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Abstract

We introduce two new hash-based index structures to index set-valued attributes.

Both are able to support subset and superset queries. Analytical cost models for

the new index structures as well as for the two existing index structures, sequential

signature �le and Russian Doll Tree, are presented and experimentally validated.

Using the validated cost model, we express the performance of all four index struc-

tures in terms of the performance of the sequential signature �le. This allows a direct

analytical comparison of their performance. Last, we report on our benchmark re-

sults comparing the real performance of all four index structures. We especially

investigate their performance for skewed data.

1 Introduction

Since the invention of database management systems, tremendous e�ort has been under-

taken in order to invent index structures. Historically this work was mostly carried out in

the context of relational databases. The impressive results comprise very versatile index

structures like B-trees [BM72, Com79]. These traditional index structures concentrate on

the task of indexing single-valued attributes.

Modern database systems support data models which allow set-valued attributes. Ex-

amples of such data models are the object-oriented model [Cat97] and the object-relational

data model [SM96]. Several indexes dealing with special problems in these data mod-

els have been invented, e.g. nested indexes [BK89], path indexes [BK89], multi indexes

[MS86], access support relations [KM92], join index hierarchies [XH94]. The predominant

problem attacked by these index structures is the e�cient evaluation of path expressions.

However, the problem of indexing data items with set-valued attributes is of no less

importance. Consider for example the following queries: retrieve all students attending at

least a given set of lectures, retrieve all researchers attending only a given set of database

conferences. Besides user queries involving a set comparison between a constant set

and set-valued attributes, this kind of query is also generated by transforming universal

quanti�ers into set comparisons.
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1.1 Related work

Signatures have traditionally been used in information retrieval. There, signature-based

indexes accelerate the evaluation of partial match retrieval. Partial match queries are

similar in spirit to our subset queries. Let us briey review indexes for partial match

queries in the context of document retrieval. The sequential organization of signatures

resulted in signature �les in many variants [Rob79], [PBC80], [SD85]. Two level signature

�les [SDR83] were introduced to enhance their performance. Generalizing this idea results

in multi-level signature �les [CS89] and one of its important variants, the S-tree [Dep86].

The S-tree is based on the R-tree [Gut84].

Besides tree-based index structures for partial match retrieval hash-based index struc-

tures exist. Otoo proposed a hash index for partial match retrieval in [Oto84]. How-

ever, signatures are not yet used. Later, the partitioned signature �le combined hash

indexes with superimposed coding for partial match retrieval of text documents [LL89].

Quick�lter [RZ90, ZRT91, CZ93] is a variant of the partitioned signature �le using lin-

ear hashing [Lit80]. The algorithms applied to step through all possible candidate sets

(semi-consecutive page retrieval in [RZ90], ordered page retrieval in [ZRT91], in [CZ93]

no algorithm is given) are ad-hoc and suboptimal. All the index structures mentioned so

far are designed for partial match retrieval and are not able to answer both subset and

superset queries.

There are only two indexes designed to index set-valued attributes such that subset

and/or superset queries can be answered. The �rst one is based on signature �les and

comes in the variants sequential and bit-sliced signature �le [IKO93]. The second one is

the RD-tree [HP94]. It exhibits the same structure as the S-tree [Dep86] and does not

support superset queries. Since bit-sliced signature �les are inappropriate for dynamic

environments, we included only sequential signature �les and RD-trees in our investiga-

tions.

1.2 Our contribution

We study two new hash-based index structures for set-valued attributes, thereby increas-

ing the number of alternatives to four. The �rst is based on extendible hashing [FNPS79],

the second on recursive linear hashing [RSD84]. Our new index structures have two ad-

vantages over the Russian doll tree: Contrary to the Russian doll tree both support the

� predicate. The new index structures are able to outperform the sequential signature

�le and the Russian doll tree. Further contributions of the paper are 1) validation of

analytical cost models for all these index structures, 2) an analytical evaluation based on

the cost models, 3) a comparison of the index structures based on benchmarks for uni-

form distribution and in the presence of skew using the Zipf-distribution. Further, to the

knowledge of the authors the paper contains the �rst performance evaluation of extendible

hashing versus recursive linear hashing. The important|and maybe surprising|result

will be that our variant of extendible hashing will prove to be much more robust against

skew than our variant of recursive linear hashing.
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1.3 Outline

The remainder of the paper is organized as follows. In the next section we deal with

the preliminaries (e.g. underlying database, query types) needed to explain the index

structures. We present the di�erent index structures in the following section. The already

known index structures (sequential signature �le and Russian doll tree) are described

briey, the newly proposed structures (extendible signature hashing and recursive linear

signature hashing) in more detail. Section 4 covers the theoretical comparisons of the

index structures using the cost models presented in the section before. In section 5 we

specify the simulation environment in which the benchmarking takes place. The results of

the benchmarks are presented in the following section. In section 7 we check the validity

of the cost models. A summary and outlook conclude this paper.

2 Preliminaries

In this section we demonstrate the relevance of set-valued queries in databases. We give

a general description of a database containing data items with set-valued attributes and

illustrate it with an example database. We look at di�erent possible query types and also

give exemplary queries for each type.

We explain the technique of superimposed coding that is used for representing the

sets in the index structures. A fast algorithm for generating all subsets (or supersets) of

a given set, which is needed for the query evaluation, is also presented.

2.1 Databases

We assume a database consists of a large number of data items o

i

, with 1 � i � m. We

are interested in those data items which have a set-valued attribute A. o

i

:A denotes the

value of attribute A of data item o

i

. Without loss of generality we assume that all n

data items have a set-valued attribute A. The set-valued attribute A is associated with a

domain, denoted by D(A), from which the elements of a set are taken. For an example of

a database using set-valued attributes one might imagine a database containing students,

lectures, and lecturers. Students take courses on di�erent subjects. The information on

taken courses can be stored in a set-valued attribute for each student. The same holds

for all lectures given by one lecturer. Generally speaking, all one-to-many (or many-to-

many) relations between entities can be represented by a set (or two sets). Example 2.1

introduces the lecture database formally.

Example 2.1 Let us assume a database containing information on lectures. We present

a structural model using OMT and give a schema in ODL. Figure 1 shows the structural

model.

Figure 2 depicts the ODL schema of the database.

2.2 Queries

A query is de�ned by a query set Q and a predicate �. Q contains arbitrary elements

from the domain D(A) of the attribute A. Formally speaking Q is selected among the

power set P(D(A)) of the D(A), so Q 2 P(D(A)). Given two sets M and N a predicate

4



Student Lecture Lecturer

Figure 1: Database example modeled in OMT

interface Student f

extent allStudents;

attribute String Name;

relationship set < Lecture > attends inverse Lecture::attendees;

g;

interface Lecturer f

extent allLecturers;

attribute String Name;

relationship set < Lecture > gives inverse Lecture::lec;

g;

interface Lecture f

extent allLectures;

attribute String Name;

relationship set < Student > attendees inverse Student::attends;

relationship Lecturer lec inverse Lecturer::gives; g;

Figure 2: Schema in ODL

� describing the relationship between M and n is de�ned by M�N . We focus on the

following predicates:

� = "=": M = N is true, i� M contains exactly the same elements as N . This is called

an equality predicate.

� = "�": M � N is true, i� all elements in M are also found in N . This is called a

subset predicate.

� = "�": M � N is true, i� all elements in N are also found in M . This is called a

superset predicate.

� = "\": M \ N( 6= ;) is true, i� there exists at least one element from D(A) which is

contained in both M and N . This is called an intersection predicate.

A complete query, consisting of the query set Q and the predicate � 2 f=;�;�;\g,

searches for all data items o

i

(1 � i � n) in the database which satisfy the following

predicates:

1. Q = o

i

:A
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2. Q � o

i

:A

3. Q � o

i

:A

4. Q \ o

i

:A( 6= ;)

Queries asking for all data items o

i

, whose attribute A contains a speci�c element e

from D(A), are a special case of 2. and can be rewritten as a query with Q = feg and

� = "�", i.e. e 2 o

i

:A � feg � o

i

:A.

Example 2.2 Let us formulate some example queries based on the lecture database in

example 2.1. We give one example for each query type de�ned above.

1. We want to know, if there is a professor who gives the lecture \Database Systems I",

the lecture \Operating Systems I", and no more lectures. (Q =f\Database Systems

I", \Operating Systems I"g and � = "=")

select l.Name

from l in allLecturers

where l.gives = set(\Database Systems I", \Operating Systems I");

2. We want to check, which students have met the requirements (\Math I", \Math II")

to attend the lecture \Math III". (Q =f\Math I", \Math II"g and � = "�)

select s.Name

from s in allStudents

where set(\Math I", Math II") <= s.attends;

3. Let us assume we are interested in all those students who have taken only mandatory

lectures among \Computer Science I", \Math I", \Programming I". (Q =f\Computer

Science I", \Math I", \Programming I"g and � = "�)

select s.Name

from s in allStudents

where s.attends <= (\Computer Science I", \Math I", \Programming I");

4. Get the names of all students who go to at least one of the following lectures:

\Database Systems I", \Operating Systems I", \Math II". (Q =f\Database Sys-

tems I", \Operating Systems I", \Math II"g and � = "\)

select s.Name

from s in allStudents

where s.attends intersect set(\Database Systems I", \Operating Systems

I", \Math II") 6= set();
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2.3 Superimposed coding

Superimposed coding is a technique based on the idea to hash attribute values into random

k-bit codes in a b-bit �eld and to superimpose the codes for each attribute value in a record

[Knu73]. A code word created by superimposing bit �elds is called a signature [FC84].

We use signatures to represent sets in the index structures. There are two reasons why

we employ signatures. One reason is the constant length of the signatures. Keys of

constant length are easier to manage in index structures than keys of variable length.

The other reason is the great speed with which signatures can be compared by using only

bit operations. In this section we explain how to encode sets as signatures.

2.3.1 Basic principles

A signature is a bit �eld of a �xed length b called the signature length. Signatures are

used to represent or approximate sets. The signature of a set is generated by hashing all

the elements of the set into binary code words of length b. For each element a binary code

word, in which exactly k bits are set, is generated. Afterwards all binary code words are

superimposed by using a bitwise or operation creating the �nal signature (see �gure 3 for

the algorithm). For a set s, let us denote the signature of s by sig(s).

generateSig(set s)

f

sig = 0;

for(all items s

i

in s)

f

tmpSig = 0;

i = 0;

srandom(s

i

); /* set seed in random number generator */

while(i < k)

f

rnd = random() % b;

while(rnd-th bit is set in tmpSig)

f

rnd = random() % b;

g

set rnd-th bit in tmpSig;

i++;

g

sig j= tmpSig;

g

return sig;

g

Figure 3: Algorithm for generating signatures

We cannot assume that the signatures of distinct sets are also distinct, due to the

hashing and the bitwise or-operation. But still, the following property holds:
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s�t =) sig(s)�sig(t) for � 2 f=;�;�;\g (1)

where sig(s)�sig(t) and jsig(s)j are de�ned as

sig(s) � sig(t) := sig(s)&:sig(t) = 0

sig(s) � sig(t) := sig(t)&:sig(s) = 0

sig(s) \ sig(t) := sig(s)&sig(t) 6= 0

jsig(s)j := number of bits set in s, also called the weight of sig(s)

with & denoting bitwise and and : denoting bitwise complement.

Hence, a pretest based on signatures can be very fast since it involves only bit opera-

tions.

Example 2.3 Let us illustrate the technique of superimposed coding with an example

taken from our lecture database. We encode the query sets of the queries 2. and 3. of the

previous example.

Q

2

= f\Math I", \Math II"g

Q

3

= f\Computer Science I", \Math I", \Programming I"g

We use a signature length B of 8 bits and set exactly 2 bits in the binary code words of

each element, so k = 2. We call our hash function to map the elements onto binary code

words H(x) with x 2 D(A). Without loss of generality let us assume that H(x) maps the

elements of Q

2

and Q

3

onto the following binary code words.

H(\Math I") = 1001 0000

H(\Math II") = 0100 0100

H(\Computer Science I") = 0100 1000

H(\Programming I") = 0000 1100

Superimposing the code words via an (inclusive) bitwise or-operation, we get the fol-

lowing signatures:

sig(Q

2

) = 1101 0100

sig(Q

3

) = 1101 1100

As can be clearly seen by this example, if signatures satisfy a certain predicate this

does not imply that the sets themselves satisfy this predicate, because sig(Q

2

) � sig(Q

3

),

but Q

2

6� Q

3

. We go into the details on this matter in the next section about false drop

probabilities. 3
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2.3.2 False drop probabilities of signatures

Consider a query set Q, the attribute value o

i

:A of a data item o

i

, their signatures sig(Q)

and sig(o

i

:A), and a predicate � 2 f=;�;�;\g. If sig(Q)�sig(o

i

:A) is true, then o

i

is

called a drop. If additionally Q�o

i

:A holds, we call o

i

a right drop. If, however, Q�o

i

:A

does not hold, o

i

is a so called false drop.

The probability that a data item turns out to be a false drop|called false drop prob-

ability d

�

|has been studied intensively [FC84, IKO93, KFIO93, Rob79, SDR83] and can

be approximated by formulas (3) to (6). Here, jQj denotes the size of the query set, i.e.

the number of elements in Q. jo

i

:Aj is the size of the attribute value A of data item o

i

.

