : O

n

f

1

: : : f

m

V

1

: : : V

m

Here, the �rst n + m columns constitute the (n + m)-dimensional keys of the multi-

dimensional storage structure. The m validity bits V

1

, : : : , V

m

are additional attributes

of the records being stored in the MDS.

Unfortunately, the (currently existing) multi-dimensional storage structures, such as

the Grid-File [14], are not well-suited to support more than three or four dimensions.

Therefore, our GMR manager has to utilize more conventional indexing schemes to ex-

pedite access on GMRs of higher arity. The index structures are chosen according to

the expected query mix, the number of argument �elds in the GMR, and the number

of functions in the GMR. A good proposal for multi-dimensional indexing is given in an

early paper by V. Lum [13].

4 Dynamic Aspects of Function Materialization

In this section we will investigate the algorithms that are needed to keep GMRs in a

consistent state (according to De�nition 3.2) while the object base is being modi�ed.

We describe how materialized results are being invalidated if an update is reported

to the GMR manager, and present the lazy and immediate rematerialization algorithms.

Further, we discuss the adaptation of GMR extensions in case of creation or deletion of

argument objects of materialized functions. The last subsection of this section presents

the update noti�cation mechanism that is responsible for reporting updates to the GMR

manager.

4.1 Invalidation and Rematerialization of Function Results

When the modi�cation of an object o is reported to the GMR manager the GMR manager

must �nd all materialized results that become invalid. This task is equivalent to determin-

ing all materialized functions f and all argument combinations o

1

; : : : ; o

n

such that the

8

This de�nition provides for some tuning measure with respect to invalidation and remate-

rialization. Upon an update to a database object that invalidates a materialized function

result we have two choices:

1. immediate rematerialization: The invalidated function result is immediately recom-

puted as soon as the invalidation occurs.

2. lazy rematerialization: The invalidated function result is only marked as being in-

valid by setting the corresponding V

i

attribute to false. The rematerialization of

invalidated results is carried out as soon as the load of the object base management

system falls below a predetermined threshold or|at the latest|at the next time

the function result is needed.

3.2 Retrieval of Materialized Results

All GMR extensions are maintained by the GMR manager. The GMR manager o�ers

retrieval operations to access argument objects and materialized results. Retrieval oper-

ations on GMRs can be represented in a tabular way|similarly to the relational query

language Query By Example (QBE).

4

The table below represents two abstract retrieval

operations on a GMR hhf

1

; : : : ; f

m

ii with complex argument types t

1

; : : : ; t

n

and atomic

result types:

O

1

: t

1

O

2

: t

2

: : : O

n

: t

n

f

1

f

2

: : : f

m

id

i

1

id

i

2

: : : id

i

n

? ? : : : ?

? ? : : : ? [lb

1

; ub

1

] [lb

2

; ub

2

] : : : [lb

m

; ub

m

]

The �rst retrieval operation is a so-called forward query, where all argument objects are

speci�ed and the corresponding function values are obtained from the GMR. In general,

if the selection predicate of a query contains only argument �elds and the projection list

contains only result �elds of the materialized functions, the query is called a forward

query.

The second retrieval denoted in the above table is a prototypical backward range query,

where a range is speci�ed for each function value and the corresponding argument objects

are being obtained. For the evaluation of backward queries we have to distinguish between

GMRs whose entries for the appropriate functions are all valid and those which contain

some invalidated entries.

De�nition 3.3 (Valid Extension)

A consistent extension of the GMR hhf

1

; : : : ; f

m

ii is called f

j

-valid i�

�

V

j

hhf

1

; : : : ; f

m

ii = ftrueg 2

Backward queries can only be evaluated on the GMR hhf

1

; : : : ; f

m

ii if for all function

results f

j

for which a range is speci�ed the GMR extension is f

j

-valid. If the GMR is

not f

j

-valid|due to lazy materialization|the invalidated results have to be recomputed

�rst.

4

The tabular notation improves clarity of presentation in this subsection. However, in general, GOMql

is used to denote GMR queries.

7

If several functions are materialized which share all argument types, the results of

these functions may be stored within the same data structure. This provides for more

e�ciency when evaluating queries that access results of several of these functions and,

further, avoids to store the arguments redundantly.

