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Abstract

Recently, new applications have emerged that require database management systems with

uncertainty capabilities. Many of the existing approaches to modelling uncertainty in

database management systems are based on the theory of fuzzy sets. High performance

is a necessary precondition for the acceptance of such systems by end users. However,

performance issues have been quite neglected in research on fuzzy database management

systems so far. In this article they are addressed explicitly. We propose new index

structures for fuzzy database management systems based on the well known technique

of superimposed coding together with detailed cost models. The correctness of the cost

models as well as the e�ciency of the index structures proposed is validated by a number

of measurements on experimental fuzzy databases.
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1 Introduction

Recently, new applications have emerged that require database management systems

with uncertainty capabilities, e.g. heterogeneous database environments, multimedia

databases, imputation and knowledge discovery, knowledge base management systems

[14], and design environments with an underlying database management system (DBMS)

[1]. Many of these applications assume an object-oriented DBMS (ooDBMS) as a basis

due to its rich modelling capabilities. Although we assume an object-oriented system, our

results are not limited to ooDBMSs.
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Many of the existing approaches to modelling uncertainty in DBMSs are based on the

theory of fuzzy sets. See [4, 5] and [10] for recent overviews on fuzzy DBMSs (fDBMSs).

They mainly address fuzzy relational DBMSs since fuzzy ooDBMSs are still a current

topic of research. Although the need for handling uncertainty in DBMSs has already been

recognized earlier, commercial DBMSs are slowly { if at all { incorporating corresponding

capabilities. The main reason lies in the fact, that, on one hand, high performance is a

necessary precondition for the acceptance of such systems by end users, and, on the other

hand, performance issues have been quite neglected in research on fDBMSs so far [14].

With our work, we �ll this gap by addressing the problem of e�ciently querying a fuzzy

database. In fact, for the access of fuzzy data and the evaluation of fuzzy queries, the

usual index structures are no longer useful due to the expanded internal representation and

evaluation of fuzzy attribute values or query predicates [2]. This is also true for querying

fuzzy constraints in DBMSs, where a fuzzy constraint is understood as the restriction of

the domain of an attribute [7].

In all existing approaches to fDBMSs, a fuzzy attribute value is represented by a single

possibility distribution. In practice, however, it is unrealisitic to assume that an attribute

can be described by a single fuzzy set, it is rather described by a complex expression

of linguistic terms containing conjunction, disjunction and negation mapped onto fuzzy

sets. This linguistic description should not be lost, although the complex expression

can be represented by a single fuzzy set by applying the corresponding fuzzy operators.

We already consider this requirement from applications, e.g. design applications [1],

on e�cient index structures for fDBMSs in this article. Thus, the representation of an

attribute by a single fuzzy set is seen as a special case of this more general case. For more

details on the fuzzy object oriented data model underlying this work see [7, 8].

The index structures, we propose in this article, are based on the technique of su-

perimposed coding, which was originally developed for mechanical retrieving systems in

libraries [13]. Roberts made the �rst use of this concept for partial match retrieval in

computer systems [17].

The remainder of this article is organized as follows. In section 2, we introduce the

access principles for fuzzy data bases. Then, the basics of superimposed coding are intro-

duced as far as necessary to describe the indexing principles. In section 4 we present two

di�erent index structures based on superimposed coding. Section 5 covers the cost models

for those structures. The results of practical measurements and the analysis of the cost

models are presented in section 6. The article concludes with a summary in section 7.

1.1 Related Work

Most previous approaches with respect to fuzzy queries have addressed the case that the

level-cuts of the fuzzy attribute values as well as of the fuzzy query predicates are char-

acterized by a closed interval, and that there is a linear order imposed on the attribute's

domain. This is also true for the little existing work on index structures for fDBMSs, [2]

and [3]. We, instead, address the case that the domain of the attributes is �nite. Further

assumptions with respect to the possibility distributions are not made. Our work has in

common with the work presented in [2] that it makes use of existing indexing techniques

in DBMSs, and that it uses the same basic indexing principles. These are presented in

the next section. However, our work goes far beyond that in [2] by not only providing
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a concept for index structures but by additionally providing detailed cost models and

measurements to prove the correctness of the cost models and the e�ciency of the index

structures.

In most cases concerning the use of superimposed coding only superset predicates are

discussed, since only partial match queries are considered. It has been shown recently, that

the technique of superimposed coding is suitable for fast set comparisons including super-

and subset predicates in ooDBMSs [12]. In the context of fuzzy retrieval we need subset as

well as intersection predicates. Therefore, we supplement the technique of superimposed

coding by adding the evaluation of intersection set predicates.

2 Queries and access principles in fuzzy databases

2.1 Fuzzy sets and fuzzy attribute values

As already mentioned, the underlying model is object oriented. Let us consider an at-

tribute T of an object class C taking values in 
. Let the objects o

i

be instances of the

class C, with 1 � i � n. The value of a (fuzzy) attribute T of an object o

i

, T (o

i

), corre-

sponds to a linguistic description composed out of a set of given linguistic terms F

1

; :::; F

m

containing conjunction, disjunction and negation. A linguistic term F

l

, 1 � l � m, cor-

responds to the fuzzy set F

l

described by its characteristic function = �

F

l

de�ned on the

domain of the attribute 
: �

F

l

: 
 7! [0; 1]. Let �

T (o

i

)

(!) measure the possibility that

! 2 
 is the correct value of T (o

i

). We refer to �

T (o

i

)

as the restriction of the object.