The weight of a signature of a set M can be estimated, when the size of M is known:

jsig(M)j � b �

0

@

1�

 

1�

k

b

!

jM j

1

A

(2)

We now present the false drop probabilities for each predicate type as described by

[KFIO93].

d

=

(b; k; jQj; jo

i

:Aj) =

1

 

b

jsig(Q)j

!

for jsig(Q)j = jsig(o

i

:A)j (3)

d

�

(b; k; jQj; jo

i

:Aj) � (1� e

�

k

b

jo

i

:Aj

)

k�jQj

(4)

d

�

(b; k; jQj; jo

i

:Aj) � (1� e

�

k

b

jQj

)

k�jo

i

:Aj

(5)

d

\

(b; k; jQj; jo

i

:Aj) � 1�

k�1

X

j=0

 

jsig(Q)j

j

!

� (1� (1�

k

b

)

jo

i

:Aj

)

j

� (1�

k

b

)

jo

i

:Aj�(jsig(Q)j�j)

(6)

Each query produces a certain number of drops c

d

. Among these drops are c

r

right

drops, which are the answer to the query, and c

f

false drops with

c

f

= (n� c

r

) � d

�

(7)

We cannot distinguish between right drops and false drops by only comparing signa-

tures. So all c

d

data items which are drops have to be fetched from secondary storage and

checked for false drops. We strive for a low false drop probability to keep c

f

and with it

the number of accesses to secondary storage small. There is an optimal ratio between k

and b for which d

�

becomes minimal.

For equality predicates d

=

becomes minimal, when

k

b

=

 

1�

�

1

2

�

jQj

!

(8)

For subset predicates d

�

becomes minimal, when

k

b

=

ln 2

jo

i

:Aj

(9)
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For superset predicates d

�

becomes minimal, when

k

b

=

ln 2

jQj

(10)

For d

\

for intersection predicates no closed formula exists to calculate the optimal

ratio between k and b. Fortunately (6) only contains discrete values and for a �xed b an

optimal value for k can be calculated fast with a brute force algorithm, computing d

\

for

all possible values for k.

2.4 Fast enumeration of subsets/supersets

For our new index structures presented in the next section, we need a way to rapidly step

through all subsets and supersets of a given signature. We use the same algorithm utilized

by Vance and Maier in their blitzsplit join ordering algorithm [VM96]. The algorithm to

generate all subsets of a given bitstring a is given below (& denotes bitwise and and ~

denotes bitwise complement). When executed, s passes through all possible subsets of a.

s = a & -a;

while(s)

f

s = a & (s - a);

process(s);

g

Generating all supersets is achieved by inverting the signature a, stepping through the

subsets of the inverted a and inverting the generated sets.

s =~a & -~a;

while(s)

f

s =~a & (s -~a);

process(~s);

g

3 Index structures

We present four di�erent indexing schemes suitable for indexing data items with set-valued

attributes. In all four index structures we store the signatures sig(o

i

) and references

ref(o

i

) of the data items. The general concept behind these index structures is to provide

fast access to all signatures satisfying a query. The corresponding data items are then

checked and all false drops are eliminated.

We describe each index structure generally and also give details about storage costs

and retrieval/update costs. We begin with the Sequential signature �le and Russian Doll

tree, which are already known [LL92], [IKO93], [HP94]. The two new index structures are
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based on extendible hashing [FNPS79] and recursive linear hashing [RSD84], which we

describe briey. We then explain how to adapt those index structures to support queries

with set predicates.

When looking at the costs for the index structures, there are operations that are

independent of the index structures. For the query evaluation costs these are the costs

C

fetch

for fetching the data items. The fetch costs, which are the same for all index

structures, can be approximated by the formula by Yao [Yao77] (B is the number of

pages needed for the data items). C

fetch

is measured in number of page accesses.

C

fetch

= n �

0

@

1�

c

r

+c

f

Y

i=1

n � (1�

1

B

)� i+ 1

n� i + 1

1

A

(11)

When deleting items, the deletion of the data item itself has nothing to do with the

index structure. The deletion costs C

delete

for a data item depend on the used database

management system. We assumed one writing page access for a deletion for our theoretical

calculations.

C

delete

= 1 (12)

For the calculation of the deletion costs we assume that we always have successful

deletions, i.e. the data item to be deleted is present in the database.

3.1 Sequential signature �les

3.1.1 General description

[sig(o

1

); ref(o

1

)] [sig(o

2

); ref(o

2

)] . . . [sig(o

n

); ref(o

n

)]

Figure 4: Sequential signature �le index structure (SSF)

The sequential signature �le (SSF) method is a simple way to index data items

using signatures [LL92], [IKO93]. Signature �les have entries in the form of a tuple

[sig(o

i

); ref(o

i

)] containing the signature sig(o

i

) of an indexed data item o

i

and an unique

identi�er ref(o

i

) with which the data item can be accessed. The signatures and identi�ers

of all data items o

i

, 1 � i � n are stored sequentially in a �le. Instead of scanning all

data items during query evaluation, the signature �le is scanned and only data items, the

signature of which satis�es the query condition, are fetched and tested for false drops.

A sequential signature �le index supports all query types discussed in the previous

section.

3.1.2 Cost formulas

As mentioned in the last section, a signature sig(o

i

) of a data item o

i

and its unique

identi�er ref(o

i

) are stored pairwise in tuples of the form [sig(o

i

); ref(o

i

)]. The size of
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such a tuple (in bytes) is denoted with S

tuple

. The storage costs S

SSF

(in number of pages)

of a sequential signature �le are equal to

S

SSF

=

�

n � S

tuple

P

�

pages =

&

n

P

�

&

(b + id)

y

''

pages (13)

where P is the number of bytes per page, y the number of bits per byte (which is 8,

of course), and id the size of an unique identi�er in bits. The value of b, the number of

bits in a signature, depends on the desired false signature drop probability (see 2.3.2)

Evaluating queries of the kind described in section 2.2 with the help of a SSF is

straightforward. First we construct the signature S

Q

for the query set Q. Then we

traverse the signature �le and compare S

Q

with all signatures sig(o

i

), 1 � i � n, in

the signature �le. If the signature sig(o

i

) matches the query set S

Q

, then we have to

fetch the corresponding data item via the reference ref(o

i

). After the quick pretest using

signatures, we have to check whether the set-valued attribute of o

i

satis�es the query or

not, remembering the false drops mentioned in section 2.3.2.

The retrieval costs C

SSF

�

for an access (measured in page accesses) are described by

C

SSF

�

= S

SSF

+ C

fetch

for � 2 f=;�;�;\g (14)

C

fetch

is the number of page accesses needed to access the data items, which turn out

to be drop, i.e. the signatures of which satisfy the query.

Insertions into a SSF index structure are very easy to realize. The signature sig(o

n+1

)

for the new data item o

n+1

is generated and stored with the identi�er ref(o

n+1

) in a tuple

which is appended to the signature �le. The cost for an insertion I

SSF

is normally one

reading and one writing page access. An exception to this is, when the last page of the

signature �le is full, then a new page must be appended and the catalog information of

the SSF must be updated.

I

SSF

= 2 (15)

When deleting a data item, the reference to the data item is marked as deleted or set

to NULL, respectively. The deletion of the object and the adjustment of the index take

place during times of low user activity. The costs D

SSF

for marking an object as deleted

are the searching costs and one (writing) access for the marking. C

delete

are the costs for

deleting the data item itself.

D

SSF

=

1

2

� S

SSF

+ 1 + C

delete

(16)

As already mentioned we assume successful deletions, so on average we have to traverse

about half of the signature �le before �nding the desired data item.
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[sig(o  ), ref(o  )] [sig(o  ), ref(o  )] [sig(o  ), ref(o  )]

[sig(o  ), ref(o  )] [sig(o  ), ref(o  )] [sig(o  ), ref(o  )]

[sig(o  ), ref(o  )] [sig(o  ), ref(o  )] [sig(o  ), ref(o  )]1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 9

2 3 5 6 8 91 4 7[sig(o  )  |  sig(o  ) |  sig(o  ),   ] [sig(o  )  |  sig(o  ) |  sig(o  ),   ] [sig(o  )  |  sig(o  ) |  sig(o  ),   ]

’|’ denotes bitwise or

Figure 5: RD-tree using signatures as keys

3.2 Russian Doll trees

3.2.1 General description

The Russian Doll (RD) tree [HP94] is a variant of the R-tree [Gut84]. The leaf nodes of

an RD-tree contain as entries the sets of the data-items and the identi�ers of the data

items. An entry in an inner node of an RD-tree consists of the union of all sets of its child

nodes, called bounding set, and the references to the child nodes. In our implementation

(see �gure 5) we use the signatures of the sets as keys in the RD-tree, making it similar

to the S-Tree proposed by Deppisch [Dep86] for o�ce retrieval.

When evaluating a query, we begin by constructing the signature sig(Q) of the query

set Q. With the signature sig(Q) we start to search at the root of the tree. In each inner

node we compare sig(Q) with the signatures sig(B

ji

) of the bounding sets B

ji

in the

node m

j

. For a query with a subset or equality predicate this means, that B

ji

quali�es, if

sig(Q) � sig(B

ji

. For an intersection predicate sig(Q) \ sig(B

ji

) 6= ; has to be satis�ed.

All branches that do not qualify need not be searched, because none of the descendants

can satisfy the query. In a leaf node all data items, whose signatures match the signature

of the query set are fetched and checked.

An RD-tree supports queries with equality, subset, and intersection predicates. Al-

though it might appear that a variant in which the signatures within the inter nal nodes

are formed by intersection supports superset queries, this variant exhibits very poor per-

formance [HP94]. This is due to the fact that after a few intersection operations no bit

will be set anymore and consequently all branches of the variant have to be searched

during retrieval.

3.2.2 Cost formulas

We assume that the size of a node in an RD-tree is equal to the size of a page. Under

the assumption that each node in the RD-tree is utilized to degree �, i.e. � � P bytes of

each page are �lled with data, the storage costs for an RD-tree can be estimated similar

to the storage costs of an R-tree [Gut84] with a branching factor bf = � �

j

P

S

tuple

k

. Hence,
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the total storage size S

RDT

is equal to

S

RDT

=

d

log

bf

(n)

e

X

i=1

2

6

6

6

6

n

�

� �

j

P

S

tuple

k�

i

3

7

7

7

7

(17)

=

2

6

6

6

6

n

� �

j

P

S

tuple

k

3

7

7

7

7

+

2

6

6

6

6

n

�

� �

j

P

S

tuple

k�

2

3

7

7

7

7

+ : : :+ 1 pages (18)

�

n

� �

j

P

S

tuple

k

� 1

pages (19)

An upper bound for the expected number of page accesses can be estimated by looking

at each node separately. The probability that a node m

j

is accessed (independently of

the other nodes) is

Pr(sig(Q) retrieves m

j

in a subset, equality query) = Pr(sig(Q) � sig(B

j

)) (20)

for queries with subset and equality predicates. sig(B

j

) is the signature of the bound-

ing set for m

j

. For queries with intersection predicates, the probability is given by

Pr(sig(Q) retrieves m

j

in an intersection query) = Pr(sig(Q) \ sig(B

j

) 6= ;) (21)

Now the expected number of page accesses C

RD

�;=

for queries with subset and equality

predicates can be estimated by

C

RD

�;=

� 1 +

m

X

j=2

Pr(sig(Q) � sig(B

j

)) + C

fetch

(22)

The root page always has to be accessed. The other nodes are accessed with di�erent

probabilities. When the bounding set of the parent node does not satisfy the query

predicate, then the child node will not be accessed. Therefore (22) is an upper bound for

the expected number of page accesses. For intersection predicates the following holds

C

RD

\

� 1 +

m

X

j=2

Pr(sig(Q) \ sig(B

j

) 6= ;) + C

fetch

(23)

When inserting a new data item o

n+1

, we start at the root. For each inner node

the signature sig(o

n+1

) of the new data item is compared to the signature sig(B

ji

)

of every bounding set in node m

j

. We follow the branch for the smallest value of

di�(sig(B

ji

); sig(o

n+1

)) with

di�(sig(B

ji

); sig(o

n+1

)) = (sig(B

ji

) _ sig(o

n+1

))� sig(B

ji

) (24)
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_ denotes the bitwise or operation, � the bitwise xor operation.

When we reach a leaf node m

l

, the tuple [sig(o

n+1

); ref(o

n+1

)] is inserted. The signa-

tures of the bounding sets in the parent nodes of m

l

are modi�ed (up to the root). The

number of page accesses for an insertion I

RD

can be estimated by

I

RD

� 2 �H(T ) (25)

where H(T ) is the height of the tree RD-tree T . When an overow occurs during an

insertion (i.e. the leaf node m

l

is full), the leaf node m

l

needs to be split. For the split of

a node, we used the following (linear-cost) split algorithm.

split()

f

�nd signature S

i

with greatest weight;

assign S

i

to group 1;

S

1

= signature of bounding set of group 1;

�nd signature S

i

with greatest di�(S

1

, S

i

);

assign S

i

to group 2;

S

2

= signature of bounding set of group 2;

for(remaining signatures S

i

)

f

if(di�(S

1

, S

i

) � di�(S

2

, S

i

))

f

assign S

i

to group 2;

S

2

= S

2

_ S

i

g

else

f

assign S

i

to group 1;

S

1

= S

1

_ S

i

g

g

g

After splitting the node, the signatures in the parent nodes of m

l

need to be adjusted.

During the modi�cation of the signatures, it may be necessary to continue splitting nodes

all the way up to the root.