These thoughts lead to the following de�nition:

De�nition 3.1 (Generalized Materialization Relation, GMR)

Let t

1

; : : : ; t

n

; t

n+1

; : : : ; t

n+m

be types and let f

1

; : : : ; f

m

be side-e�ect free functions with

f

j

: t

1

; : : : ; t

n

! t

n+j

for 1 � j � m. Then the generalized materialization relation

hhf

1

; : : : ; f

m

ii for the functions f

1

; : : : ; f

m

is of arity n+2 �m and has the following form:

hhf

1

; : : : ; f

m

ii : [O

1

: t

1

; : : : ; O

n

: t

n

; f

1

: t

n+1

; V

1

: bool ; : : : ; f

m

: t

n+m

; V

m

: bool] 2

Intuitively, the attributes O

1

; : : : ; O

n

store the arguments (i.e., values if the argument

type is atomic or references to objects if the argument type is complex); the attributes

f

1

; : : : ; f

m

store the results or|if the result is of complex type|references to the re-

sult objects of the invocations of the functions f

1

; : : : ; f

m

; and the attributes V

1

; : : : ; V

m

(standing for validity) indicate whether the stored results are currently valid.

In the beginning we will discuss only the materialization of functions having complex

argument types. As can easily be seen it is not practical to materialize a function for all

values of an atomic argument type, e.g.,
oat. Therefore, we postpone the discussion of

materialized functions with atomic argument types to Section 6 where restricted GMRs

are introduced.

Example: Consider the database extension shown in Figure 2. The extension of the

GMR hhvolume ;weight ii with all results valid is depicted below.

hhvolume;weightii

O

1

: Cuboid volume :
oat V

1

: bool weight :
oat V

2

: bool

id

1

300.0 true 2358.0 true

id

2

200.0 true 1572.0 true

id

3

100.0 true 1900.0 true

3

In the remainder of this paper we consider only consistent extensions of GMRs as

introduced by the following de�nition. A GMR extension is called consistent if (1) it

contains one entry for each argument combination and (2) each stored result is either

invalidated, i.e., the corresponding validity
ag is set to false, or the result is correct with

respect to the current state of the object base.

De�nition 3.2 (Consistent Extension)

An extension of the GMR hhf

1

; : : : ; f

m

ii is a consistent extension i� the following two

conditions hold:

(1) �

O

1

;:::;O

n

hhf

1

; : : : ; f

m

ii = ext (t

1

)� : : :� ext (t

n

)

(2) 8� 2 hhf

1

; : : : ; f

m

ii : �:V

j

= true) �:f

j

= f

j

(�:O

1

; : : : ; �:O

n

)

2

6

Cuboid

Mat: id

77

Value: 39.99

V1: id

11

V2: id

12

V3: id

13

V4: id

14

V5: id

15

V6: id

16

V7: id

17

V8: id

18

id

1

Mat: id

77

Value: 19.95

V1: id

21

V2: id

22

V3: id

23

V4: id

24

V5: id

25

V6: id

26

V7: id

27

V8: id

28

id

2

Mat: id

99

Value: 89.90

V1: id

31

V2: id

32

V3: id

33

V4: id

34

V5: id

35

V6: id

36

V7: id

37

V8: id

38

id

3

Workpieces
f id

1

; id

2

g

id

59

Valuables

f id

3

g

id

60

Material

Name: \Iron"

SpecWeight: 7.86

id

77

Name: \Gold"

SpecWeight: 19.0

id

99

Vertex

X: 0.0

Y: 0.0

Z : 0.0

id

11

� � �

X: 0.0

Y: 6:694

Z : 6:694

id

18

X: 0.0

Y: 0.0

Z : 0.0

id

21

� � �

X: 0.0

Y: 5:848

Z : 5:848

id

28

X: 0.0

Y: 0.0

Z : 0.0

id

31

� � �

X: 0.0

Y: 4:641

Z : 4:641

id

38

Figure 2: Database Extension of Example Schema

The evaluation of queries which reference the volume and/or the weight of Cuboid -

instances can exploit the precomputed results instead of invoking the functions volume

or weight , respectively.

3.1 Storing Materialized Results

There are two obvious locations where materialized results could possibly be stored: in

or near the argument objects of the materialized function or in a separate data structure.