�

T (o

i

)

(!) does not have to be normalized, i.e. a value of ! 2 
 for which �

T (o

i

)

(!) = 1

may not exist. We use the terms 'fuzzy set' and 'possibility distribution' synonymously

in this article.

We denote an �-level-cut of a fuzzy set F by L

�

(�

F

), with 0 � � � 1. Hence, the

support and core of a fuzzy-set are represented by L(�

F

) and L

1

(�

F

), respectively. If

strict level-cuts are meant, we include a \greater than" symbol, like L

>�

(�

F

). Several

di�erent operators can be applied to fuzzy sets. We are using the following de�nitions:

�

F

i

^F

j

= min(�

F

i

; �

F

j

) (conjunction), �

F

i

_F

j

= max(�

F

i

; �

F

j

) (disjunction), and �

:F

i

=

1� �

F

i

(negation).

2.2 Queries and access principles

We use the same basic indexing scheme as [2]. It aims at providing selective access to the

objects, which possibly (necessarily) satisfy a fuzzy query predicate Q. A query Q consists

of a fuzzy set de�ned by �

Q

and a threshold �. The threshold indicates that objects

o

i

have to satisfy Q possibly (necessarily) to at least the degree �, i.e. �(Q=o

i

) � �

(N(Q=o

i

) � �). �(Q=o

i

) and N(Q=o

i

) denote the possibility measure and necessity

measure, respectively, extended to fuzzy events as introduced by [16].

We encountered di�culties already experienced by [16] and [19]. Namely, �(Q=o

i

) and

N(Q=o

i

) are no fuzzy measures, when abandoning the normalization of the possibility

distributions. Nevertheless, we use the term measure for �(Q=o

i

) and N(Q=o

i

), due to

the close similarity to fuzzy measures. We rede�ne N(Q=o

i

) in a way to preserve as much

properties of fuzzy measures as possible.

1

1

If we assumed the fuzzy sets to be normalized, we would have N(Q=o

i

) � � , L

>1��

(�

T (o

i

)

) �
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�(Q=o

i

) � � ,

def

L

�

(�

T (o

i

)

) \ L

�

(�

Q

) 6= ; (1)

N(Q=o

i

) � � ,

def

; � L

>1��

(�

T (o

i

)

) � L

�

(�

Q

) ^ L

�

(�

T (o

i

)

) \ L

�

(�

Q

) 6= ; (2)

One important property that still holds is �(Q=o

i

) � N(Q=o

i

), i.e. given the same

threshold value, the set of objects necessarily satisfying the predicate is always included

in the set of objects possibly satisfying it.

Let us consider that the index entries are the supports (cores) of the attribute values.

In terms of the entries, weakened access principles can be deduced:

�(Q=o

i

) � � ) L(�

T (o

i

)

) \ L

�

(�

Q

) 6= ; (3)

N(Q=o

i

) � � ) L

1

(�

T (o

i

)

) � L

�

(�

Q

) (4)

Due to the weakened access principles there are objects that do not satisfy the query

Q, but the cores or supports of which do. These objects are called false level-cut drops.

These false drops have to be sorted out in a separate step.

2.3 False level-cut probability

In this section we present the probability that an object turns out to be a false level-cut

drop. We distinguish between several subcases, depending on which fuzzy measure is used

in the evaluation of the query. For the following calculations we assume the values of the

fuzzy sets to be uniformly distributed among all values of 
.

False core drops

The probability that the core of an object satis�es the query Q weakly via the necessity

measure and the object itself does not is

d

core�

=

def

Pr(L

>1��

(�

T (o

i

)

) = ; _ L

>1��

(�

T (o

i

)

) 6� L

�

(�

Q

) _ L

�

(�

T (o

i

)

) \ L

�

(�

Q

) = ;jL

1

(�

T (o

i

)

) � L

�

(�

Q

))

= 1�

 

jL

�

(�

Q

)j � jL

1

(�

T (o

i

)

)j

jL

>1��

(�

T (o

i

)

)j � jL

1

(�

T (o

i

)

)j

!

 

j
j � jL

1

(�

T (o

i

)

)j

jL

>1��

(�

T (o

i

)

)j � jL

1

(�

T (o

i

)

)j

!

(5)

for 0 < jL

>1��

(�

T (o

i

)

)j � jL

�

(�

Q

)j, otherwise d

core�

= 1.

The derivation of the formula is found in appendix B.

False support drops

The probability that the support of an object satis�es the query Q weakly via the pos-

sibility measure and the object itself does not is for jL(�

T (o

i

)

)j � jL(�

T (o

i

)

) \ L

�

(�

Q

)j �

jL

�

(�

T (o

i

)

)j (for details see appendix B):

L

�

(�

Q

) [2].
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d

support\

=

def

Pr(L

�

(�

T (o

i

)

) \ L

�

(�

Q

) = ;jL(�

T (o

i

)

) \ L

�

(�

Q

) 6= ;)

=

 

jL(�

T (o

i

)

)j � jL(�

T (o

i

)

) \ L

�

(�

Q

)j

jL

�

(�

T (o

i

)

)j

!

 

jL(�

T (o

i

)

)j

jL

�

(�

T (o

i

)

)j

!

(6)

Otherwise d

support\

= 0.