The �rst step when deleting a data item is to search for it in the tree. When we �nd it

in a leaf node, we delete the corresponding tuple and readjust the signatures in all parent

nodes. For the costs D

RD

for a deletion this means (note that we do not restructure the

tree to guarantee a minimum number of entries in each node)

D

RD

� C

RD

=

+H(T ) + C

delete

(26)
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3.3 Extendible signature hashing

3.3.1 General description

Extendible hashing [FNPS79] is one of the several varieties of dynamic hashing, where

the size of the hash table varies during its lifetime. In extendible hashing a hash function

h(x) is chosen, that maps each element x into a domain of hash keys that is larger than

the range of the current hash table. The value of h(x) is represented as a binary word.

Let h

d

(x) be a pre�x of h(x) consisting of the �rst d bits of h(x).

An extendible hashing index is divided into two parts, the directory and the buckets.

A bucket contains tuples consisting of the hash key of the data item and an identi�er with

which to reach the data item. The directory begins with a header that holds the value

for the (global) depth d. The directory has 2

d

entries which are references to the buckets.

When looking up a data item in the directory, h

d

(x) is determined to �nd the reference to

the bucket where the item is to be found. The entries in the directory are not necessarily

distinct, so there may be more than one reference in the directory pointing to the same

bucket. The local depth d

0

of a bucket speci�es the length of the pre�x actually used in

this bucket, i.e. only the �rst d

0

bits of the hashkeys of all entries in this bucket must be

equal.

When an overow occurs in a bucket, this bucket needs to be split. The elements of

the overown bucket are divided into two buckets. d

0

has to be enlarged by one bit in

order to distinguish between these two buckets. If the local depth of a bucket is larger

than the global depth after a split has occurred, then the directory of the hash table has

to be doubled. The references in the directory to the buckets, that are not split, are

copied.

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

[sig(o  ), ref(o  )], ...

[sig(o  ), ref(o  )], ...

[sig(o  ), ref(o  )], ...

[sig(o  ), ref(o  )], ...

1 1

2 2

3 3

4 4

h  (x) = 002

h  (x) = 0103

h  (x) = 0113

h  (x) = 11

d = 3

d’ = 2

d’ = 3

d’ = 3

d’ = 1

Figure 6: Extendible signature hashing

We modify extendible hashing by using the signatures of the data items as hashkeys.

sig

d

(o

i

) denotes the �rst d bits of the signature sig(o

i

).
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h(o

i

) = sig(o

i

) (27)

h

d

(o

i

) = sig

d

(o

i

) (28)

Further, since we do not assume that the attribute's sets are unique, we must provide

overow buckets in case a page cannot be split since all objects have the same attribute

value or the same signature. An overow bucket is only used if all the signatures in

the bucket are equal an d, hence, further splitting is not possible. Overow buckets are

chained.

This modi�ed version of extendible hashing will be called extendible signature hashing.

Extendible signature hashing has two advantages. It is possible to map sets onto bitstrings

that can be used as hashkeys. But more importantly, we are able to support queries with

subset and superset predicates, whereas ordinary extendible hashing only supports queries

with equality predicates. The next paragraph shows, how subset and superset predicates

are handled.

Obviously,

s � t =) sig(s) � sig(t) =) sig

d

(s) � sig

d

(t) (29)

s � t =) sig(s) � sig(t) =) sig

d

(s) � sig

d

(t) (30)

So in order to �nd all sets which are subset (supersets) of the query set, we have to

�nd all data items whose signature has a pre�x which is a subset (superset) of the pre�x

of the query signature. We are able to generate all subsets (supersets) of the pre�x of

the query signature very quickly by using the technique of Vance and Maier [VM96] (see

section 2.4). All buckets which possibly contain qualifying signatures are searched. After

a quick pretest of the signatures the corresponding data items are fetched and checked.

For (29) and (30) we are able to argue, that if a pre�x of a signature s is no subset

(superset) of a pre�x of a signature t, then there is no possibility whatsoever that s is a

subset (superset) of t. Unfortunately, for queries with intersection predicates

jpre�x(sig(s)) \ pre�x(sig(t))j � k =) jsig(s) \ sig(t)j � k (31)

holds. The fact that a pre�x of signature s does not intersect with a pre�x of signature

t does not implicate that s does not intersect t. That means, we will not be able to support

queries containing intersection predicates with an extendible signature hashing index.

We take care not to access a multiply referenced bucket more than once. We applied

a sort-based duplication elimination algorithm to the retrieved set of bucket identi�ers.

3.3.2 Cost formulas

The size of an extendible signature hashing index S

ESH

in pages depends on the size of

the directory S

DIR

and the sum of the size S

BUCK

needed by the m buckets. We assume

that a bucket has exactly the size P of a page. (id is the size of a reference to a bucket

in the directory.)
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S

ESH

= S

DIR

+ S

BUCK

(32)

S

DIR

=

&

2

d

� id

P

'

pages (33)

S

BUCK

= m pages � 2

d

pages (34)

For the application of formula (34) the number of buckets has to be known, otherwise

a rough estimate is given. For uniform distribution of the hashing keys, a more accurate

formula for the average size of an extendible hashing index is given in [FNPS79]:

S

ESH

�

�

n � S

tuple

P

�

� log

2

e pages (35)

When evaluating a query with an equality predicate, there are very few page accesses

needed to fetch the searched data item. We need one page access to get the reference to

the right bucket from the directory and another page access to load the bucket into main

memory. All data items, whose signature satis�es the query, have to be retrieved. There

are c

r

right drops and c

f

false drops. C

fetch

is the number of page accesses needed to fetch

the data items, which are drops.

C

ESH

=

= 2 + C

fetch

(36)

When the parameters k and b for the signatures are optimized (see section 2.3.2),

the expected weight of a signature is

b

2

. Assuming that the set bits in a signature are

uniformly distributed among all b bits, the expected weight of a pre�x of length d of this

signature is

d

2

. Therefore the expected number of generated subsets or supersets for a

query with subsets or superset predicates is equal to 2

d

2

. That means we have to look at

2

d

2

entries in the directory. However, we do not always need to access 2

d

2

buckets, because

not all entries in the directory are distinct (remember the sharing of buckets). For the

number of page accesses for a query evaluation this means

C

ESH

�;�

� 2

d

d

2

e

� 2 + C

fetch

(37)

= 2

d

d

2

e+1

+ C

fetch

(38)

assuming C

fetch

page accesses are necessary to fetch the data items which are drops.

In order to insert a new data item o

n+1

, two page accesses to reach the correct bucket

and one access to write the tuple [sig(o

n+1

); ref(o

n+1

)] are needed.

I

ESH

= 3 (39)

If an overow occurs, the bucket has to be split. This increases the local depth of the

buckets. If the new local depth is larger then the global depth, the directory has to be

doubled. The last step taken is the readjustment of the references in the directories.
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Deleting an item is similar to inserting an item. First of all, the corresponding bucket

has to be found, then one writing access deletes the data item in the index. C

delete

is the

cost for deleting the item itself.

D

ESH

= 3 + C

delete

(40)

Two neighboring buckets, i.e. buckets which emerged from the same split operation,

may be merged, if the sum of their entries falls below a certain threshold. If all local

depths fall below the global depth, then the directory can be halved again. However, this

overhead is only justi�ed, if no new growth is expected to replace the deletions. We did

not implement the merging of buckets and the halving of the directory during deletion.

3.4 Recursive linear signature hashing

3.4.1 General description

Recursive linear hashing is another variant of dynamic hashing. It is typically assumed

that in extendible hashing the size of the hash table can grow quite large, because the

directory must be doubled every time the global depth is increased. For that reason linear

hashing, in which the directory grows linearly with the number of entries, was devised by

Litwin [Lit80].

Like an extendible hashing index, a linear hashing index is divided into two parts, the

directory and the buckets. At the start of the dth expansion, the directory references 2

d

buckets. If there is no space left in a bucket during insertion, the entry is placed into

an overow bucket connected to the original bucket. Whenever L insertions have taken

place, the directory is extended by adding an entry at the end of the directory at position

2

d

+ p, which references a new bucket. p is the position of the split pointer, which marks

the next bucket to be split. During a split operation all entries in the pth bucket are

divided among the pth and 2

d

+ pth bucket. After the split occurs, p is increased by 1. If

p is equal to 2

d

, i.e. the end of the current expansion has been reached, then d is increased

by 1 and p now points to the �rst bucket in the hash table again.

Recursive linear hashing is a variant of linear hashing that avoids the use of overow

buckets [RSD84]. All entries which cannot be placed in the appropriate buckets are hashed

into a second hash table (using the same hash function). As long as there is no space

left in the appropriate bucket on level l, the process of rehashing continues at a lower

level until a bucket with enough free space is found. Usually there are only two to three

levels of recursive hash tables storing overow entries. The directory of each recursive

hash table has its own depth d

l

and its own split pointer p

l

. For an example of recursive

linear hashing, see �gure 7.

We modify recursive linear hashing by using signatures as hashkeys, thus calling the

technique recursive linear signature hashing. We are able to support queries with subset

and superset predicates, by quickly generating all subsets and supersets (see section 2.4).

For the same reasons given in section 3.3 about extendible hashing (see (31)), we are

not able to support queries with intersection predicates with a recursive linear signature

hashing index.

To search for a data item, the following recursive algorithm is used. We begin to

search on the top level (l = 1, call search(1, sig(o

i

))). If we do not �nd the data item on
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directory

buckets
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directory

buckets
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directory
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d = 2

d = 3

p

p

p

Figure 7: recursive linear hashing

the current level, we continue searching on the next lower level. This continues until the

item has been found or we have reached the lowest level.

search(level, sig(o

i

))

f

if(sig

d

level

(o

i

) � p

level

)

f

entry no = sig

d

level

;

g

else

f

entry no = sig

d

level

+1

;

g

if(sig(o

i

) found in bucket referenced by dir

level

(entry no))

f

retrieve data item o

i

;

g

else

f

if(level � maxlevel)

f

data item not found;

g

else

f
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search(level + 1, sig(o

i

))

g

g

g

3.4.2 Cost formulas

Let n

l

be the number of references to data items inserted in the hash table on level l. The

total size of the recursive linear hashing index can be determined by adding the size of

the directories and buckets of all recursive hash tables together.

S

RLSH

=

maxlevel

X

l=1

(S

DIR

l

+ S

BUCK

l

) (41)

Let u

l

be the number of buckets on level l, d

l

the depth and p

l

the split pointer of

the directory on level l. L is the load factor, i.e. after L insertions in a hash table it is

expanded by enforcing the splitting of a bucket.

Then

u

l

=

�

n

l

L

�

(42)

d

l

= blog

2

(u

l

)c (43)

p

l

= u

l

mod d

l

(44)

Of all data items inserted on level l, r

l

data items are actually stored in the hash table

on level l. The remaining n

l

� r

l

data items are stored in tables on successive levels. The

value of n

l

can be calculated recursively by

n

l+1

= n

l

� r

l

(45)

Before inserting a data item into any hash table we try to insert it into the hash table

on the �rst level, so n

1

= n. For uniform distribution of the hashkeys Ramamohanarao

and Sacks-Davis present a formula in [RSD84] to approximate r

l

r

l

� 2 � p

l

� L

l

+ (2

d

l

� p

l

) �R

l

(46)

where L

l

is the estimated number of data items per bucket on the left side of the split

pointer p

i

on level l, and R

i

is the estimated number of data items per bucket on the right

side of the split pointer. For details on how to calculate L

l

and R

l

see the appendix.

Now we can calculate S

DIR

l

and S

BUCK

l

, assuming a bucket �ts on a page of size P .

S

DIR

l

=

&

(2

d

l

+ p

l

) � id

P

'

pages (47)

S

BUCK

l

= u

l

pages (48)

21



The retrieval costs in a recursive linear signature hashing index depend on the number

of recursive hash tables that are searched. We look at the evaluation of a query with an

equality predicate �rst.

Ramamohanarao and Sacks-Davis distinguish between two cases in their recursive

linear hashing [RSD84], the costs for a successful search, i.e. the data item is found, and

the costs for an unsuccessful search, i.e. the data item is not found. When the item

is found, the search ends immediately. This can be done, because Ramamohanarao and

Sacks-Davis assume data items with unique keys. We cannot abort the search prematurely,

when we �nd a data item, because our keys are not unique. There may be more than

one set containing exactly the same elements. This means, we have to search all recursive

hash tables.

On each level we need one page access to the directory and one page access to fetch

the corresponding bucket. The expected number of page accesses C

RLSH

=

for a query

evaluation with an equality predicate is equal to

C

RLSH

=

= 2 �maxlevel + C

fetch

(49)

Let us now look at the evaluation costs of a query with subset or superset predicates.

During the processing of the query all subsets or superset of the query set are generated

and looked up. As we have already determined in section 3.3, the expected number of

generated sets is equal to 2

d

2

. For the number of page accesses C

RLSH

�;�

this means

C

RLSH

�;�

�

 

maxlevel

X

l=1

2

d

d

l

2

e

� 2

!

+ C

fetch

(50)

=

 

maxlevel

X

l=1

2

d

d

l

2

e+1

!

+ C

fetch

(51)

When inserting an item, we have to �nd the correct bucket in which to insert. If

this bucket would overow, we have to �nd the correct bucket on the next lower level.

This may continue recursively until a bucket, which is not full, is found. We always

have to look at the hash table on the top level. Whether a recursive level is checked,

depends on the probability that the correct bucket on the next higher level is full. Let

Pr(bucket

li

= bucket

max

) denote the probability that the number of items bucket

li

in the

i-th bucket on level l is equal to the maximum number of items bucket

max

a bucket can

contain. When a free and correct bucket has been found, one additional writing access

for the insertion is needed.