Storing the results near the argument objects means that the argument and the function

result are stored within the same page such that the access from the argument to the

appropriate result requires no additional page access. In general, storing results near the

argument objects has several disadvantages:

� If the materialized function f : t

1

; : : : ; t

n

! t

n+1

has more than one argument

(n > 1) one of the argument types must be designated to hold the materialized

result. But this argument has to maintain the results of all argument combinations|

which, in general, won't �t on one page.

� Clustering of function results would be bene�cial to support selective queries on

the results. But this is not possible if the location of the materialized results is

determined by the location of the argument objects.

Therefore we chose to store materialized results in a separate data structure disassociated

from the argument objects. This decision is also backed by a quantitative analysis under-

taken in the extended relational system POSTGRES by A. Jhingran [9] where separate

caching (CS) of precomputed POSTQUEL attributes proved to be almost always superior

to caching within the tuples (CT).

5

type Cuboid supertype ANY is !! ANY is the implicit supertype of all types

public length, width, height, volume, weight, rotate, scale, translate, distance

V1, set V1, : : : , V8, set V8, Value, set Value, Mat, set Mat

body [V1, V2, V3, V4, V5, V6, V7, V8: Vertex;

Mat: Material; Value: decimal;]

operations

declare length: !
oat; !! V1.dist(V2)

declare width: !
oat; !! V1.dist(V4)

declare height: !
oat; !! V1.dist(V5)

declare volume: !
oat;

declare weight: !
oat;

declare translate: Vertex ! void;

declare scale: Vertex ! void;

declare rotate: char,
oat ! void;

declare distance: Robot !
oat; !! Robot is de�ned elsewhere

implementation

de�ne length is

return self.V1.dist(self.V2); !! delegate the computation to Vertex V1

: : :

de�ne volume is

return self.length � self.width � self.height;

de�ne weight is

return self.volume � self.Mat.SpecWeight;

de�ne translate(t) is

begin

self.V1.translate(t); !! delegate translate to Vertex instance V1

: : :

self.V8.translate(t); !! delegate translate to Vertex instance V8

end de�ne translate;

: : :

end type Cuboid;

Figure 1: Skeleton of the Type De�nition Cuboid

3 Static Aspects of Function Materialization

Consider the above de�nition of the type Cuboid with the associated functions volume

and weight . Assume that the following query, which is phrased in the QUEL-like query

language GOMql, is to be evaluated:

range c: Cuboid

retrieve c

where c.volume > 20.0 and c.weight > 100.0

To evaluate this query each Cuboid instance has to be visited and the selection predicate

has to be evaluated by invoking the functions volume and weight . To expedite the eval-

uation of this query the results of volume and weight can be precomputed: we call this

the materialization of the functions volume and weight . In GOMql, the materialization

of the functions volume and weight is initiated by the following statement:

range c: Cuboid

materialize c.volume, c.weight

4

[a

1

: t

1

; : : : ; a

n

: t

n

] for unique attribute names a

i

and, not necessarily di�erent, type names

t

i

. Set and list types are denoted as ftg and hti, respectively, where t is a type name.

Objects of type ftg or hti may only contain elements of type t or subtypes thereof. Lists

are analogous to sets except that an order is imposed upon the elements and duplicate

elements are possible. A new type is introduced using the type de�nition frame which is

illustrated on the example types Vertex and Material below:

type Vertex is

public X, set X, Y, set Y, Z, set Z,

translate, scale, rotate, dist

body [X, Y, Z:
oat;]

operations

declare translate: Vertex ! void;

declare scale: Vertex ! void;

declare rotate:
oat, char ! void;

declare dist: Vertex !
oat;

implementation

: : :

end type Vertex;

type Material is

public SpecWeight, set SpecWeight,

Name, set Name

body [Name: string;

SpecWeight:
oat;]

end type Material;

The public clause lists all the type-associated operations that constitute the interface

of the newly de�ned type. GOM enforces information hiding by object encapsulation,

i.e., only the operations that are explicitly made public can be invoked on instances

of the type. However, for each attribute A two built-in operations named A to read the

attribute and set A

3

to write the attribute are implicitly provided. It is the type designer's

choice whether these operations are made public by including them in the public-clause.

We trust that the essential parts of the type de�nitions Vertex and Material are self-

explanatory. Material is a tuple-structured type that has no explicitly de�ned behavior;

it merely provides for access to and modifying of the two attributes Name and SpecWeight .

Based on these auxiliary type de�nitions we can now de�ne the type Cuboid (see

Figure 1) which serves as the running example throughout the remainder of this paper.