Since all objects satisfying a query predicate necessarily also do so possibly, the prob-

ability that an object satis�es the predicate weakly via the possibility measure, but does

not satisfy the query Q necessarily is also of interest (for details see appendix B), for

0 < jL

>1��

(�

T (o

i

)

)j � jL(�

T (o

i

)

) \ L

�

(�

Q

)j and 0 < jL

�

(�

T (o

i

)

)j:

d

support�

=

def

Pr(L

>1��

(�

T (o

i

)

) = ; _ L

>1��

(�

T (o

i

)

) 6� L

�

(�

Q

) _ L

�

(�

T (o

i

)

) \ L

�

(�

Q

) = ;jL(�

T (o

i

)

) \ L

�

(�

Q

) 6= ;)

= 1�

 

jL(�

T (o

i

)

) \ L

�

(�

Q

)j

jL

>1��

(�

T (o

i

)

)j

!

 

jL(�

T (o

i

)

)j

jL

>1��

(�

T (o

i

)

)j

!

(7)

Otherwise d

support�

= 1.

3 Superimposed Coding

In this section the basic concepts of superimposed coding are illustrated. As can be seen

in (3), we need to support intersection predicates besides the support of subset predicates.

3.1 Encoding sets

Let K

i

be the set of key values for each object o

i

. K

i

is composed of the elements in

the support (core) of the possibility distribution representing the value of the attribute

T. The formation of a superimposed code word (scw), S

i

, for an object o

i

involves the

transformation of the values contained in K

i

into binary code words (bcw's), which are

bit-strings of length b consisting of exactly k binary 1's and b-k binary 0's. The scw of

the attribute value is obtained by superimposing (inclusive ORing) the bcw's generated

for o

i

[17, 18].

A superimposed code word, S

Q

, for a query Q is obtained in a similar fashion. We are

looking for all objects, whose value on the attribute T satis�es the fuzzy query predicate

Q with the threshold �. For the set of key values of a query the �-level-cut of �

Q

is

chosen: K

Q

= L

�

(�

Q

).

We illustrate the technique of superimposed coding by giving an example. Let B(S)

denote the positions of bits set to `1' in the signature S, b = 5, and k = 2, and L

1

(�) =

f3; 7g. Say, '3' is mapped into the bcw 11000, and '7' is mapped into the bcw 10010,

then, by superimposing, we gain 11010 as the signature for f3,7g, B(11010) = f1,2,4g.

5



3.2 False signature drop probability

All objects, the signatures of which satisfy the query Q, are called drops. The objects

that do not satisfy the query predicate, but the signatures of which do, are called false

signature drops. False signature drops exist, because by hashing the data elements and

superimposing them, it is possible that di�erent sets are mapped onto the same signatures.

After extracting all drops from the database, all false drops must be eliminated in a second

step. For the sets of key values mentioned above, we can deduce:

K

i

� K

Q

) B(S

i

) \ B(S

Q

) = B(S

i

) (8)

K

i

\K

Q

6= ; ) jB(S

i

) \B(S

Q

)j � k (9)

The application of superimposed coding is only sensible, if the number of false drops

can be held low and more importantly, the comparison of the signatures is more e�cient

than the direct comparison of the objects with the query set. The latter condition is

ful�lled in our case: executing bit-operations is clearly faster than comparing sets element

by element. We proceed by discussing the false signature drop probability, that is the

probability that an object becomes a false signature drop.

Let the set describing the query K

Q

include r

q

elements, the sets describing the data

objects K

i

include on the average r

i

elements, which are encoded using bitstrings of length

b in which exactly k bits are set, w

q

denotes the average number of bits set in the query

signature.

Then, the probability d

f�

that an object turns out to be a false drop with respect to

a subset predicate is approximately [17]:

d

f�

(b; k; r

q

; r

i

) � (1� e

�

k

b

r

q

)

k�r

i

(10)

Since this probability was already cited and derived in many other articles easy to ob-

tain, we do not give the derivation of it, but focus on queries with intersection predicates.

We approximate the corresponding false drop probabilitiy d

f\

by

d

f\

(b; k; r

q

; r

i

) � 1�

k�1

X

j=0

 

w

q

j

!

� (1� (1�

k

b

)

r

i

)

j

� (1�

k

b

)

r

i

�(w

q

�j)

(11)

Its derivation is found in appendix A.

Discussion on optimization of the parameters k and b to yield a small false drop

probability can be found, e.g., in [12], [17] for subset predicates, and, for intersection

predicates, in [11].

3.3 Superimposed coding and access principles

Superimposed coding can be used to create an e�cient index structure supporting access

principles in fuzzy databases. Details on how this is done can be found in the next section,

we just outline the main idea in the remainder of this section.
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Assume, that the signatures S

i

and S

Q

of the object o

i

and the query Q are given, and

that the set of key values of o

i

refers to the support of the fuzzy attribute value. Then we

have for an access via the possibility measure (see formulas (3) and (9)):

�(Q=o

i

) � � ) jB(S

i

) \B(S

Q

)j � k (12)

Now assume, the set of key values refers to the core of the fuzzy attribute value. Then

we have for an access via the necessity measure (see formulas (4) and (8)):

N(Q=o

i

) � � ) B(S

i

) \B(S

Q

) = B(S

i

) (13)

4 Index structures

Instead of using the supports and cores themselves as index entries we use the signatures

of the supports and cores. Two variants of index structures based on superimposed coding

are presented, the sequential signature �le (short SSF) and the compressed signature �le

(short CSF). We have also analyzed bit-slice signature �les and compared them to SSF

and CSF index structures. We do not include the results (see [11]) in our paper, because

we can only con�rm the comparisons of (non-fuzzy) sequential signature �les and bit-

slice signature �les already done by [12] and [17], for example, and no novel aspects were

discovered.

