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Abstract

In this paper, we show how compression can be integrated into a relational

database system. Speci�cally, we describe how the storage manager, the query exe-

cution engine, and the query optimizer of a database system can be extended to deal

with compressed data. Our main result is that compression can signi�cantly improve

the response time of queries if very light-weight compression techniques are used.

We will present such light-weight compression techniques and give the results of

running the TPC-D benchmark on a so compressed database and a non-compressed

database using the AODB database system, an experimental database system that

was developed at the Universities of Mannheim and Passau. Our benchmark results

demonstrate that compression indeed o�ers high performance gains (up to 55%) for

IO-intensive queries and moderate gains for CPU-intensive queries. Compression

can, however, also increase the running time of certain update operations. In all,

we recommend to extend today's database systems with light-weight compression

techniques and to make extensive use of this feature.

1 Introduction

Compression is a heavily used technique in many of today's computer systems. To name

just a few applications, compression is used for audio, image and video data in multi-media

systems, to carry out backups, to compress inverted indexes in information retrieval, and

we all know the UNIX gzip and the DOS zip commands that we use to ship �les across

the Internet and to store large �les and software packages that we do not need very often.

Compression has two advantages: (1) it reduces costs for storage media (main memory,

disk, and tape), and (2) it saves IO bandwidth (disk, tape, or network communication)

which results in improved performance for IO-bound applications. On the negative side,

compression can be the cause of signi�cant CPU overhead to compress the data in the

�rst place and to uncompress the data every time the data is used so that compression

can result in reduced performance for CPU-bound applications.
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Since many standard (i.e., relational) database applications execute a fair amount of

CPU-intensive operations (e.g., joins and aggregation), compression has not yet found

wide acceptance in the relational database arena, and database vendors are only slowly

adopting compression techniques for their products. A possible reason could be the fear

of increasing response time. Just to give an example: without compression, a query could

have IO costs of one minute and CPU costs of 30 seconds resulting in an overall response

time of one minute since CPU and IO processing can be overlapped. With compression,

the IO costs of the same query could easily be reduced to less than 30 seconds, but

if an expensive compression technique is used, the CPU costs could just as easily be

increased to become more than a minute resulting in an overall higher response time

due to compression. In this paper, we will show that, if done right, compression can in

fact reduce the response time of most queries. We will show that in a carefully designed

system, the CPU overhead of compression is tolerable while getting high bene�ts from

compression due to reduced disk IO at the same time.

Speci�cally, we will present a set of very simple and light-weight compression techniques

and show how a database system can be extended to exploit these compression techniques.

We will address storage management issues such as the e�cient implementation of small

variable-sized �elds, query engine issues such as the e�cient evaluation of expressions

on compressed data (e.g., predicates, aggregate functions, etc.), and query optimization

issues such as the necessary re�nements to the optimizer's cost model in order to �nd good

query plans for compressed databases. Except for the optimizer's cost model, we have

implemented all our proposed techniques in the AODB database system at the Universities

of Mannheim and Passau.

We will also give the results of performance experiments that we carried out using the

TPC-D benchmark [TPC95]. These experiments demonstrate the reductions in the size of

the database that are likely to be achieved using light-weight compression techniques and

con�rm that compression improves the performance of most queries (by a factor of two,

in the extreme case) and only shows weaker performance for certain update operations.

The remainder of this paper is organized as follows: Section 2 lists related work on

database compression. Section 3 presents the light-weight compression techniques used in

this work. Section 4 explains how queries can be executed in the presence of compressed

data. Section 5 discusses our TPC-D results. Section 6 contains our conclusions.