I

RLSH

� 2 +

 

maxlevel

X

l=2

2 � (l + 1) � Pr(bucket

li

= bucket

max

)

!

+ 1 (52)

If the k � L-th insertion (with k = 1; 2; 3; : : :) takes place in a hash table, the bucket

referenced by the split pointer via the p � th entry in the directory must be split. All

items in the bucket are divided among the original bucket and the new appended bucket

using the following algorithm.
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for(all items o

i

in bucket referenced by p)

f

if(h

d

(o

i

) == h

d+1

(o

i

))

f

leave [sig(o

i

); ref(o

i

)] in p-th bucket;

g

else

f

move [sig(o

i

); ref(o

i

)] to 2

d

+ p-th bucket;

g

g

p++;

if(p == 2

d

)

f

d++;

p = 0;

g

After splitting a bucket all hash tables on lower levels than the current one have to be

searched for items which actually belong to the p-th or 2

d

+ p-th bucket on the current

level. Any items found in this way are reinserted into the index at the current level. The

number of levels may decrease after the restructuring of the index.

The �rst step taken when deleting an item is to �nd the item. When we �nd the right

bucket, the item has to be removed from the index. When deleting we can abort the

search when we have found the item, because the item can be uniquely identi�ed by its

reference ref(o

i

). The probability that o

i

is found on level l can be calculated as follows.

Pr(o

i

is on level l) =

n

l

n

(53)

Now we are able to determine an upper bound for the expected number of page accesses

needed to �nd o

i

. When found, one writing access to update the bucket is needed.

D

RLSH

�

 

maxlevel

X

l=1

2 � l �

n

l

n

!

+ 1 + C

delete

(54)

When expecting no growth, the index structures could be shrunk by reversing the

page splitting during deletion (if the number of entries fall below a certain threshold). To

avoid the additional complexity of this, we did not implement shrinking during deletion.

4 Comparison of index structures using cost models

In this section the di�erent index structures are compared using the cost models presented

in section 3. Mathematical modeling often simpli�es the modeled system. Therefore we

also compare the index structures by simulation (see section 6).

Each part of this section is dedicated to one criterion described in section 4.1. We

begin by comparing the required diskspace (many of the cost formulas for the other
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criteria depend on the diskspace costs). We then compare the query evaluation costs,

di�erentiating between the di�erent query types. We continue by taking a look at the

update costs and last but not least we inspect the creation costs.

4.1 Criteria for comparisons

In this section we outline how we compare the index structures. There are several impor-

tant criteria with which the e�ciency of an index structure may be speci�ed. The most

important one is the cost for the evaluation of a query. For the theoretical comparison we

express this cost in the number of page accesses, assuming that the needed CPU-time can

be neglected. Another important factor is the diskspace needed by an index structure. In

dynamic environments the costs to update an index structure are at least as important

as the query evaluation costs. An index does not come into existence spontaneously, so

the time needed to construct the index also �gures. Table 1 sums up the criteria used for

the comparisons.

criterion measured for/in

query evaluation time no of page accesses

diskspace no of pages

update insertion

deletion

creation no of page accesses

Table 1: Criteria for comparison of index structures

4.2 Diskspace

First of all we compare the index structures in regard to the required diskspace. We start

with the required diskspace, not because it is the most important criterion, but because

many other criteria can be expressed in terms of the diskspace. We consider each index

structure in turn, and end this section with a conclusion on the comparison.

In order to store tuples consisting of a signature and a reference to a data item, the

sequential signature �le index has the lowest demand for diskspace. This is not surprising,

because it stores the tuples with no further information in one large �le not organizing

them in any way. For this reason we use the sequential signature �le index as a reference

to which all other index structures are compared to.

As already mentioned (in formula (13)) the storage costs for a sequential signature �le

index can be calculated as follows.

S

SSF

=

�

n � S

tuple

P

�

pages �

n � S

tuple

P

pages (55)

The diskspace required by a Russian doll tree (see (19)), can be approximated further

assuming a large number of entries on a page. For the Russian doll tree we also assume a
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storage utilization of 64%, which is typical for an R-tree with uniform distribution an of

keys and a linear split algorithm [BKSS90]. So � is equal to 0.64 in our case.
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Assuming the approximation (35) given [FNPS79], the storage cost for a extendible

signature hashing index can be expresses as follows.
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Figure 8: Query evaluation costs for di�erent space utilizations

A high space utilization (i.e. a high load factor) leads to small index structures for

the recursive linear signature hashing index, so usually a space utilization of 80% to 90%

is chosen [RSD84]. A higher space utilization also means more items overowing into

recursive hash tables. This results in higher query evaluation costs. The e�ect of hitting

overow pages multiplies for queries with subset/superset predicates, because many dif-

ferent buckets are accessed during a query evaluation. The space utilization should not

be too low, though, because there is another e�ect for subset/superset predicates. The

lower the space utilization, the more splits occur, which leads to a larger depth of the hash

table on the top level. A larger depth means that for queries containing subset/superset
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predicates, more sets have to be generated and therefore more pages have to be accessed.

We achieved the best results for a space utilization of 60% (see �gure 8).
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We can now approximate the required diskspace for the recursive linear signature

hashing index (see (41)) in terms of the sequential signature �le index.
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When assuming a page size of 4096 bytes and the size of a reference id of 8 bytes, we

can reference up to 512 buckets with one page of the directory. So the number of buckets

determines the size of the index structure, the number of directory pages plays only a

minor role.
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Ramamohanarao and Sacks-Davis show that there are at most two to three recursive

hash tables, which are very small compared to the hash table on the top level. So almost

all data items can be inserted into the hash table they are intended to be inserted, i.e.
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tuple
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� 1:67 � S
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The results of this section concerning the diskspace required by the di�erent index

structures are summed up in table

4.3 Query evaluation costs

We look at queries with equality, subset, superset, and intersection predicates (in this

order). For the theoretical calculations we assume that the time used up for page accesses

is larger by several orders of magnitude than the time needed on the CPU. Therefore, we

neglect the CPU costs and concentrate on the number of page accesses.

26



index structure relative size

sequential signature �le 1

Russian doll tree 1.56

extendible signature hashing 1.44

recursive linear signature hashing 1.67

Table 2: Relative (theoretical) sizes of index structures

4.3.1 Equality predicates:

It is straightforward to compute the costs for a query evaluation employing the sequential

signature �le index structure. The signature �le has to be traversed fully and each data

item, whose signature quali�es, is fetched from disk. So the costs for a query evaluation

are (see 14):
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= S
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+ C

fetch

(71)

The query evaluation costs for the Russian doll tree were calculated as follows (see

22):
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When evaluating a query in a typical R-tree, approximately 10% of all pages in the

tree are touched [Gut84]. So the cost C

RD

=

can be estimated by

C

RD

=

�

1
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� S
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fetch

(73)
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(74)

� 0:156 � S

SSF

+ C

fetch

(75)

A Russian doll tree is expected to be about 6 to 7 times faster than a sequential

signature �le when evaluating a query with equality predicates.

The extendible signature hashing index needs only 2 page accesses to �nd the bucket

in which qualifying signatures may be found (see 36)

C

ESH

=

= 2 + C

fetch

(76)

For large databases the size S

SSF

of a sequential signature �le is equal to several

hundred pages, so the query evaluations costs for the sequential signature �le and the

Russian doll tree are no match for the two page accesses of the extendible signature

hashing index.

27



The costs for the recursive linear signature hashing index depend on the number of

recursive hash tables that exist (see 49)
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=

= 2 �maxlevel + C

fetch

(77)

As long as the number of recursive hash tables can be held low, the recursive linear

signature hashing index is still fast compared to a sequential signature �le of a Russian

doll tree. It cannot match the speed of extendible signature hashing, though.

4.3.2 Subset and superset predicates:

Query evaluation for queries with subset or superset predicates is very similar, so we

present them in one section.

The query evaluation costs for the sequential signature �le does not depend on the

query type. For all query types it is
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fetch
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For a Russian doll tree the query evaluation costs for queries with subset predicates

are almost identical to the query evaluation costs for queries with equality predicates. In

a leaf node the signatures are now checked for the subset property instead of equality

(which does not reduce the number of touched pages). The number of false drops may

also vary, because of the di�erent false drop probabilities.
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Again we expect the Russian doll tree to 6 to 7 times faster than the sequential

signature �le index. A Russian doll tree should not be used to support queries with

superset predicates (see section 3.2), so we do not have a cost formula for this query type.

The query evaluation costs for an extendible signature hashing index depend on the

depth d of the hash table (see 38).
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We can estimate d by using the formulas for the size of an extendible signature hash

table (see (34) and (61)).
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The size S

SSF

of the corresponding sequential signature �le, the size P of a page, and

the size id of a reference are constant, so d is a function of m, the number of buckets in

the hash table. The value of m has to be between the lowest possible number of buckets

in which to �t the information and the highest possible number of buckets the directory

can support, so

n � S

tuple

P

� m � 2

d

(87)

m = 2

d

is the best case, because in this case all keys are spread (uniformly) across all

buckets and an overow will be unlikely. m =

n�S

tuple

P

is the worst case, because all keys

are cramped into the lowest possible number of buckets, which means that the data is

heavily skewed. Let us now look at the worst and best case.
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The page size P is equal to 4096 bytes and the size id of a reference is equal to 8 bytes

in our case. Therefore
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For the query evaluation costs we get
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For the best case on the other hand we get (starting with (84))
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For a page size P of 4096 bytes and a size of id = 8 bytes for references, we can

estimate d
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.
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We can now approximate the query evaluation costs for the best case.
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When the sequential signature �le reaches a size of about 1000 pages the trade-even

point for the worst case of the extendible signature hashing is reached. For the best case

this point is already reached for a size of about 6 pages. For the Russian doll tree the trade

even point is reached much later, at a size of the tree of about 65.000 pages and and a

size of 360 pages respectively. Based on the observations made during the simulation (see

section 6.2) we can assure, however, that the extendible signature hashing index performs

very close to the best case

For the recursive linear signature hashing index we also analyze the worst and best

case behavior. We start with the worst case, which happens when we always insert into

exactly one bucket on each level, which then overows into exactly one bucket on the next

level. That means, we only have one bucket on each level containing signatures, all other

buckets are empty. During query evaluation we have to look at one bucket on each level.

The maximum number of levels in the worst case is
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So for the query evaluation costs we get
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In the best case all data items are inserted into the topmost level and stay there, i.e.

the recursive hash tables are very small or nonexistent. So:
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The depth d

1

of the hash table on the topmost level depends on the number of buckets
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on the �rst level.

d

1

= log

2

(u

1

) (110)

u

1

= log

2

(

n

1

L

) (111)

30



We assume that all items are inserted into the hash table on the �rst level, so n
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= n
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We remember that L was the load factor (see 62), i.e. how much signature and

reference tuples �t on one page. We assumed a storage utilization of 60%, so

C

RLSH

�;�best

�

v

u

u

t

n

0:6�P

S

tuple

� 2 + C

fetch

(114)

�

q

1:56 � S

SSF

� 2 + C

fetch

(115)

� 2:5 �

q

S

SSF

+ C

fetch

(116)

The worst case query evaluation costs for the recursive linear signature hashing are

about 3 times higher than the query evaluation costs for a sequential signature �le. The

di�erences between the query evaluation costs for an extendible signature hashing index

and a recursive linear signature hashing index are very small (about 5%) for the best

case. Unlike the extendible signature hashing index the recursive linear signature hashing

index does not always show near optimal behavior (see measurements with skewed data

in section 6.2).

4.3.3 Intersection predicates

In this section we look at the evaluation costs of queries containing intersection predi-

cates. Both of the hashing index structures are not suitable for supporting queries with

intersection predicates (see section 3.3 and 3.4). Therefore we only discuss the sequential

signature �le and the Russian doll tree.

For the sequential signature �le nothing changes compared to the equality, subset, and

superset predicates. The query evaluation costs are still
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SSF

+ C

fetch

(117)

Theoretically the query evaluation costs for the Russian doll tree should also be in-

dependent of the query type. This is not quite true, however, because the false drop

probabilities for intersection predicates are much higher than the false drop probabilities

for the other predicate types. When keeping the same signature size as for equality, sub-

set, and superset predicates, more (false drop) signatures qualify. When increasing the

size of the signatures to lower the number of false drops, the tree becomes larger. Either

way results in a higher number of page accesses during a query evaluation. So we can

only give a lower bound for the query evaluation costs for intersection predicates.
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4.3.4 Summary

Table 3 gives an overview for the expected query evaluation costs for the di�erent index

structures. C

fetch

are the costs to fetch the actual data items.

index structure query type

equality pred. sub-/superset pred. intersection pred.

seq. sig. �le S

SSF

+ C

fetch

S

SSF

+ C

fetch

S

SSF

+C

fetch

Russian doll tree 0:156 � S

SSF

+ C

fetch

0:156 � S

SSF

+ C

fetch

/ - � 0:156 � S

SSF

+ C

fetch

ext. sig. hashing 2 + C

fetch

best: 2:38 �

p

S

SSF

+ C

fetch

-

worst: 32 �

p

S

SSF

+ C

fetch

rec. lin. sig. hashing 2 �maxlevel + C

fetch

best: 2:5 �

p

S

SSF

+ C

fetch

-

worst: 3:12 � S

SSF

+ C

fetch

Table 3: Expected query evaluation costs

4.4 Update costs

In this section we examine the costs for updates. We distinguish between insertions and

deletions of data items in the index. Updates that change a data item can be emulated

by a deletion of the original data item and an insertion of the changed data item.