4.1 Sequential signature �le (SSF)

signatures fuzzy set references object references

(F

SIG

)

z }| {

(F

FREF

)

z }| {

(F

OREF

)

z }| {

1 0 1 0 . . . 1 " �

T (o

1

)

" o

1

0 0 1 1 . . . 0 " �

T (o

2

)

" o

2

0 1 0 1 . . . 0 " �

T (o

3

) " o

3

1 1 1 0 . . . 0 " �

T (o

4

)

" o

4

. . . . . . . . . . . . . . . . . . . . . . . .

0 1 0 1 . . . 0 " �

T (o

n

)

" o

n

| {z }

b

Figure 1: Sequential signature �le index structure (SSF)

We explain the construction of a sequential signature index structure on the basis of

�gure 1. On the left hand side of the �gure we have a �le composed of signatures. These

signatures are derived by encoding the supports (cores) of the restrictions of all objects,

when access via the possibility measure (necessity measure) shall be supported. There are

two more �les, one containing the references to the restrictions of the objects and another

one composed of references to the objects. The references correspond to unique object

identi�ers (OID), as usual in ooDBMSs. All �les are organized sequentially. A signature
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and its associated fuzzy set reference and object reference are stored at the same position

within the �les, allowing fast random access.

Given a query Q asking for all objects that possibly (necessarily) satisfy the query

fuzzy predicate to at least the degree �, the matching objects are determined in four

steps as follows.

1. Construct the signature S

Q

of the query predicate Q (see section 3.1).

2. Determine all matching signatures, via possibility measure:

T

�

= fjjS

j

2 F

SIG

^ jB(S

j

) \B(S

Q

)j � kg (14)

via necessity measure:

T

N

= fjjS

j

2 F

SIG

^B(S

j

) \ B(S

Q

) = B(S

j

)g (15)

3. Eliminate all restrictions which do not truly satisfy the predicate Q, via possibility

measure:

M

�

= fj 2 T

�

jL

�

(�

T (o

j

)

) \ L

�

(�

Q

) 6= ;g (16)

via necessity measure:

M

N

= fj 2 T

N

jL

�

(�

T (o

i

)

) \ L

�

(�

Q

) 6= ; ^ ; � L

>1��

(�

T (o

i

)

) � L

�

(�

Q

)g (17)

4. Collect all objects that are described by fuzzy sets which were not eliminated in

previous steps. Via possibility measure:

R

�

= fo

j

jj 2M

�

g (18)

via necessity measure:

R

N

= fo

j

jj 2M

N

g (19)

The weakened access principles and superimposed coding are also called �lters. A

�lter is a mechanism, that does a rough preselection on objects, ensuring that no valuable

information (i.e. objects, that satisfy the query) is lost. Instead of applying the �lters

sequentially, we eliminate all false drops (the ones caused by the superimposed coding,

the others caused by the weakened access principles) in a single step. This adds to the

e�ciency of the index.

Encoding the cores to support queries via the necessity measure as described above

can only be used e�ciently, when most of the cores of the possibility distributions contain

at least one element. We recommend to preselect objects in step 2. by an access via the

possibility measure regardless of the measure demanded by the query. No relevant objects

are lost in this way, because all objects satisfying a query predicate Q necessarily also do

so possibly. When eliminating the false drops, the measure corresponding to the query is

applied. A drawback is the higher false drop probability d

support�

now applied instead of

d

core�

for an access via the necessity measure (see section 2.3).
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4.2 Compressed signature �le (CSF)

In the SSF index there exists an entry in the index �les for each and every object, re-

gardless of objects sharing the same fuzzy set. The compressed signature �le (CSF) index

structure we present in this section considers this redundancy explicitly. We assume that

the number m of fuzzy sets de�ned for an application is much smaller than the number

n of objects in the database. Negated fuzzy sets are treated as fuzzy sets of their own.

Then, there is only one entry for each of the m di�erent fuzzy sets in the signature and

fuzzy set reference �les. Instead of a single object reference for each fuzzy set, we have a

set of OIDs now, because several objects may share a fuzzy set. The object reference �le

is replaced by a �le containing references to OID sets (see �gure 2).

signatures fuzzy set references OID set references

(F

SIG

)

z }| {

(F

FREF

)

z }| {

(F

OREF

)

z }| {

1 0 1 0 . . . 1 " F

1

" f" o

4

; : : : ; " o

7

g

0 0 1 1 . . . 0 " F

2

" f" o

3

; " o

4

; : : : ; " o

5

g

0 1 0 1 . . . 0 " F

3

" f" o

2

; : : : ; " o

7

g

. . . . . . . . . . . . . . . . . . . . . . . .

0 1 0 1 . . . 0 " F

m

" f" o

4

; " o

6

; : : : ; " o

8

g

| {z }

b

Figure 2: Compressed signature �le index structure (CSF)

As already mentioned an object is described by a restriction composed of several fuzzy

sets. In the SSF index the objects are indexed directly by their corresponding restriction,

i.e. a query predicate can only address the restriction as is. The CSF index supports

the evaluation of more complex queries. This is achieved by breaking up the restrictions

into their individual fuzzy sets, thereby allowing access to the individual fuzzy sets. This

allows for new types of queries. However, their discussion is out of the scope of this article,

for details see [7]. An object identi�er may now appear in di�erent object references sets.

Object o

4

, e.g., is described by at least the fuzzy sets F

1

, F

2

, and F

m

.