2 Related Work

Most related work on database compression has focussed on the development of new com-

pression algorithms or on an evaluation of existing compression techniques for database

systems (e.g., [Sev83, Cor85, RH93, IW94, ALM96, NR95, GRS98]). Our work di�ers

from all this work in two important ways: First, we were interested in showing how com-

pression could be integrated into a database system rather than inventing new compression

algorithms. Second, we were interested in the performance aspects of compression (i.e.,

the running times of queries), and we will, therefore, present the results of performance

experiments. All other experimental studies, on the other hand, investigated only the

disk savings that can be achieved with database compression. While disk savings are an



important advantage of compression, we believe that the importance of this factor is going

to decrease with the continuing trend of dropping disk prices. We do note that there have

been a couple of papers that address performance issues of database compression (e.g.,

[GS91, SNG93, RHS95, GRS98], but, other than us, none of these papers present the

results of comprehensive performance experiments.

There have been two other areas in which compression was studied in the context of

database systems. First, there has been work on the design of special implementation

techniques for, say, joins based on compression (e.g., [GO95]). Second, there has been

a signi�cant body of work on compressed indexes; e.g., VSAM [Wag73], pre�x compres-

sion for B trees [Com79], compression of rectangle descriptions for R trees [GRS98], and

compression of bit mapped indexes [MZ92]. All the work in both of these areas is orthog-

onal to our work: One, we concentrated on studying the performance of compression if

well-perceived query techniques (e.g., hash joins) are used, but the techniques we propose

would work just as well if specialized query evaluation algorithms are used. Two, we

concentrated on the compression of base data (i.e., relations) and made sure that any

kind of index (compressed or not) remains applicable in our environment.

3 Light-Weight Database Compression

In this section, we will describe the compression techniques that we considered in this

work. We will �rst describe the characteristics a compression technique must have to be

well-suited for general-purpose database systems, and then list the concrete techniques

we have chosen to implement in our experimental system. Rather than inventing new

compression techniques, our main contribution is to show explicitly how compression

techniques can be integrated into the storage manager of a database system; we address

this subject in the third part of this section. As stated in the Related Work section,

we will only cover compression techniques for base data (i.e., relations); special-purpose

compression techniques for indexes are already very well understood and can be used

independently of the techniques we propose here.

3.1 Characteristics

The compression techniques we consider have two main characteristics. First, they are

�ne-grained. Principally, compression can be applied to a whole �le of the database

(i.e., a relation or a partition of a relation), a page of a �le, a tuple, or every individ-

ual �eld of a tuple. As suggested in most recent papers on database compression (e.g.,

[GS91, SNG93, RHS95, GRS98]), we apply �eld-level compression, the �nest possible

granularity, which means that every �eld of every tuple of the database can be compressed

and decompressed without reading or updating other �elds of the same or of other tuples.

Field-level compression also provides the exibility to use di�erent compression techniques

for di�erent �elds of the same tuple, including an approach that compresses some �elds

(e.g., long strings) and does not compress other �elds (e.g., short strings that are fre-

quently used in queries). We do require, however, that the same compression technique

is applied to a whole column of a table; for example, we require that the salary �eld of



all Emp tuples be compressed in the same way because it would be too cumbersome for

the user to specify a compression technique for every tuple individually, and it would be

quite costly for the system to determine the compression mode of a tuple before accessing

the tuple.

There are several reasons why it is important to provide very �ne-grained compression

in database systems. We have already seen that �ne-grained compression provides the

exibility to employ di�erent compression techniques for di�erent types of data without

vertically partitioning tables. As discussed in [GS91, SNG93], this exibility is very useful

for query execution because it allows to generate temporary results in which some �elds

are compressed and others are not so that lazy decompression becomes possible. A query

that asks for the name, address, and department info of all employees of a particular set of

departments could, for example, be executed by decompressing the relevant join columns

for the Emp 1 Dept join and only decompressing the name, address and department info

�elds of those tuples which survive the join; other �elds (e.g., salary) would not have

to be decompressed at all. Another argument for �ne-grained compression is that any

compression technique that compresses more than one tuple at a time does not interact

well with other components of the database system. It must, for instance, be possible

to compress tuples individually so that update and insert operations can be carried out

without a�ecting any other tuples than the target tuples of the update operation; a�ecting

other tuples would severely impact the locking and recovery components of a database

system if protocols such as ARIES are used [MHL

+

92]. Likewise, it must be possible to

decompress individual tuples so that the system can take advantage of indexes in the best

possible way and in order to provide e�cient navigational access to the database as is

done by object database systems. As a result of relying on very �ne-grained compression

techniques, the compression techniques we consider must work well even for fairly small

amounts of data (e.g., one integer).