4.4.1 Insertion costs

The insertion costs for the sequential signature �le are straightforward. We have to read

the last page of the index, insert the new item there and write the page back. So

I

SSF

= 2 (119)

In a Russian doll tree, all references to the data items are stored in the leaf nodes. If

we assume a storage utilization of 64%, then we can calculate the number node

leaf

of leaf

nodes.
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tuple
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The fanout of the inner nodes, i.e. the number of nodes that are referenced by the

inner nodes node

fanout

is approximately equal to

node

fanout

�

$

0:64 � P

S

tuple

%

(121)

A Russian doll tree has minimal height, when all items are distributed evenly in the

tree. A lower bound for the height H(T ) of a Russian doll tree is given by
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H(T ) � log

node

fanout

(node

leaf

) (122)

When inserting an item, we have to �nd the correct leaf node checking H(T ) nodes on

the way down. After inserting the item we have to go back up and adjust the signature

in the parent nodes. The total insertion costs are therefore

I

RDT

� 2 � log

node

fanout

(node

leaf

) (123)

The extendible signature hashing index structure needs to reading accesses to �nd the

right bucket and one writing access to insert the item into the bucket. So the total page

accesses are

I

ESH

= 3 (124)

For the recursive linear signature hashing index we assume that almost all of the data

items are inserted into the topmost hash table, i.e. the probability that an item is inserted

into one of the lower recursive hash tables is near zero.
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+ 1 (125)

� 3 (126)

The sequential signature �le, the extendible signature hashing index, and the recursive

linear signature hashing index have constant time for insertion, while the insertion costs

for the Russian doll tree depend on the height of the tree. The sequential signature �le

has the lowest insertion costs, followed closely by the hashing index structures. We expect

the Russian doll tree to have the highest insertion costs. Table 4 sums up the insertion

costs.

index structure page accesses

sequential signature �le 2

Russian doll tree 2 �H(T )

extendible signature hashing 3

recursive linear signature hashing 3

Table 4: Insertion costs of index structures

4.4.2 Deletion costs

When deleting a data item, we have to search the index structure for a certain signature

and identi�er. When we �nd a signature equal to the query signature, we have to compare
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the identi�ers to check, if we have found the data item that is to be deleted. On �nding

the data item we have to delete the item and readjust the index structure.

The average costs for deleting an item from a sequential signature �le are

D

SSF

=

1

2

� S

SSF

+ 1 + C

delete

(127)

When searching for an item in a Russian doll tree index about 10% of the pages have

to be touched. When the data item has been found and deleted all pages on the path to

the root have to be modi�ed. The height H(T ) of the tree can be estimated by (122).
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(128)

The extendible signature hashing index needs to read two pages to reach the correct

bucket and write one back to modify the index.
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= 3 + C

delete

(129)

For the recursive linear signature hashing index we assume that almost all deletions

take place in the topmost hash table and that the modi�cation of recursive hash tables is

rare.
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(130)

� 3 + C
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(131)

We expect the two hashing index structures to have the fastest deletion operations.

Comparing the deletion costs for the sequential signature �le and the Russian doll tree

we arrive at the following conclusion.
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The deletion costs speak in favor of the Russian doll tree. The larger S

SSF

becomes,

the larger the di�erence will become in (133) between the deletion costs for the sequential

signature �le and the Russian doll tree. Table 5 sums up the results for the deletion costs.

4.5 Creation costs

The cost model for the creation costs is kept very simple. When inserting n data items,

we assume that n insertion operations take place. So the creation costs for each index

structure are the costs for one insertion times n.
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index structure page accesses

sequential signature �le

1

2

� S

SSF

+ 1 + C

delete

Russian doll tree 0:156 � S

SSF

+H(T ) + C

delete

extendible signature hashing 3 + C

delete

recursive linear signature hashing 3 + C

delete

Table 5: Deletion costs of index structures

B

SSF

= I

SSF

� n = 2 � n (134)

B

RDT

= I

RDT

� n � 2 �H(T ) � n (135)

B

ESH

= I

ESH

� n = 3 � n (136)

B

RLSH

= I

RLSH

� n � 3 � n (137)

Table 6 sums up the results of the costs for creating each index structure.

index structure page accesses

sequential signature �le 2 � n

Russian doll tree 2 �H(T ) � n

extendible signature hashing 3 � n

recursive linear signature hashing 3 � n

Table 6: Insertion costs of index structures

5 Description of the simulation environment

We mainly compare the di�erent index structures by means of a simulation. In this

section we describe the environment in which the simulation takes place. The environment

includes the description of the used hardware, software, etc.. The parameters for the

generation of the test databases are also discussed. Then we explain how the simulation

was run, i.e. how the queries were generated and the measured data was obtained.

5.1 The environment of the simulation

5.1.1 Employed hard- and software

The benchmark runs were conducted on a lightly loaded Sparc20 with 128 MByte main

memory running under Solaris 2.5.1. The algorithms were not parallelized in any way.

The total disk space amounted to 10 GByte. All index structures were set atop the

EOS storage manager, release 2.2, using the C++ interface of the manager [BP94]. We

took advantage of plain pages (with a size of 4K), thereby improving the performance of
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the index structures. We implemented the data structures and algorithms of the index

structures in C++ using the GNU C++ Compiler Version 2.7.2 We allowed no bu�er-

ing/caching of any sort, i.e. each benchmark was run under cold start conditions. We

kept the storage manager from bu�ering pages read from disk by running the queries

locally in the single-user mode of EOS (no client/server mode) and terminating all EOS

processes after the processing of a query was done. For the next query EOS was restarted

from scratch. We prevented the operating system from bu�ering by using RawIO instead

of the UNIX �le system. Last, but not least, we cleared the internal disk cache of relevant

pages by transferring 2 MBytes of data in between the queries.

5.1.2 Generating the databases

Unfortunately, we had no real data available for our simulation. That means, we had to

generate databases containing data items with set-valued attributes. We varied the size

of the database (in number of data items contained), the size of the individual sets (in

number of items contained), and the size of the domain of the sets. For a summary see

table 7. Each data item was stored on a separate page to eliminate any e�ects on the

measured data caused by clustering.

parameter min value max value

size of database 1000 50000

size of sets 10 80

size of domain 100 1000000

Table 7: Parameters for generation of database

The data items in the databases were generated randomly. We used two di�erent

distributions. One was an uniform distribution, which models 1:n relationships between

unique data items, like parent-child relationships or owning relationships. The other

distribution we used was Zipf, which is useful when dealing with non-unique objects, like

words or numbers in documents. Figure 9 demonstrates the di�erences in the probability

that an element of the domain is chosen for a particular set between uniform and Zip�an

distribution. One domain includes elements numbered from 0 to 100, the other elements

numbered from 0 to 1000. (Uniform distribution is a special case of the Zip�an distribution

with z = 0.) The probability for uniform distribution in the diagram on the right hand

side has the value 0.0001 for all elements of the domain.

5.1.3 Generating the queries

The queries for the benchmarks runs were also generated randomly. We varied the size

of the query sets, the size of the domains of the query sets, and the type of queries. For

a summary see table 8.
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Figure 9: Uniform vs. Zip�an distribution

parameter min value max value

size of query set 10 80

size of domain of query set 100 1000000

query type =;�;�;\

Table 8: Parameters for generation of queries

5.2 Criteria for comparisons

In the last section we de�ned the environment in which the index structures are compared.

In this section we briey review the criteria for comparisons. We already mentioned several

criteria in section 4.1 for the theoretical analysis. For the comparison by simulation we

expand those criteria, i.e. we not only look at the number of page accesses, but also

examine the total elapsed time for each criterion. Table 9 sums up the criteria used for

the comparisons by simulation.

We have not considered the main memory requirements of each index structure, be-

cause we did not bu�er any pages in main memory. That means for each page access we

had to fetch the page from disk.

6 Comparison of index structures by simulation

In this section the di�erent index structures are compared by benchmarks. Each part of

this section is dedicated to one criterion listed in table 9. We use the same order as in

section 4, so we begin by comparing the required diskspace. We then compare the query

evaluation costs, di�erentiating between the di�erent query types. We continue by taking

a look at the update costs and last but not least we inspect the creation costs.
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criterion measured for/in

query evaluation time total time

no of page accesses

diskspace no of pages

update insertion

deletion

creation total time

Table 9: Criteria for comparison of index structures

6.1 Diskspace

In this section the results of our simulation are depicted. We vary the parameters database

size, set size, and domain size as shown in table 7.

6.1.1 Size of database:
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Figure 10: Uniform vs. Zip�an distribution (varying database size)

As can be clearly seen in �gure 10 the required diskspace grows linearly with the

size of the database for all index structures. The left hand side of �gure 10 displays the

diskspace that was allocated for uniformly distributed data. The data in many databases

is not uniformly distributed, however. For that reason we introduce skew in the form of

a Zip�an distribution (see table 9) to see what happens. The right hand side of �gure 10

shows the required diskspace for skewed data.

The skew has no inuence on the diskspace required for the sequential signature �le

index, which is not surprising. In the sequential signature �le index all signatures and

references to data items are stored \as is" and are not organized in any way, i.e. they are

stored sequentially in one large �le. As long as we do not change the parameters a�ecting

the size of the signatures (or references) no e�ect will be seen.
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The Russian doll tree also has no problems coping with skewed data. We noted a very

small decrease (3% at most) in the allocated diskspace. We do not know the reason for

this slight decrease yet.
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Figure 11: Depth of hashing index structures (varying database size)

For the same number of data items the directory of the extendible signature hashing

index is two to four times larger when using skewed data (see left hand side of �gure 11).

On the other side, many entries in the directory are either empty, i.e. not referencing any

bucket, or sharing the same bucket. So, although the size of the directory increases, the

number of buckets in the index structure stays roughly the same.

0

5

10

15

20

25

30

35

40

45

50

55

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

nu
m

be
r 

of
 r

ec
ur

si
ve

 le
ve

ls
 in

 r
ls

h

no of sets

sig size = 64 bit, page size = 4096 bytes, reference size = 64 bit, domain 0..10000, uniform distribution

rlsh, uniform
rlsh, Zipf

Figure 12: Recursive levels for rec. lin. sig. hashing (varying database size)

Skewed data has the greatest impact on the recursive linear signature hashing index.

Unlike the extendible signature hashing index the higher rate of directory splitting is

suppressed (see right hand side of �gure 11). This, however, comes at a price. The
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number of buckets overowing in not smaller than in extendible hashing. All data items

from overowing buckets are reinserted into a recursive hash table at a lower level. This

leads to a large number of recursive hash tables (see �gure 12), which is unacceptable

for an index structure using hashing. As described in section 3.4 we have to traverse all

recursive hash tables during a query evaluation. The unpalatable consequences on the

query costs can be seen in section 6.2.

6.1.2 Size of data items:
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Figure 13: Uniform vs. Zip�an distribution (varying set size)

When we varied the size of the sets, we also modi�ed the size of the signatures in order

to achieve the same false drop probability for all cases. The left hand side of �gure 13

shows the required diskspace for uniform distribution of the data. The diskspace grows

linearly with the size of the data sets (and signatures) for all index structures. The results

are similar to those for the variation of the database size. The sequential signature �le

requires the least diskspace of all index structures, while the recursive linear signature

hashing has the highest overhead.

On the right hand side of �gure 13 the results for skewed data are depicted. The

sequential signature �le is not inuenced in any way by the skew. Strangely the Russian

doll tree seems to be inuenced positively by the skew, needing up to 7% less diskspace.

The directory of the extendible signature hashing index is enlarged by a factor of 2 to

4 again, resulting in a lower storage utilization. The recursive linear hashing index has

the most severe problems when dealing with skewed data. This becomes apparent, when

looking at the number of recursive hash tables 14.

6.1.3 Size of domain:

The domain size does not have any inuence on the size of the sequential signature �le

index structure (see left hand side of �gure 15). The size of the domain also seems not to

have an e�ect on the Russian doll tree for uniformly distributed data. However, it does
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Figure 14: Recursive levels for rec. lin. sig. hashing (varying set size)
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Figure 15: Uniform vs. Zip�an distribution (varying domain size)

have an inuence on the hashing index structures. The smaller the domain, the smaller

the range becomes from which the elements of the sets are picked. The probability to

generate similar or even identical signatures for data items increases when the variety of

values in those sets decreases. The buckets will not be �lled as evenly as with a large

domain, so the buckets will overow faster. This leads to an expansion of the hash table

in the case of extendible signature hashing (see left hand side of �gure 16) and an increase

in the number of recursive hash tables in the case of recursive linear signature hashing

(see �gure 17), respectively.

The right hand side of �gure 15 shows the inuence of skewed data on the index

structures. As in all previous benchmarks skewed data has no inuence on the sequential

signature �le index. The evaluation of the behavior of the Russian doll tree index is

the most di�cult of all index structures and we do not have an explanation yet for the
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Figure 16: Depth of hashing index structures (varying domain size)

Russian doll tree with skewed data. The e�ect of the varying domain size that could be

observed for uniformly distributed data is ampli�ed for skewed data. When using skewed

data, the choice on which elements to include in a set is even more restricted, because

few elements of domains are picked very often. The extendible signature hashing index

expands its directory (see �gure 16), while the recursive linear signature hashing index

structure increases the number of recursive hash tables dramatically (see �gure 17).
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Figure 17: Recursive levels for rec. lin. sig. hashing (varying domain size)

6.1.4 Summary

The results of the previous sections concerning the diskspace required by the di�erent

index structures can be recapitulated in a few points. The sequential signature �le index

has the lowest diskspace requirements of all index structures and is not a�ected by skewed

42



data. There is no clear winner, when comparing the Russian doll tree with extendible

signature hashing, although the extendible signature hashing is at a disadvantage with

skewed data. The recursive linear signature hashing index demands the most diskspace of

all index structures and the size of the diskspace increases noticeably with skewed data.