In the CSF index the query predicate Q is not directly compared to the restriction

of an object, but to the individual fuzzy sets of the restriction. Formula (4) does not

hold anymore, because L

1

(�

T (o

i

)

) � L

�

(�

Q

) does not imply L

1

(�

F

j

) � L

�

(�

Q

) for each

fuzzy set F

j

that �

T (o

i

)

is composed of. Therefore the preselection of the objects has to be

done by an access via the possibility measure in the CSF index regardless of the measure

demanded by the query, whereas in the SSF index this was just a recommendation.

Given a query Q the matching objects are determined in �ve steps. The �rst four

steps remain the same as for queries via the possiblity measure for the SSF-index, a �fth

step is added [6]:

1. Construct the signature S

Q

of the query predicate Q.

2. Determine all matching signatures,

T = fjjS

j

2 F

SIG

^ jB(S

j

) \ B(S

Q

)j � kg (20)
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3. Eliminate all fuzzy sets F

j

which do not truly satisfy the predicate Q,

M = fj 2 T jL

�

(�

F

j

) \ L

�

(�

Q

) 6= ;g (21)

4. Collect all objects that are described by fuzzy sets which were not eliminated in

previous steps. The objects are now accessed through sets consisting of object

identi�ers. Let fRef(F

j

) be the set of OID referenced by the fuzzy set F

j

, i.e., the

set of OIDs references in line j of the OID set reference �le F

OREF

.

O = fo

i

jj 2M^ " o

i

2 fRef(F

j

)g (22)

5. An object o

i

satis�es the predicate Q possibly (necessarily) to at least the degree �,

i� its restriction satis�es Q, i.e., via possibility measure:

R

�

= fo

i

2 OjL

�

(�

T (o

i

)

) \ L

�

(�

Q

) 6= ;g (23)

via necessity measure:

R

N

= fo

i

2 OjL

�

(�

T (o

i

)

) \ L

�

(�

Q

) 6= ; ^ ; � L

>1��

(�

T (o

i

)

) � L

�

(�

Q

)g (24)

5 Cost models

In this section we describe the cost models for storage, retrieval, and update for the SSF

and CSF index structures. We assume that the performance of the access facilities mainly

depends on the I/O costs, i.e., the number of page accesses. Each object and fuzzy set

can be directly accessed via its OID. Bu�ering is not taken into account, so in order to

reach an object it is assumed that at least one page access is necessary.

Table 1 summarizes the parameters that are used throughout the article.

5.1 Cost model for the SSF index

In this section we present the cost model for the SSF index. The storage costs S

SSF

are

de�ned by:

S

SSF

= S

SIG

+ S

FREF

+ S

OREF

(25)

S

SIG

denotes the size of the signature �le and can be calculated as follows:

S

SIG

=

&

n � b

P � y

'

pages (26)

P is the number of bytes per page, y the number of bits per byte, and oid the size of an

object identi�er in byte. The value of b, the number of bits in a signature, depends on the

desired false signature drop probability (see 3.2) and whether the supports or cores are

encoded. This depends on whether queries via the possiblity or necessity measure shall

10



n number of objects in the database

m number of di�erent fuzzy sets

g number of fuzzy sets describing an object (CSF)

P number of bytes per page

y number of bits per byte

oid size of an object identi�er in byte

c number of right signature drops (c = f + f

f

)


 expected number of right signature drops per page

c

f

number of false signature drops




f

expected number of false signature drops per page

f number of right level-cut drops (f = c� f

f

)

� expected number of right level-cut drops per page

f

f

number of false level-cut drops (f

f

= c � d

[support\jsupport�]

)

a number of objects satisfying the query

� expected number of objects satisfying the query per page

O

f

number of page accesses to get a fuzzy set

O

a

number of page accesses to get an object

Table 1: Parameters used in cost models

be supported. S

FREF

and S

OREF

represent the size of the �les containing the references

to the fuzzy sets and the references to the objects.

S

FREF

=

&

n � oid

P

'

pages (27)

S

OREF

=

&

n � oid

P

'

pages (28)

The retrieval costs C

FR[�jN ]

SSF

for an access via the [possibilityjnecessity] measure are

described by

C

FR[�jN ]

SSF

= S

SIG

+ L

FREF

+O

f

� (c+ c

f

) + L

OREF

+O

a

� a (29)

and can be explained by considering the steps taken during the evaluation of a query

(see section 4.1). First of all, all matching signatures have to be found. For that reason

the signature �le has to be traversed completely leading to the cost S

SIG

.

In the next step all false drops have to be eliminated. For that reason we have to

access the fuzzy sets, but unlike the signature �le not all pages of the fuzzy set reference

�le have to be referenced. We will only fetch the fuzzy sets, whose signatures satisfy the

query. Therefore, the number of I/O operations on the fuzzy set reference �le is limited

to

L

FREF

=

l

S

FREF

�minf
 + 


f

; 1g

m

(30)

with 
 being the expected number of right drops per page given by
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 =

c

S

FREF

(31)

(where c is the number of right signature drops) and with 


f

being the expected

number of false drops per page given by




f

=

c

f

S

FREF

(32)

(where c

f

is the number of false signature drops).

We assume that the number of right and false drops is uniformly distributed among

the pages of the fuzzy set reference �le.

The number of false signature drops c

f

can be calculated by using the false drop

probabilities given in section 3.2.

c

f

= (n� c) � d

f [\j�]

(33)

Then we have L

FREF

+O

f

� (c+ c

f

) page accesses for fetching all fuzzy sets belonging to

the matching signatures, with O

f

being the cost for accessing a fuzzy set.

Finally, L

OREF

+O

a

�a is the cost for accessing the objects, with O

a

being the number

of page accesses necessary to reach an object. The page accesses for the object identi�er

�le can be calculated analogous to (30).