The second characteristic of the compression techniques we consider is that they are very

fast in terms of CPU overhead to compress and decompress data. As stated in the intro-

duction, this feature is very important since many database operations are CPU intensive

so that there is not much CPU time to waste. Fast compression and decompression is

particularly important in the presence of �ne-grained compression because executing a

single query might involve the decompression of millions of data items. When we pick

a compression technique, we are therefore willing to sacri�ce a couple of percent of disk

savings in order to achieve speed-of-light decompression performance.

3.2 Concrete Techniques

In the following, we will discuss a number of compression techniques that we found useful

in order to improve the performance of database systems. Speci�cally, we will describe

three compression techniques: numeric compression, string compression, and dictionary-

based compression. Furthermore, we will describe how compression works in the presence

of NULL values.

Since all three compression techniques are applicable in a variety of cases, there are, in

general, many di�erent options to compress a table (including the option not to compress

certain �elds at all) and choosing the wrong technique can impact the performance of a



database. Nevertheless, we do not think that we are adding another heavy burden to the

job of a database system administrator because it is usually embarrassingly obvious what

the right compression techniques for a given application are. For example, we did not

hesitate to use dictionary-based compression for ag �elds and numeric compression for all

�elds of type decimal in our implementation of the TPC-D benchmark. (Dictionary-based

and numeric compression are described below).

3.2.1 Numeric Compression

The technique we use to compress integers is based on null suppression and encoding

of the resulting length of the compressed integer [RH93]. This technique has also been

built into ADABAS, a commercial relational database system by Software AG [AG94].

The idea is to cross out leading 0's of the representation of an integer. In most systems,

integers are represented using four bytes so that Integer 3 is represented by 30 bits that

are set to 0 and two bits that are set to 1. With this kind of compression, Integer 3 could,

therefore, be represented using two bits. Of course, the crux of numeric compression is

to keep the information of how many bits are used to represent a speci�c integer because

this information is needed to decompress the integer.

1

We will discuss a technique to

encode and decode this information in Section 3.3, after having presented all the other

compression techniques, because our encoding and decoding techniques are not speci�c

to this or any other particular compression technique; for the moment, however, keep in

mind that our coding scheme only works well if compressed �elds are aligned to bytes.

That is, Integer 3 will be represented by one byte rather than two bits. Alignment to

bytes is one example of how we trade disk savings for high-speed decompression.

The same compression technique as for integers can also be applied to dates. Often a

date is represented by the number of days the date is before or after some certain base

date. If the base date is November 3, 1997, then the Date November 5, 1997 could be

represented by the Integer 2, and the Date October 23, 1997 could be represented by the

Integer -11 and both dates could, therefore, be compressed just like any other integer.

We apply a special compression technique to oating point numbers that are represented

using eight bytes in their uncompressed state (i.e., doubles). In many cases, an eight byte

oating point number can be represented using only four bytes and without loosing any

information. We will take advantage of this fact and represent oating point numbers

using four bytes whenever this is possible.

Other forms of numeric compression that we did not consider in our work, but that might

be helpful in some situations can be found in [NR95, GRS98].

3.2.2 String Compression

SQL allows to de�ne strings in two di�erent ways: CHAR(n) or VARCHAR(n). In most

database systems, CHAR(n) �elds are represented by allocating a �xed chunk of bytes of

length n, whereas VARCHAR �elds are typically implemented by recording the length of the

1

In some cases, we also need to encode the sign of the integer in order to achieve e�ective compression

for, e.g., Integer -3.



string and storing the string in a variable chunk that can shrink and grow depending on the

current state of the string. A simple way to compress VARCHAR �elds is to simply compress

the part that records the length of the string using the numeric compression technique for

integers de�ned above. CHAR �elds can be compressed by converting them into a VARCHAR

in a �rst step, and then achieving further compression by, again, compressing the length

of the resulting variable string in a second step.