We have intentionally made all parts of the structure of a Cuboid visible (public) to the

clients of the type, e.g., all the boundary Vertex objects, V1 , : : : , V8 are accessible and,

therefore, directly modi�able. This is needed to demonstrate our function materialization

approach in its full generality. Later on (in Section 5), we will re�ne the de�nition of

Cuboid by hiding many of the structural details of the Cuboid representation|and, thus,

drastically decrease the invalidation penalty of many update operations.

Note that the function distance depends on the object types Cuboid and Robot|the

type de�nition of Robot is not outlined here. A sample database is shown in Figure 2.

The object identi�ers are denoted by id

1

, id

2

, : : : In this diagram we also show two set-

structured instances id

59

of type Workpieces and id

60

of type Valuables whose types were

not introduced. Sets of type Workpieces contain Cuboids, that are used in some manu-

facturing process, whereas sets of type Valuables contain Cuboids, which are interesting

because of their value, e.g., gold ingots. Interesting functions forWorkpieces instances are:

total volume and total weight ; Valuables instances respond to the function total value.

3

Actually, in GOM a more elegant mechanism to realize value returning and value receiving operations

is provided (see [12]).

3

1. We can cleanly separate those object instances that are involved in the materializa-

tion of a function result from non-involved objects. Thus, the penalty incurred by

the need to rematerialize a result can be restricted to the involved objects.

2. Within those objects that are involved in some materialization, we can decide in

which function materialization they have been involved and which attributes are

relevant for the respective function materialization.

3. Utilizing information hiding we can exploit operational semantics in order to reduce

the rematerialization overhead even further. For example, in geometric modeling the

data type implementor could provide the knowledge that scale is the only geometric

transformation that could possibly invalidate a precomputed volume result while

rotate and translate leave the materialized volume invariant.

4. By providing specialized functions that rematerialize results at lower costs than

invocations of the materialized function, update costs can further be decreased.

These tuning measures suggest that we can provide function materialization at a much

lower update penalty than relational view materialization can possibly achieve|which

is backed by our �rst quantitative analysis. This makes function materialization even

feasible for rather update-intensive applications.

The remainder of this paper is organized as follows. In the next section we brie
y

review our object model GOM. Then, in Section 3 the static aspects of function ma-

terialization are presented. In Section 4 we deal with the dynamic aspects of function

materialization: the mechanisms to keep materialized results up to date while the state of

the object base is being modi�ed. Reducing the update overhead is subject of Section 5.

In Section 6 we introduce the restricted materialization of functions which facilitates the

materialization of functions having atomic argument types. In Section 7 we provide a

(�rst) quantitative analysis of function materialization based on two simple benchmarks,

one derived from computer geometry and the other based on a more traditional adminis-

trative application. Section 8 concludes this paper with a summary and an outlook into

future work. In the Appendix a formal method for analyzing materialized functions is

presented that forms the basis for our invalidation and rematerialization mechanism.

2 GOM: Our Object-Oriented Data Model

In essence, GOM provides all the compulsory features identi�ed in the \Manifesto"

2

[2]

in one orthogonal syntactical framework. GOM supports single inheritance coupled with

subtyping and substitutability under strong typing: a subtype instance is always substi-

tutable for a supertype instance. To enforce strong typing all database components, e.g.,

attributes, variables, set- and list-elements, are constrained to a particular type or a sub-

type thereof. GOM supports object identity in such a way that the OID of an object is

guaranteed to remain invariant throughout its lifetime. Objects are referenced via their

object identi�er; referencing and dereferencing is implicit in GOM.

The structural description of a new object type can be either a tuple, a set , or a list .

A tuple consists of a collection of typed attributes. The tuple constructor is denoted as

2

Albeit the design of GOM was carried out before the \Manifesto" was written.

2

1 Introduction

Once the initial \hype" associated with the object-oriented database systems settles the

prospective users|especially those from the engineering application domains|will eval-

uate this new database technology especially on the basis of performance. Our experience

with engineering database applications indicates that no engineer is willing to trade per-

formance for functionality. The fate of object-oriented database systems will, therefore,

largely depend on their performance relative to currently employed database technol-

ogy, e.g., the relational database systems. It is not su�cient to merely rely on existing

optimization techniques developed in the relational context and to adapt these to the

needs of object-oriented systems. Of course, the large body of knowledge of optimization

techniques that was gathered over the last 15 years in the relational area provides a good

starting point. But lastly, only those optimization techniques that are speci�cally tailored

for the object-oriented model and, thus, exploit the full potential of the object-oriented

paradigm will yield|the much-needed|drastic performance improvements.