L

OREF

=

l

S

OREF

�minf�; 1g

m

(34)

With f being the number of right level-cut drops, which can be calculated by using the

false level-cut drop probability (see section 2.3): f = c � (1� d

[support\jcore�]

), the expected

number of right level-cut drops per page is � =

f

S

FREF

. The number of right level-cut

drops is identical to the number of objects matching the query, i.e. f = a, because in

the last step of the evaluation (when accessing the objects) there are no more false drops.

Thus, we also have � = � with � being the expected number of right object drops per

page.

When inserting a new object, an item is added to all three �les (signature, fuzzy set

reference, object reference), resulting in three page accesses.

C

FI[�jN ]

SSF

= 3 (35)

When deleting an object, the reference to the object is marked as deleted. The deletion

of the object and the adjustment of the index take place during times of low user activity.

This leads to a slightly higher false drop probability, however. The average costs for

deleting an object are

C

FD[�jN ]

SSF

=

S

OREF

2

(36)
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5.2 Cost model for the CSF index

In this section the cost model for the CSF index is presented. It bears resemblance to the

SSF index, but there are some changes. The storage costs S

CSF

are calculated as follows:

S

CSF

= S

SIG

+ S

FREF

+ S

OREF

+ S

OSET

(37)

The size of the signature �le S

SIG

and the fuzzy set reference �le S

FREF

is smaller

than S

SIG

and S

FREF

for the SSF index, because there is only one entry for each fuzzy

set in the index. The formulas for S

SIG

, S

FREF

and S

OREF

remain the same, except that

n must be substituted by m, the number of entries in the signature and fuzzy reference

�le. Hereby, it is assumed that a reference to a set of object identi�ers has the same size

as a reference to a single object. We assume that every object is described by the same

number of fuzzy sets g, i.e., a fuzzy set F

j

describes on the average

n�g

m

objects.

Additionally, we have costs S

OSET

for storing the sets of OIDs themselves:

S

OSET

=

&

n � g � (oid+ Set

elem

) +m � Set

info

P

'

pages (38)

with S

elem

being the administrative cost for a single set element, and S

info

being the

administrative cost for the whole set.

The retrieval costs C

FR[�jN ]

CSF

for an access via the [possibilityjnecessity] measure in

a CSF index are described by

C

FR[�jN ]

CSF

= S

SIG

+ L

FREF

+ O

f

� (c+ c

f

)

+L

OREF

+ f �

�

O

s

+

n � g

m

� (O

a

+O

f

)

�

(39)

and can be explained by considering the evaluation steps described in section 4.2. The

�rst three steps resemble those for the SSF index, so the costs can be calculated analogous

to the SSF index (see formula (29)). We concentrate on the di�erences here. Again, n has

to be substituted by m in formula (33) to gain the correct results. Since we �rst check

whether an object possibly satis�es the query in the CSF index, we have c

f

= (m�c) �d

f\

independently of whether we have a query via the possibility measure or via the necessity

measure.

For the CSF index the number of right level-cut drops is not equal to the number of

objects satisfying the query (f 6= a), because an object may be described by several fuzzy

sets. Similar to the SSF index f = c � (1�d

[support\jsupport�]

), only with the di�erence that

�

T (o

i

)

is substituted in (6) and (7) by the corresponding possibility distribution �

F

j

of the

fuzzy set being checked.

After accessing and comparing the fuzzy sets the OID sets corresponding to the right

level-cut drops have to be traversed. The costs O

s

for this task are (at least) the number of

page accesses equal to the number of pages occupied by the sets:

�

n�g

m

(oid+Set

elem

)+Set

info

P

�

per OID set. Getting the objects themselves costs us O

a

page accesses. Checking, whether

they truly satisfy the query predicate is done by obtaining the restrictions. The reference

13



to the restriction is assumed to be stored with each object and this leads to additional

access costs of O

f

.

When updating a CSF index, several cases have to be distinguished, depending on

which assumptions are made. Presenting them would go beyond the scope of this paper,

because each case is in turn split into several subcases. For details see [7].

6 Benchmarking and cost analysis

In this article we con�ne ourselves to the description of the implementation and analysis

of the CSF index, because the SSF index can be seen as a special case of the CSF index

(with the number of fuzzy sets describing an object g = 1 and the total number of fuzzy

sets m equal to n, the total number of objects). We present the results of the various

benchmark runs done with experimental databases in this section.

6.1 Implementation

The index structures were implemented in OBST, a freeware ooDBMS developed at the

Forschungszentrum Informatik (FZI) in Karlsruhe [9, 15]. We tried to keep the imple-

mentation as simple as possible, i.e., we did not attach great importance to optimizing.

Figure 3 shows the implementation of a CSF index structure in OBST.

- - -
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-

-

-

-

-

-

-

-

-

-

? ?

? ?

6

6

�

-

-

-

-

�le object

signature signature bitstring

object �le

reference

fuzzy set

fuzzy set

object

array of

level-cuts

level-cut

objects

... ... ...

reference

�le

...

...

...

restriction

object

OID set

set of OIDs

set of OIDs

object

restriction

Figure 3: Implementation of a CSF index structure

There are several parameters we used in the benchmark runs worth mentioning (see

table 2):

� For the domain 
 of the fuzzy sets and query predicates we choose the closed interval

[0; 1000]. The elements are of the type sos Int (i.e. integer) and have a length of 32

bits.