In table 10 the results of the previous sections are summarized.

index structure relative size

unif. dist. Zipf dist.

sequential signature �le 1 1

Russian doll tree 1.54 1.51

extendible signature hashing 1.58 1.62

recursive linear signature hashing 1.99 2.11

Table 10: Relative (measured) sizes of index structures

6.2 Query evaluation costs

In this section we present the results of our benchmarks for the query evaluation costs.

We examine the di�erent query types, the parameters database size, set size, and domain

size, and the inuence of skewed data on the costs. At the end of the section the results

for the query evaluation costs are briey summarized.

6.2.1 Equality predicates

In this section we investigate the query evaluation costs for queries with equality predi-

cates. We distinguish between the variation of the database size, the variation of the set

size, and the variation of the domain size.

Size of database: Figure 18 shows the query evaluation costs for uniformly distributed

data. The left hand side of �gure 18 depicts the total running time of the query evaluation,

while the right hand side presents the costs in terms of page accesses.

As expected the sequential signature �le index has the highest evaluation costs, because

it has to traversed the entire signature �le to �nd the qualifying data items. The costs

grow linearly with the size of the database (as the size of S

SSF

of the sequential signature

�le grows linearly with the database size). The Russian doll tree is several times faster

than the sequential signature �le (1.5 times for 1000 data items, 10 times for 50,000 data

items). The costs for the Russian doll tree seem to grow logarithmically. Extendible

signature hashing and recursive linear signature hashing are by far the two fastest index

structures. In order to evaluate a query with equality predicates, the extendible hashing

index and the recursive linear signature hashing index merely need two page accesses per

query.

We also examine the inuence of skewed data on the index structures (see �gure 19).

The performance of the sequential signature �le is independent of the distribution of the

data. The Russian doll tree and the extendible signature hashing index also do not seem
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Figure 18: Query eval. costs (equality pred., uniform dist., varying database size)
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Figure 19: Query eval. costs (equality pred., Zip�an dist., varying database size)

to be inuenced in terms of the query costs when confronted with skewed data. In the

case of the recursive linear signature hashing index matters look bleak. It su�ers heavy

performance losses, due to the large number of recursive hash tables which have to be

searched. For databases containing more than 30,000 data items it is inferior to the tree

index, which is very disappointing for a hashing index.

Size of data items: Figure 20 shows the query evaluation costs for uniformly dis-

tributed data when the size of the data items is varied. On the left hand side we have the

total elapsed time, on the right hand side the total number of page accesses.

The size of a sequential signature �le index depends directly on the size of the signa-

tures in it. When increasing the size of the sets of the data items (thereby increasing the

size of the signatures to hold the false drop probability on the same level), the size of the
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Figure 20: Query eval. costs (equality pred., uniform dist., varying set size)

index also increases leading to higher query costs. The remarkable bend for the query

evaluation costs of the Russian doll tree can be explained by the height of the tree. Up

to a size of 40 elements per set, the tree has a height of two. For 50 or more elements

per set, however, the tree has a height of three. For the hashing index structures larger

data items lead to larger index structures (see section 6.1.2 on diskspace), but have no

inuence on the query evaluation costs. Every data item can still be reached with two

page accesses.
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Figure 21: Query eval. costs (equality pred., Zip�an dist., varying set size)

Figure 21 exhibits the role of skewed data. As always the sequential signature �le is

not inuenced by skewed data. The Russian doll tree loses some performance compared to

uniformly distributed data. The size of the extendible signature hashing index increases

even more for skewed data, but this has no inuence on the query evaluation costs. The

recursive linear signature hashing index performs poorly for skewed data, because of the
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large number of recursive hash tables.
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Figure 22: Query eval. costs (equality pred., uniform dist., varying domain size)

Size of domain: Figure 22 describes the query evaluation costs (total time and number

of page accesses) for varying domain sizes. As can be clearly seen the sequential signature

�le index is not a�ected by the variation of the domain size. The Russian doll tree has

slightly higher query evaluation costs for small domains, although we do not know the

reason yet. The query evaluation costs for the extendible signature hashing index are not

inuenced by small domains, the required diskspace increases, however (see section 6.1.3).

The growing diskspace for the recursive linear signature hashing index comes along with

an increase of recursive hash tables which in turn leads to higher query evaluation costs.
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Figure 23: Query eval. costs (equality pred., Zip�an dist., varying domain size)

The skewed data apparently has no inuence on the query evaluation costs for the

sequential signature �le and the extendible signature hashing index (see �gure 23). The
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e�ect on the Russian doll tree and the recursive linear signature hashing index is ampli�ed

by the skewed data. Only few elements appear often in sets when generating sets con-

taining skewed data, which has almost the same e�ect as decreasing the size of a domain

for sets with uniformly distributed data.

6.2.2 Subset and superset predicates

This section covers the query evaluation costs for queries with subset and superset pred-

icates. We deal with both predicates in one section because of the similarity. The results

for subset and superset predicates do not di�er noticeably. The only exception to this is

the Russian doll tree, which does not support superset predicates. So there are no results

for superset predicates for the tree index.
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Figure 24: Query eval. costs (subset pred., uniform dist., varying database size)

Size of database: Figure 24 shows the query evaluation costs for uniformly distributed

data. The left hand side presents the total running time, the right hand side the number

of page accesses.

The query evaluation costs for the sequential signature �le and the Russian doll tree for

queries with subset/superset predicates do not di�er from those for queries with equality

predicates. This is not surprising, because very similar algorithms are used. The evalua-

tion costs for the hashing index structures are not comparable to those for queries with

equality predicates. Reaching a data item with just two page accesses cannot be guaran-

teed anymore, because several queries searching for each superset/subset of the query set

are processed. The extendible signature hashing index can keep up with the Russian doll

tree, whereas the recursive linear signature hashing index falls behind.

The inuence of skewed data is depicted in �gure 25 (total elapsed time on left hand

side, number of page accesses on right hand side). The sequential signature �le index has

no problems coping with skewed data, there is no di�erence in the query evaluation costs

compared to uniformly distributed data. The query evaluation costs of the extendible

signature hashing index and the Russian doll tree increase by a small amount. The larger
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Figure 25: Query eval. costs (subset pred., Zip�an dist., varying database size)

directory in the extendible signature hashing index results in a larger depth and therefore

in the generation of more subsets during the query evaluation in the case of skewed data.

The Zip�an distributed data slows down the recursive linear signature hashing index even

more. Each generated subquery has to go through all recursive hash tables, which leads

to a terrible performance in this case.
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Figure 26: Query eval. costs (subset pred., uniform dist., varying set size)

Size of data items: Figure 26 shows the results for queries with subset predicates with

uniformly distributed data when varying the size of the data items' sets. The query evalu-

ation costs for a sequential signature �le index grow proportionally to the index size, which

depends on three parameters. One of these parameters is the size of a signature/reference

tuple S

tuple

. We increase the size of the signatures for larger sets to keep the false drop
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probability stable. The hashing index structures de�nitely do not have an advantage over

the Russian doll tree for subset queries. The multiple subqueries that have to be started

for each query become noticeable in the query evaluation costs. The distinctive rise in

the costs when increasing the set size from 40 elements to 50 elements per set stems from

signi�cant changes taking place in the index structures. The height of the Russian doll

tree increases by one layer, the depth (the number of signi�cant bits) of the extendible

signature increases from 7 to 8 bits and the recursive linear signature hashing index gains

a recursive level.
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Figure 27: Query eval. costs (subset pred., Zip�an dist., varying set size)

The results for skewed data are presented in �gure 27. The sequential signature �le

is not inuenced by skewed data at all. The Russian doll tree loses some performance

for larger sets, whereas the extendible signature hashing index is not inuenced greatly.

The recursive linear signature index has to contend with the problem of a rapidly growing

number of recursive levels for skewed data. This manifests itself in heavy performance

losses.

Size of domain: In �gure 28 we have the results for the query evaluation costs for

varying domain sizes. The e�ects on the index structures are similar to the e�ects observed

for queries with equality predicates. We note no change in behavior for the sequential

signature �le and the extendible signature hashing index structure. The evaluation costs

for the Russian doll tree and the recursive linear signature hashing index increase for

small domains.

As already mentioned in section 6.2.1 on the costs for queries with equality predicates

skewed data narrows the range from which elements are chosen during the generation of

the data items' sets. The e�ects of small domains on the index structures are intensi�ed

by skewed data in this way.
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Figure 28: Query eval. costs (subset pred., uniform dist., varying domain size)
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Figure 29: Query eval. costs (subset pred., Zip�an dist., varying domain size)

6.2.3 Intersection predicates

In this section we look at the query evaluation costs for queries with intersection predi-

cates. Like the previous sections on equality and sub/superset predicates, we subdivide

this section into paragraphs about the e�ects of varying the database size, the set size,

and the domain size. We examine the sequential signature �le and the Russian doll tree,

as these are the only two index structures capable of supporting queries with intersection

predicates.

Size of database: In �gure 30 the query evaluation costs for queries with intersection

predicates can be seen. The sequential signature �le shows the usual performance, i.e.

the query evaluation costs are exactly the same as for all other predicates. It is unusual,

however, that the performance of the Russian doll tree is worse than that of the sequential
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Figure 30: Query eval. costs (intersec. pred., uniform dist., varying database size)

signature �le. The Russian doll tree has severe disadvantages when dealing with inter-

section predicates. For the processing of queries with equality and subset predicates the

Russian doll tree accesses at most one sixth of all pages in the tree. When processing a

query with an intersection predicate this changes drastically, as virtually the entire tree

is traversed (compare to section 6.1 on diskspace). This is not entirely the fault of the

Russian doll tree, though. When using signatures for evaluating intersection predicates,

this leads to a much higher false drop probability than for equality of subset predicates.

The query evaluation costs cannot be improved by increasing the size of the signatures

to lower the false drop probability. The relative performance of the Russian doll tree

becomes better for larger signatures when compared to the sequential signature �le. The

absolute performance, however, becomes worse, because of the increased size of the index

structure (see �gure 32).
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Figure 31: Query eval. costs (intersec. pred., Zip�an dist., varying database size)
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Figure 31 depicts the measured results for skewed data. No changes can be reported

for the sequential signature �le. The performance of the Russian doll tree for skewed data

is superior to that for uniformly distributed data, although it is not signi�cantly better

than the performance of the sequential signature �le.
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Figure 32: Query eval. costs (intersec. pred., Zip�an dist., varying database size, large

signatures)
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Figure 33: Query eval. costs (intersec. pred., uniform dist., varying set size)

Size of data items: Figure 33 shows the e�ects of varying set sizes (and varying

signature sizes) on the index structures. As for equality and sub/superset predicates

the query evaluation costs for the sequential signature �le rise linearly with the increased

set size. As already mentioned the Russian doll tree accesses almost all its pages when

evaluating a query with an intersection predicate. Increasing the size of the sets and
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therefore the size of the signatures enlarges the Russian doll tree, which directly inuences

the query evaluation costs.
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Figure 34: Query eval. costs (intersec. pred., Zip�an dist., varying set size)

We illustrated the results for skewed data in �gurequeryintersectzipfset. This time

both index structures, the sequential signature �le and the Russian doll tree, are not

inuenced by the skewed data.
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Figure 35: Query eval. costs (intersec. pred., uniform dist., varying domain size)

Size of domain: In �gure 35 and 36 the remaining set of measurements for the query

evaluation costs for queries with intersection predicates, varying the domain sizes, are

shown. The interpretation of these curves is straightforward. Neither the variation of the

domain size nor the skewing of the data has any e�ect on the performance of the index

structures. All query evaluation costs are constant for this case.
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Figure 36: Query eval. costs (intersec. pred., Zip�an dist., varying domain size)

6.2.4 Summary

In this section we give a short summary on the performance of the di�erent index struc-

tures. For the support of queries with equality predicates there is one index structure

which is superior to all others, the extendible signature hashing index. Although the re-

cursive linear signature hashing index performs as well as the extendible signature hashing

index for uniformly distributed data, the recursive linear signature hashing index su�ers

signi�cant performance losses for skewed data. The Russian doll tree and the sequential

signature �le, which was run as a reference, are no match against the guaranteed two

page accesses of the extendible signature hashing index. For the support of queries with

sub/superset predicates there is no such clear choice. The extendible signature hashing

index slows down when processing queries with sub/superset predicates, because each

query is broken down into several subqueries with equality predicates. The Russian doll

tree evaluates queries with subset predicates very similar to queries with equality pred-

icates and is on one level with the extendible signature hashing index. The recursive

linear signature hashing index is out of the race (together with the sequential signature

�le), because of its poor performance for skewed data. Supporting queries with intersec-

tion predicates seems to be the hardest case. The hashing index structures are not even

capable of supporting this kind of query. The Russian doll tree is not better than the

sequential signature �le, simple scanning is often faster than a more elaborate search.

We conclude that the overall performance of the extendible signature hashing index

for query evaluation is clearly the best among all tested index structures. None of the

index structures supports queries with intersection predicates satisfactorily, however.