In this paper we describe one (further) piece in the mosaic of performance enhancement

techniques that we incorporated in our experimental object base system GOM [12]: the

materialization of functions, i.e., the precomputation of function results. Materialization|

just like indexing|is based on the assumption that the precomputed results are eventually

utilized in the evaluation of some associative data access. Function materialization is a

dual approach to our previously discussed indexing structures, called Access Support Re-

lation [11, 10] which constitute materializations of heavily traversed path expressions that

relate objects along attribute chains.

Exploiting the potentials of the object-oriented paradigm, especially the classi�cation

of objects into types, object identity, and the principle of encapsulation in conjunction

with information hiding facilitates a very modular design of function materialization. Our

approach is based on the modi�cation and|subsequent|recompilation of those type

schemes whose instances are involved in the materialization of a function result; thus

leaving the remainder of the object system invariant. This makes it easy to incorporate

our approach even into existing object base systems since only very few system modules

have to be modi�ed while the kernel system remains largely unchanged.

Similarly to indexing, function materialization induces an overhead on update opera-

tions. The primary challenge in the design of function materialization is the reduction of

the invalidation and rematerialization overhead. In this respect function materialization

is related to relational view materialization, as proposed in [3, 4]. In this work algorithms

are given to detect the relevance or irrelevance of updates to materialized views, and to

rematerialize a view without having to re-evaluate the expression de�ning the view. In

the work on snapshots [1] a technique is discussed to materialize and periodically update

the result of relational expressions. Further work exists for extended relational mod-

els, in particular the POSTGRES data model [19]. In POSTGRES an attribute of type

POSTQUEL may consist of a relational query that has to be evaluated upon referenc-

ing. Much work has been spent on optimizing the evaluation of queries accessing such

POSTQUEL attributes, e.g., [6, 7, 9, 16, 17, 18], by caching the results.

The above cited work is similar to ours with respect to the general idea of precomput-

ing results. However, exploiting object-oriented features facilitates a much �ner-grained

control over rematerialization requirements of precomputed results in our approach than

is possible in relational view materialization and extended relational caching:

1

Abstract

View materialization is a well-known optimization technique of relational database sys-

tems. In this work we present a similar, yet more powerful optimization concept for

object-oriented data models: function materialization. Exploiting the object-oriented

paradigm|namely classi�cation, object identity, and encapsulation|facilitates a rather

easy incorporation of function materialization into (existing) object-oriented systems.

Only those types (classes) whose instances are involved in some materialization are ap-

propriately modi�ed and recompiled|thus leaving the remainder of the object system

invariant. Furthermore, the exploitation of encapsulation (information hiding) and object

identity provides for additional performance tuning measures which drastically decrease

the rematerialization overhead incurred by updates in the object base. First, it allows

to cleanly separate the object instances that are irrelevant for the materialized functions

from those that are involved in the materialization of some function result and, thus, to

penalize only those involved objects upon update. Second, the principle of information

hiding facilitates �ne-grained control over the invalidation of precomputed results. Based

on speci�cations given by the data type implementor the system can exploit operational

semantics to better distinguish between update operations that invalidate a materialized

result and those that require no rematerialization. The paper concludes with a quanti-

tative analysis of function materialization based on two sample performance benchmarks

obtained from our experimental object base system GOM.

Key Words access support, query optimization, object-oriented data model, view ma-

terialization, function materialization

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

UNIVERSIT

�

AT KARLSRUHE

FAKULT

�

AT F

�

UR INFORMATIK

Postfach 6980, D-7500 Karlsruhe 1

Function Materialization in Object Bases

1

Alfons Kemper Christoph Kilger Guido Moerkotte

Universit�at Karlsruhe

Fakult�at f�ur Informatik

D-7500 Karlsruhe, F.R.G.

Netmail: [kemperjkilgerjmoer]@ira.uka.de

Interner Bericht Nr. 28/90 � Oktober 1990

1

An excerpt presenting selected issues appeared in: Proc. ACM SIGMOD Conf. on Management of

Data, Denver, CO, May 1991.