� The implementation of the fuzzy sets is done by explicitly storing a �nite number of

level-cuts of the fuzzy sets. We have avoided redundancy by only storing L

j

i

nL

j

i+1

for each level-cut of the fuzzy set with 0 < j

i

< j

i+1

� 1.
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� In our benchmark runs a fuzzy set is represented by eight level-cuts (

1

8

;

2

8

;

3

8

; : : : ; 1).

The core contains three elements and in each subsequent level-cut two elements are

added. A fuzzy set needs about 480 bytes storage (S

fuzzy

).

� For the benchmark runs, r

q

, the number of elements in the query fuzzy set, is equal

to 5.

� Each of the n objects is associated with g fuzzy sets selected randomly from the m

fuzzy sets. For the benchmark runs g is equal to 2.

� Each object references its restriction. The restriction of an object is the fuzzy set

resulting from the conjunction (using the min operator) of all g fuzzy sets describing

the object

2

. A restriction needs about 270 bytes storage (S

rst

).

� The length b of a signature is 512 bits, the number of bits set in a single codeword

k is equal to 2. These values guarantee an optimal false drop probability d

f\

under

the benchmark conditions.

� The signature �le is larger than the sum of all signatures, because each signature

is stored as an object (the representation of the signatures was not optimized).

Therefore we decided to consider the costs for comparing two signatures. 1.6 msec

is the average time measured for the comparison of two signatures E

s

.

� Table 3 shows the average timeE

f

and E

f

0

needed to check if two fuzzy sets intersect.

The reasons for considering CPU time are given in section 6.3.

� Each object is stored with its object identi�er of 16 bytes. Altogether an object

needs about 80 bytes storage (S

obj

). Each (fuzzy) set is stored as an object, so

Set

info

= 16 bytes. Within each set short pointers (4 bytes) are used as references,

so Set

elem

= 4 bytes.

The benchmarks were run on a SPARCstation 10 with 32 Mbyte main memory and 218

Mbyte virtual memory. The size of a page was 8 Kbyte with an average access time (SZ)

of 10 msec. The experimental databases, which were constructed with 1000, 2000, 3000,

4000, and 5000 objects and 500 fuzzy sets (high compression rate) and 2000 fuzzy sets

(low compression rate), were stored on a local disk. The thresholds 0.25, 0.5, 0.75, and

1.0 and the access via the possibility measure were used in the queries. The benchmarks

were run at night, because the machine was not a stand-alone machine.

6.2 The in
uence of thresholds

First of all we want to discuss the in
uence of the query threshold on the query

evaluation. Figure 4 shows an example for a database with 4000 objects. The costs were

calculated using (39).

It can be clearly seen that the costs for evaluating a query are high when choosing low

thresholds and low when choosing high thresholds regardless of whether high or low com-

pression rates are used. The reason for this is that comparing low level-cuts (containing

2

That is, we did not consider disjunctions.
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no units byte msec

n 1000,2000,3000 P 8192 E

s

1.6

4000,5000 y 32 E

f

,E

f

0

see separate

m 500,2000 oid 16 table

g 2 S

sig

82 SZ 10

j
j 1001 S

fuzzy

480


 f0,...,1000g S

obj

80

b 512 S

rst

270

k 2 Set

info

16

r

i

17 Set

elem

4

r

q

5

d

f\

0.13

d

support\

0.34

Table 2: Parameters chosen, determined, estimated or measured for benchmarks

average time for testing, if query predicate Q

level-cut intersects with

fuzzy set descr. object E

f

restriction of object E

f

0

0.25 47 msec 25 msec

0.5 28 msec 22 msec

0.75 18 msec 17 msec

1.0 8 msec 10 msec

Table 3: Average costs for checking intersections

many elements) of two fuzzy sets with each other is more expensive than comparing high

level-cuts (containing few elements), when using the possibility measure as seen in table

3. The larger false-drop probability of high level-cuts does not compensate for this e�ect.

Another reason is the fact, that the probability that two sets intersect is the larger the

larger the two sets are (assuming a �nite domain and a uniform distribution).

6.3 Validating the cost model

Calling methods in ooDBs can be very time consuming in regard to CPU time. After

comparing the benchmark results with our cost models, we decided that in our experi-

mental databases the CPU time should not be neglected. So, we extended the formula

for the retrieval cost (39) by the costs for level-cut and signature comparisons. The costs

for method calling is given in msec, so all parameters given in number of page accesses

have to be multiplied with SZ, the average page access time. Each page storing fuzzy

sets and objects only had to be read once, because afterwards the page was held in the

system bu�er (this was due to the fact that the experimental databases were quite small).

Our earlier cost model on the other hand assumes that for every right drop a page access

is necessary to get the associated entry in the fuzzy set reference and OID reference �le,

which is the case for large databases. The modi�ed formula is
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Figure 4: Evaluation costs according to cost model for CSF

C

FR�

CSF

= (S

SIG

+ L

FREF

+ L

OREF

+

O

f

�minf(c+ c

f

); m � S

fuzzy

g+

O

s

�minff;m � S

OSET

g+

O

a

�minff �

n � g

m

; n � S

obj

g

O

f

�minff �

n � g

m

; n � S

rst

g) � SZ +

E

s

�m + E

f

� (c+ c

f

) + E

0

f

� f �

n � g

m

(40)

In �gure 5 the comparison of the calculations using the formula (40) with the actual

values of the benchmark runs are given. All parameters presented in 6.1 were considered

in the calculations.

As can be seen in �gure 5 formula (40) gives good approximations of the benchmark

runs. The best approximation is for high compression rate and high � (only 1% devia-

tion), the worst for low compression rate and very low � (up to 20% deviation). Further

investigation may lead to the introduction of additional parameters thereby improving

the cost model even further.