6.3 Update costs

In this section we take a look at the dynamic behavior of the index structures, namely

insertion and deletion operations and their costs. We present the measured results of all

benchmarks for the di�erent index structures comparing them to each other.
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6.3.1 Insertion costs

First of all we inspect the insertion costs taking into consideration varying database sizes,

varying set sizes, and varying domain sizes. We look at each of the di�erent parameters

in turn.
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Figure 37: Insertion costs (Uniform distribution, varying database size)

Size of database We start with the variation of the database size. In �gure 37 the

results for uniformly distributed data are shown. All index structures have very similar

insertion costs, except for the Russian doll tree, whose costs increase with the growing

height of the tree.
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Figure 38: Insertion costs (Zip�an distribution, varying database size)

Figure 38 depicts the results for skewed data. The sequential signature �le, the Rus-

sian doll tree, and the extendible signature hashing index structures' insertion costs are
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not inuenced by skewed data. As in all previous benchmarks, however, the number of

recursive hash tables increases rapidly for the recursive linear signature hashing index.

This leads to very high insertion costs as many recursive hash tables have to be traversed.
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Figure 39: Insertion costs (Uniform distribution, varying set size)

Size of data items The insertion costs for varying set sizes and uniformly distributed

data are shown in �gure 39. Increasing the set size leads to larger signature (to hold the

false drop probability stable), which in turn results in larger index structures. Except for

the Russian doll tree, the insertion costs are independent of the size of the sets (or the

size of the database, respectively). The height of the Russian doll tree increases with a

growing index. This can be clearly seen in �gure 39, when changing the size of the sets

from 40 elements per set to 50 elements per set.
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Figure 40: Insertion costs (Zip�an distribution, varying set size)
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For skewed data (the result of the benchmarks are depicted in �gure 40) the perfor-

mance of the sequential signature �le and the extendible signature hashing index do not

change at all. The Russian doll tree's insertion costs start to rise earlier, when compared

to uniformly distributed data, as the height of the tree already increases for a set size of

40 elements. The skewed data a�ects the performance of the recursive linear signature

hashing index negatively, because of the growing number of recursive hash tables.
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Figure 41: Insertion costs (Uniform distribution, varying domain size)

Size of domain The last parameter we look at is the variation of the domain size.

Figure 41 shows the costs for uniformly distributed data. As already mentioned in section

6.1 on the comparison of the diskspace small domains lower the variety of the sets, because

the elements are picked from a smaller pool. Hence, small domains have a similar e�ect

on the costs as skewed data with larger domains. The recursive linear signature hashing

index is very susceptible to this kind of e�ect and therefore loses some performance for

small domains. The other index structures are una�ected by the size of the domain.

Although the extendible signature hashing index' size increases for small domains (see

section 6.1), each bucket can still be reached with two page accesses.

As already observed in previously taken measurements with varying domain sizes the

skewed data ampli�es the e�ects noticed for uniformly distributed data. This can be

clearly seen in �gure 42 showing the results for the skewed data. The performance losses

of the recursive linear signature hashing index are more severe for skewed data.

Summary The insertion costs for the sequential signature �le and the extendible sig-

nature hashing index are the lowest of all index structures. More importantly these costs

are not inuenced by any of the examined parameters. The costs for the Russian doll

tree are neither a�ected by skewed data nor by the size of the domain. However, the

larger the index and therefore the larger the height of the tree becomes, the costlier the

insertions are. For uniformly distributed data the recursive linear signature hashing index

is as e�cient as the sequential signature �le and the extendible signature hashing index,
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Figure 42: Insertion costs (Zip�an distribution, varying domain size)

for skewed data this changes drastically, due to the increasing number of recursive hash

tables. In terms of the insertions costs the sequential signature �le and the extendible

signature hashing index are clearly the index structures of choice.

6.3.2 Deletion costs

The second part of the update costs are the costs for the deletion of a data item form

an index. Again we look at the parameters database size, set size, and domain size. As

we will see the deletion costs are similar to the query evaluation costs for queries with

equality predicates. This is not surprising, because before a data item can be removed

from an index it has to be found.
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Figure 43: Deletion costs (Uniform distribution, varying database size)
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Figure 44: Deletion costs (Zip�an distribution, varying database size)

Size of database In this paragraph we investigate the impact of database size on a

deletion operation. Figure 43 shows the results for uniformly distributed data. The costs

for deleting a data item in a sequential signature �le are about half as large as the costs

for a search with an equality predicate during a query evaluation (for a comparison see

�gure 18). The reason for this is that we only investigate successful deletions, i.e. the data

item designated for deletion always exists in the index, after �nding and deleting the item

we do not have to search for further items. For the sequential signature �le this means,

that on the average half of the signature �le has to be traversed. For the Russian doll

tree the di�erence between the deletion costs and the query evaluation costs are not quite

as large. Although the number of visited pages is roughly halved (because of depth-�rst

search instead of breadth-�rst search, where all inner nodes have to be traversed), the

deletion costs are larger than half of the query evaluation costs. After deleting a data

item in a leaf node we need to adjust the signature entries in all parent nodes of the

leaf node. The hashing index structures do not access unnecessary pages during query

evaluation when searching for a data item. Therefore searching cannot be made faster for

deletion. The hashing index structures have deletion costs of two page accesses, which

are the lowest of all index structures.

Figure 44 shows the results for skewed data. The sequential signature �le has the

same behavior as for uniformly distributed data, because it is not a�ected by skewed

data. The performance of the Russian doll tree worsened, but deletion is still faster

than searching during a query evaluation. Although the size of the extendible hashing

increases for skewed data, this has no e�ect on the costs for searching. Surprisingly the

recursive linear signature hashing index does not show the usual poor performance for

skewed data. Despite consisting of many recursive hash tables, the largest part of the

data items is stored in the top most tables. During deletion the probability to hit the

data item to be deleted early is quite high. After �nding the item the search process is

terminated, avoiding the costly traversal of further recursive hash tables. During query

evaluation, on the other hand, each and every hash table is searched.
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Figure 45: Deletion costs (Uniform distribution, varying set size)

Size of data items In �gure 45 the measured deletion costs for uniformly distributed

data varying the set (and signature) size are depicted. For the sequential signature �le

the deletion costs are approximately half of the query evaluation costs for queries with

an equality predicate (see �gure 20), because on the average we go through half of the

signature �le. The deletion costs for a Russian doll tree are considerably lower than the

corresponding query evaluation costs in �gure 20. We notice that the deletion costs do

not increase suddenly when the height of the tree increases as it is the case for the query

evaluation costs. Let us explain the reasons for this. The signatures in the inner nodes of

the tree are generated by superimposing signatures of lower levels. Increasing the height

of a Russian doll tree leads to denser signatures (i.e. signatures with a high percentage of

set bits), which in turn deteriorates the false drop probability. When evaluating a query

the lower fan-out of the nodes in the tree does not compensate for the higher false drop

probability. When deleting a data item, we stop the search as soon as we have found

the data item. In this case we pro�t fully from the lower fan-out, but do not su�er the

disadvantage of the higher false drop probability fully, because we skip approximately

half of the eligible nodes during a deletion. The search performance of the hashing index

structures is not inuenced by the size of the index , therefore the size of the sets (and

signatures) has no impact on the deletion costs.

Figure 46 shows the result for skewed data. As in previous benchmarks the sequential

signature �le and the extendible hashing index are not inuenced by skewed data. The

Russian doll tree su�ers some performance losses. The performance of the recursive linear

signature hashing index, although lower than that for uniformly distributed data, is much

better than its query evaluation performance for skewed data. This is due to the fact that

we can abort the search as soon as we have found the item to be deleted.

Size of domain In �gure 47 the results for varying domain sizes and uniformly dis-

tributed data are displayed. The deletion costs are dominated by the costs for searching

for the data item to be deleted. Similar to the query evaluation costs (see �gure 22) of

the sequential signature �le and the extendible signature hashing index, the deletion costs
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Figure 46: Deletion costs (Zip�an distribution, varying set size)
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Figure 47: Deletion costs (Uniform distribution, varying domain size)

of these index structures are not inuenced by the size of the domain. The Russian doll

tree and the recursive linear signature hashing index structures lose some performance

for small domains. As already mentioned in section 6.2.1 about the query evaluation

costs the recursive linear signature hashing index is very susceptible to a large number of

identical hash values. Small domains lead to many similar (or even identical) sets, several

of which are hashed onto identical signatures. In order to handle the occurring overow

many recursive hash tables are allocated. Fortunately when deleting a data item not all

recursive hash tables need to be searched, limiting the performance loss in this case.

The results for skewed data are shown in �gure 48. The deletion costs for the sequential

signature �le and the extendible signature hashing index are not inuenced by skewed

data. The costs for the Russian doll tree are slightly higher for skewed data than for

uniformly distributed data. Skewed data ampli�es the e�ect of small domains, limiting
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Figure 48: Deletion costs (Zip�an distribution, varying domain size)

the range from which elements are chosen even further. Therefore the performance of

the recursive linear signature hashing index is worse for skewed data than for uniformly

distributed data.

Summary Similar to the query evaluation costs for queries with equality predicates

the extendible signature hashing index dominates the �eld. The other index structures

cannot compete with the two page accesses to reach the data item and one page access to

update the index. For uniformly distributed data the recursive linear signature hashing

index is on equal grounds with the extendible signature hashing index, but for skewed

data the extendible signature hashing index is clearly superior.

6.4 Creation costs

The costs for constructing an index should not be neglected, because an index does not

come into existence spontaneously. For large databases the creation of several index

structures can take a considerable amount of time. When measuring the speed of query

evaluations, insertions and deletions, we cleared all bu�ers and caches between two queries

(or two insertion or deletion operations, respectively). When measuring the creation costs

we cleared the bu�ers and caches before starting with the creation, i.e. during the creation

of the index we allowed the bu�ering and caching of pages that have already been accessed.

Like in all previous benchmarks we varied the parameters database size, data item size,

and domain size.

6.4.1 Size of database

Figure 49 shows the results for uniformly distributed data when varying the size of the

database. The sequential signature �le has the lowest costs for creation (in terms of page

accesses and total elapsed time) as it uses the most simple data structure. The number of

page accesses for the Russian doll tree is very similar to those for the sequential signature

62



100

1000

10000

100000

1e+06

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

el
ap

se
d 

tim
e 

in
 m

se
c

no of sets

creation of db, optimal sig size, set size 20, domain 0..10000, Uniform distribution

ssf, Uniform
rdt, Uniform

esh, Uniform
rlsh, Uniform

1000

10000

100000

1e+06

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

no
 o

f a
cc

es
se

d 
pa

ge
s

no of sets

creation of db, optimal sig size, set size 20, domain 0..10000, Uniform distribution

ssf, Uniform
rdt, Uniform

esh, Uniform
rlsh, Uniform

Figure 49: Creation costs (Uniform distribution, varying database size)

�le, but in terms of total time the Russian doll tree takes the longest time to construct.

This has to do with the relatively time-consuming node splitting algorithm which has to

be executed when an overow occurs. The total number of pages accessed by the hashing

index structures during creation is relatively high. The most costly part in this case is

handling the overows, during which several new pages may have to be allocated and

initialized (which is mainly composed of I/O costs and not CPU-costs).
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Figure 50: Creation costs (Zip�an distribution, varying database size)

Figure 50 depicts the creation costs for skewed data. There is no apparent change

in the performance of the sequential signature �le, Russian doll tree, and extendible

signature hashing index when compared to the performance for uniformly distributed

data. The performance of the recursive linear signature hashing index, however, goes

down considerably. The reason for this is the large number of recursive hash tables that

have to be allocated and searched through.
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6.4.2 Size of data items
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Figure 51: Creation costs (Uniform distribution, varying set size)

The next parameter we vary is the size of the data items (and consequently the size

of the signatures to keep the false drop probability stable). Figure 51 displays the results

of the benchmarks for uniformly distributed data. For the sequential signature �le and

the hashing index structures the costs do not increase signi�cantly for larger data items.

We create index structures containing a constant number of data items (20,000) and

increased the size of the data items which leads to more (and earlier) overows in the

index structures. When looking at �gure 51 this e�ect cannot be seen, i.e. that the

insertion costs for each inserted data item clearly dominate the costs for expanding the

index when an overow occurs. The only exception to this is the Russian doll tree, which

has to increase the use of its time-consuming split algorithm until the tree reaches a height

of three levels.

Figure 52 for skewed data shows a similar picture as �gure 51 for the sequential

signature �le, the Russian doll tree, and the extendible signature hashing index. Due to

the large number of recursive hash tables that have to be allocated and searched through,

the performance of the recursive linear signature hashing index deteriorates.

6.4.3 Size of domain

The last parameter we look at is the variation of the domain size. In �gure 53 the results

for uniformly distributed data can be seen. The size of the domain has no inuence on

the performance of the sequential signature �le, the Russian doll tree, and the extendible

signature hashing index. When comparing the number of page accesses with the elapsed

time, it can be noticed that the Russian doll tree has the highest CPU-costs of all index

structures, whereas the CPU-costs of the extendible signature hashing index are low.

Like skewed data small domains lead to a deep recursive structure for the recursive linear

signature hashing index, which has a negative impact on the creation costs.

Figure 54 displays the results for skewed data. The sequential signature �le, the

Russian doll tree, and the extendible signature hashing index are neither a�ected by the
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Figure 52: Creation costs (Zip�an distribution, varying set size)
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Figure 53: Creation costs (Uniform distribution, varying domain size)

size of the domain, nor are they a�ected by the skewed data. For the recursive linear

signature hashing index the skewed data adds to the problems it already hash with small

domains.