6.4 Examining the e�ciency

In order to prove the e�ciency of the index structures proposed, we also ran bench-

marks on the database using the index structures without the signature �les (the results

are shown in �gure 6). The following analysis is made exemplary for a database with

500 fuzzy sets and for � = 0:25 and � = 0:75 (see �gure 7). It can be clearly seen that

an access via an index structure with signature �les is much faster than an access via

an index structure without signature �les. In the case of a level-cut of 0.25 the access is

up to four times faster, in the case of a level-cut of 0.75 it is still two times faster. As

seen in table 3, the comparison of the 0.25-level-cuts of two fuzzy sets is more expensive
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Figure 5: Comparison of cost model with benchmark runs
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Figure 6: Benchmark runs without signature �les

than the comparison of the 0.75-level-cuts. An index structure with signature �les lowers

the number of fuzzy set comparisons, therefore high comparison costs are signi�cantly

improved by signature �les. The compression rate of an index also in
uences the number

of needed comparisons. A signature �le is not as e�ective on an index structure with a

high compression rate (500 fuzzy sets) as on an index structure with a low compression

rate (2000 fuzzy sets), because the compression of the index structure already lowers the

number of comparisons even without a signature �le.

6.5 Comparison of CSF index with SSF index

We already showed in [11] that the cost model for the SSF index approximates the

evaluation costs very accurately, the largest deviations were 5%. We compare the CSF

index with the SSF index by using the results of the benchmark runs for the CSF index
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Figure 7: Comparison of benchmark runs with and without signature �les
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Figure 8: Comparison of CSF index with SSF index

and the cost model for the SSF index. Figure 8 shows an example for 4000 objects and 500

describing fuzzy sets. For the SSF index all fuzzy sets describing an object are combined

to a restriction, which in turn is used as entry in the signature and fuzzy set �les. The

restrictions contain very few elements in this example (the core was usually empty and the

support included one element), so the query evaluation costs for the SSF index are almost

constant. When a high compression rate can be achieved (m = 500 in our example), the

CSF index is clearly the better choice. For � = 1 a query can be evaluated more than

four times faster than in the SSF index. When the compression rate is low (m = 2000 in

our example), the CSF index is only better for high level-cuts.
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7 Summary and outlook

Current research on fuzzy databases concentrates on abstract concepts like data models

and query languages. Publications about the implementation aspects of fuzzy databases

such as query optimization and index structures are few and far between. High perfor-

mance of database management systems, however, is of great importance to end users,

therefore we began to �ll this gap by presenting index structures suitable for fuzzy

databases. The index structures described in this paper are based on the well-known

technique of superimposed coding. The calculations with our cost models and the con-

ducted benchmarks have led us to the conclusion that this technique is a remarkable

improvement for e�ciently querying fuzzy databases.

We have tested several variants of index structures based on superimposed coding,

thereby analyzing the strengths and weaknesses of each one. In this paper the most

important variants, the SSF and CSF index, were illustrated. The index structures have

not been tested in real-life applications, yet, but with the help of our cost models the task

of deciding which variant to use for a given application has been made much easier.
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A False signature drop probabilities

In this appendix we present the derivation of the false signature drop probability for intersection

predicates. The false drop probability can be expressed by
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This is the probability that at least k bits of the w

q

bits set in S

Q

are also set in S

i

under

the assumption that L(�

T (o

i
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) and L

�

(�

Q

) do not intersect. Let us now look closer at the

probabilities that a certain bit in a signature is set to 0 or set to 1. When superimposing r

i

codewords, the probability that a certain bit is set to 0 is [17]
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The probability that a certain bit is set to 1 is therefore
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(43)

When inspecting more than one bit in a signature, for instance j bits, then the probability

that all j bits are set to 0 can be approximated by (assuming that j and k are su�cently small

[17])
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(44)
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The probability that all j bits are set to 1 can be approximated by [17]
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The probability that at least k bits of the w

q

bits are set in the signature S

i

can be approx-

imated by a binomial distribution [11]:

d

f\

(b; k; r

q

; r

i

) =

w

q

X

j=k

Pr(jB(S

i

) \B(S

Q

)j = jjL(�

T (o

i

)

) \ L

�

(�

Q

) = ;)

�

w

q

X

j=k

 

w

q

j

!

� (1� (1�

k

b

)

r

i

)

j

� (1�

k

b

)

r

i

�(w

q

�j)

� 1�

k�1

X

j=0

 

w

q

j

!

� (1� (1�

k

b

)

r

i

)

j

� (1�

k

b

)

r

i

�(w

q

�j)

(46)

The average number w

q

of bits set in a query signature S

Q

is equal to [17]
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B False level-cut drop probabilities

The false level-cut drop probabilities were presented in section 2.3. In this section we show how

these results were obtained. We assume, that the elements in the level-cuts of the fuzzy-sets are

uniformly distributed. Furthermore, we assume that for x; y 2 N

0

special cases of the binomial

coe�cient are de�ned as:
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(48)

B.1 False core drops

The probability that the core of an object satis�es the query predicate Q necessarily and weakly,

but the object itself does not satisfy the query necessarily, is:
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otherwise, if jL
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B.2 False support drops

Next we inspect the probability that the support of an object satis�es the query predicate Q

possibly and weakly, but the object itself does not satisfy the query possibly.
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We look at one more case, the probability that the support of an object satis�es the query

predicate possibly and weakly, but the object does not satisfy the query necessarily.
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otherwise, if jL
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