6.4.4 Summary

It is not surprising that the sequential signature �le has the lowest creation costs, as it

hash the most simple structure. Although the extendible signature hashing needs quite

a few page accesses when it is created, this is compensated in part by low CPU-costs,

resulting in the second lowest costs. The recursive linear signature hashing index would

have been a contender, if it were not for its bad performance for skewed data. The

Russian doll tree has low I/O costs for the creation of an index, the CPU-costs, however,

are the highest of all index structures, even though we used a split algorithm with linear
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Figure 54: Creation costs (Zip�an distribution, varying domain size)

complexity instead of quadratic complexity.

6.5 Summary of the simulation results

Let us now sum up the results of the simulation as we look at each index structure in

turn. The sequential signature �le was mainly used as a reference for the comparison.

Although the performance of the sequential signature �le is worse than the performance of

the other index structures in almost all tested areas, the insertion costs (and consequently

the creation costs) are among the lowest of all index structures. This does not come as

a surprise as the sequential signature �le possesses a very simple structure, allowing

even slightly faster insertions than the hashing index structures. Because of the simple

structure, the sequential signature �le also has the lowest overhead of all index structures.

Until other index structures are available it is also appropriate when none of the other

index structures can be used (as it is the case for queries with intersection predicates.

The Russian doll tree has a moderately high overhead when compared to the other

index structures. It does not quite compensate for this overhead, however. For the

evaluation of queries with equality predicates the hashing index structures are clearly

better. For queries with subset predicates the tree is not signi�cantly faster than the

hashing index structures. The update operations are among the slowest of all index

structures. An advantage of the Russian doll tree is that it is not inuenced negatively

by skewed data.

The extendible signature hashing index has shown excellent performance for uniformly

distributed data as well as for skewed data. The fear that the directory has to be expanded

almost endlessly for skewed data did not come true. Although the directory is two to four

times larger for skewed data than for uniformly distributed data, the largest part of the

allocated diskspace is used for the buckets, containing the signature and links to the data

items, and not in the directory.

The performance of the recursive linear signature hashing index, although for uni-

formly distributed data on equal grounds with the extendible signature hashing index,
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su�ers severe losses for skewed data. The skewed data leads to very unbalanced hash ta-

bles resulting in a large number of recursive hash tables. So the recursive linear signature

hashing index can be recommended without reservations only for uniformly distributed

data.

The extendible signature hashing index has been proven the most e�cient index struc-

ture for set-valued attributes by our simulation. We do not want to withhold the one

weakness of the extendible signature hashing index, though. It cannot be applied when

evaluating queries with intersection predicates. We have not found an index yet, however,

that is capable of supporting queries with intersection predicates e�ciently. This is an

area of future research.

7 Validating the cost models

In this section we compare the theoretical cost models with actually measured costs. We

do this by dividing the actually measured costs by the expected theoretical costs and

plotting the resulting factor. Please note that we use logarithmic scales on the y-axis in

the following �gures.

7.1 Diskspace
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Figure 55: Theoretically required diskspace vs. actually allocated diskspace

In this section we compare the theoretical cost models for the required diskspace, used

in section 4.2 to compare the size of the index structures, with actually measured values.

The formulas used to calculate the expected allocated diskspace were (55), (59), (61),

and (70). Figure 55 shows on the left hand side the comparison for uniformly distributed

data and on the right hand side the comparison for skewed data. There is almost no

deviation between the theoretically predicted diskspace requirements and the actually

allocated diskspace. The formulas for the diskspace requirement do not take into account

skewed data. As the skew does not a�ect the sequential signature �le and the Russian
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doll tree, the cost formulas are fully valid for these two cases. For the extendible signature

hashing index and recursive linear signature hashing index the actually required diskspace

is only slightly larger. The recursive linear signature hashing index needs up to 36% more

diskspace than expected, which is a tolerable deviation from the cost model. In table 11

the sample standard deviation for uniformly distributed and skewed data is given.

index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 0.84 pages 0.84 pages

Russian doll tree 5.19 pages 8.99 pages

extendible signature hashing 3.94 pages 7.24 pages

recursive linear signature hashing 4.37 pages 32.75 pages

Table 11: Sample standard deviation for diskspace

Recapitulating we can say that for diskspace the cost formulas are fully valid, although

there are small deviations for the hashing index structures.

7.2 Query evaluation costs

In this section we compare the theoretical query evaluation costs with the measured

query evaluation costs. In turn we look at queries with equality predicates, sub/superset

predicates, and intersection predicates. For the calculation of the theoretical values we

use the formulas appearing in section 4.3.

7.2.1 Equality predicates
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Figure 56: Predicted no. of page acc. vs. actual no. of page acc. (equality pred.)
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index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 0.84 page acc. 0.84 page acc.

Russian doll tree 4.23 page acc. 6.28 page acc.

extendible signature hashing 0 page acc. 0 page acc.

recursive linear signature hashing 0 page acc. 23.91 page acc.

Table 12: Sample standard deviation for queries with equality predicates

Figure 56 shows the ratio between the expected number of page accesses and the actual

number of accessed pages for the evaluation of a query with an equality predicate. The

number of page accesses were calculated using (71), (75), (76) and (77).

For uniformly distributed data (left diagram) the cost models are very accurate, the

highest sample standard deviation observed was 4.23 page accesses for the Russian doll

tree. The exploding costs of the recursive linear signature hashing index for skewed data

(right diagram), due to the rapid growth of the number of recursive hash tables, has not

been considered in the cost model, which assumes that almost all of the data items are

stored in the topmost hash table. For uniformly distributed data this assumption is true,

for skewed data this no longer holds. In table 12 all sample standard deviations for all

index structures are listed.

7.2.2 Subset and superset predicates
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Figure 57: Predicted no. of page acc. vs. actual no. of page acc. (sub/superset pred.)

The curves for the cost ratios for queries with sub/superset queries can be found in

�gure 57. For the calculation of the theoretical values (78), (80), (101), and (116) were

used. For uniformly distributed data (left part of �gure 57) the predicted costs are not as

1

only for queries with subset predicates
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index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 0.84 page acc. 0.84 page acc.

Russian doll tree

1

4.23 page acc. 6.28 page acc.

extendible signature hashing 5.86 page acc. 3.81 page acc.

recursive linear signature hashing 3.16 page acc. 32.52 page acc.

Table 13: Sample standard deviation for queries with sub/superset predicates

accurate as for queries with equality predicates. This can also be seen, when looking at

the sample standard deviation (in table 13). For a rough estimation of the query costs,

though, the cost models are de�nitely suitable. For skewed data (right part of �gure 57)

this is not quite true. Although for the sequential signature �le, the Russian doll tree, and

the extendible signature hashing index the cost models are still valid, for the recursive

linear signature hashing index the actual costs are much larger than the predicted costs.

The sample standard deviation in table 13 con�rms this impression.

7.2.3 Intersection predicates
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Figure 58: Predicted no. of page acc. vs. actual no. of page acc. (intersec. pred.)

For queries with intersection predicates we only have to check the cost models for the

sequential signature �le and the Russian doll tree. The ratio between the predicted and

the actually measured query evaluation costs is plotted in �gure 58. The costs of the

sequential signature �le are independent of the query type and the distribution of the

data, so the expected costs for the sequential signature �le (as calculated by (117)) are as

accurate as for all other query types. The Russian doll tree performs totally di�erent for

queries with intersection predicates, however. The false drop probability for queries with

intersection predicates is much higher than the false drop probabilities for queries with

70



index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 0.84 page acc. 0.84 page acc.

Russian doll tree 126.60 page acc. 120.42 page acc.

Table 14: Sample standard deviation for queries with intersection predicates

equality or subset predicates. For the query costs of the Russian doll tree this means that

almost all pages of the tree need to be accessed in order to evaluate a query. This is true

both for uniformly distributed data and for skewed data. The query evaluation costs are

slightly lower for skewed data, because the index is slightly smaller in this case. In table

14 the values for the sample standard deviation can be found.

7.2.4 Summary

Validating the cost models for uniformly distributed data and queries with equality, subset

or superset predicates poses no problem. For skewed data, the cost model for the recursive

linear signature hashing index becomes inaccurate, because the number of recursive hash

tables gets out of control. For queries with intersection predicates neither the index

structures nor the corresponding cost models are satisfactory.

7.3 Update costs

In this section we validate the cost models for the update operations. The �rst part covers

the validation of the insertion costs, the second part is about the validation of the deletion

costs.

7.3.1 Insertion costs

Figure 59 displays the comparison of the theoretical and actually measured costs for

insertions. The theoretical costs were derived by applying (119), (123), (124), and (126).

When comparing the predicted costs with the measured costs for uniformly distributed

data (left part of 59), we only notice minor deviations. For skewed data (right part of

59), however, the situation is di�erent. While the performance of the sequential signature

�le, the Russian doll tree, and the extendible signature hashing index is identical to the

performance for uniformly distributed data, the insertion costs of the recursive linear

signature hashing index di�er greatly. The exact deviations for all index structures are

summed up in table 15.

7.3.2 Deletion costs

In �gure 60 the theoretical and actually measured deletion costs are compared. The

theoretical costs were calculated by the formulas (127), (128), (129), and (131). The left

part of �gure 60 displays the cost ratio for uniformly distributed data and the right part

of �gure 60 displays the cost ration for skewed data. For the sequential signature �le and
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Figure 59: Predicted no. of page acc. vs. actual no. of page acc. for insertion

index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 1.05 page acc. 1.05 page acc.

Russian doll tree 1.1 page acc. 1.1 page acc.

extendible signature hashing 0 page acc. 0 page acc.

recursive linear signature hashing 0 page acc. 25.58 page acc.

Table 15: Sample standard deviation for insertions

the Russian doll tree the predicted costs correspond to the actually measured costs well,

whereas for the hashing index structures they almost �t perfectly. The exact values for

the sample standard deviation can be looked up in table 16.

7.4 Creation costs

In this section we compare the theoretical creation costs (as computed by (134), (135),

(136), and (137)) with the actually measured costs for creating the index structures.

Figure 61 shows the comparison (for uniformly distributed data on the left hand side,

for skewed data on the right hand side). The theoretical costs deviate considerably from

the measured costs (the exact values of the sample standard deviation can be seen in

table 17). This has two reasons. First, the inaccuracy of the insertion costs, although

small, propagates itself when multiplied by the number of data items inserted during the

creation of an index. The second reason is the neglection of the updates necessary during

the restructuring of the index when an overow occurs. A revised cost model for the

creation costs should take this restructuring into account.
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Figure 60: Predicted no. of page acc. vs. actual no. of page acc. for deletion

index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 4.99 page acc. 3.59 page acc.

Russian doll tree 7.11 page acc. 3.90 page acc.

extendible signature hashing 0 page acc. 0 page acc.

recursive linear signature hashing 0 page acc. 1.67 page acc.

Table 16: Sample standard deviation for deletions

7.5 Summary of the validation

Summarizing the previous sections we can claim to have validated the cost models to a

large degree. For uniformly distributed data the cost models are fully valid. For skewed

data this is not necessarily the case, the recursive linear signature hashing index being the

exception. It is not clear, however, if any e�ort should be made for the further analysis of

the performance of the recursive linear signature hashing index for skewed data, because in

the case of skewed data we have to dissuade from the use of the recursive linear signature

hashing index. We also had some problems validating the cost models for the creation

costs. The present cost model is a very rough estimation and needs some rework in the

future.

8 Summary and Outlook

We presented four di�erent index structures supporting queries involving set-valued at-

tributes. Two of them, the sequential signature �le [IKO93] and the Russian doll tree

[HP94], were already known. The two other, extendible signature hashing and recur-

sive linear signature hashing, were created by adapting and enhancing extendible hashing

[FNPS79], recursive linear hashing [RSD84], and Quick�lter [LL89], [RZ90].
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Figure 61: Predicted no. of page acc. vs. actual no. of page acc. for creation

index structure sample standard deviation

uniform dist. Zip�an dist.

sequential signature �le 24322.64 page acc. 24322.64 page acc.

Russian doll tree 20487.77 page acc. 20525.41 page acc.

extendible signature hashing 102724.39 page acc. 107657 page acc.

recursive linear signature hashing 31586.37 page acc. 23696106.84 page acc.

Table 17: Sample standard deviation for creation

The index structures were implemented and compared intensively using mathematical

methods as well as simulation. All of them were put through the tests on common grounds,

so that none could gain an unfair advantage over the others. We noted several facts. For

queries with equality predicates the extendible signature hashing index reigns supreme.

The recursive linear signature hashing index would have been a serious contender, if it

were not for its bad performance for skewed data (which it showed for all query types). For

subset/superset queries the e�ciency of the extendible signature hashing index was not

as outstanding, but it was still able to compete with the Russian doll tree. Queries with

intersection predicates generally seem to be a tough case. The hashing index structures

do not even support it, while the Russian doll tree shows very poor performance. For

update operations the extendible signature hashing index also performs very well (even if

the sequential signature �le has slightly faster insertion costs).

The simulations give a good impression of the performance of the index structures.

Future research should try to con�rm the results of the simulations in an actual application

and try to close the small gaps still left in the cost models. Another area that needs further

research is the e�cient support of queries containing intersection predicates. Developing

new index structures for this case using a di�erent approach like inverted �les [ZMR95]

or nested indexes [BK89] may bring success.
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