If the strings are very long, it is sometimes bene�cial to further compress string �elds.

If order preservation is not important, such an additional compression can be done by

using the classic compression techniques such as Hu�man coding [Huf52], Arithmetic

coding [WNC87], or the LZW algorithm [Wel84]. If an order preserving technique is

needed, then this additional compression can be done using the techniques proposed

in [BCE76, ALM96]. All these compression techniques can be carried out independently

and in addition to the compression of the part that records the length of the (compressed)

string.

3.2.3 Dictionary-based Compression

Dictionary-based compression is a very popular compression technique that can be used

for any data type. Dictionary-based compression is particularly e�ective if a �eld can

take only a small number of di�erent values, and it is based on storing all the di�erent

values a �eld can take in a separate data structure, the dictionary. If, for instance, a �eld

can only take the values \Mannheim" and \Passau," then the value of the �eld could be

represented by a single bit, and this bit could be used to look up the decompressed value

of the �eld in the dictionary.

There are many di�erent variants of dictionary-based compression conceivable. We have

chosen to implement a very simple and somewhat limited variant in which the maximum

size of the dictionary is known in advance and, therefore, the number of bits required to

represent a �eld are known in advance, too. Another interesting and more general variant

of dictionary-based compression is presented in [ALM96].

3.2.4 Dealing With NULL Values

SQL also allows NULL values for every data type. In realistic applications, integrity con-

straints disallow NULL values for many �elds, but in the absence of such constraints,

the system must take into account that �elds may have NULL values, and a compression

technique must uniquely represent and identify NULL values.

If dictionary-based compression is used, NULL values can easily be represented by de�ning

NULL as one of the possible values and recording it in the dictionary. If numeric or string

compression are used, then a �eld with value NULL can be represented as a �eld with

length 0; this does not cause much additional trouble because both numeric and string

compression force the system to record the length of every compressed �eld independently

of the presence of NULL values. However, we do need to distinguish a NULL value from

Integer 0, Double 0.0, or the empty string. To do so, we represent Integer 0 as one byte

with all bits turned o� (i.e., a compressed 0 has length 1) and Double 0.0 using 4 bytes.



The empty string is represented as a string with length 0 (compressing the length using

1 byte) and the NULL string is represented as a string with length NULL.

3.3 Encoding and Decoding Compression Information

We now turn to the question how all these (and many other) compression techniques can

be integrated into the storage manager of a database system. As seen in the previous

subsection, the e�ectiveness of many (variable-length) compression techniques depend on

e�ciently encoding and decoding length information for compressed data items. Another

issue is �nding the right o�set of a �eld, if a tuple contains several variable-length (com-

pressed) �elds. The approach we take encodes the length information of every �eld into

a �xed number of bits and packs the length codes of all compressed �elds together into a

special part of the tuple. In the following, we will describe the resulting overall layout of

compressed tuples, and then our encoding and decoding algorithms.

3.3.1 Layout of Compressed Tuples

Figure 1 shows the overall layout of a compressed tuple. The �gure shows that a tuple

can be composed of up to �ve parts:

� The �rst part of a tuple keeps the (compressed) values of all �elds that are com-

pressed using dictionary-based compression or any other �xed-length compression

technique.

� The second part keeps the encoded length information of all �elds compressed using a

variable-length compression technique such as the numerical compression techniques

described above.

� The third part contains the values of (uncompressed) �elds of �xed length; e.g.,

integers, doubles, CHARs, but not VARCHARs or CHARs that were turned into VARCHARs

as a result of compression.

� The fourth part contains the compressed values of �elds that were compressed using

a variable-length compression technique; for example, compressed integers, doubles,

or dates. The fourth part would also contain the compressed value of the size of a

VARCHAR �eld if this value was chosen to be compressed. (If the size information of

a VARCHAR �eld is not compressed, then it is stored in the third part of a tuple as a

�xed-length, uncompressed integer value.)

� The �fth part of a tuple, �nally, contains the string values (compressed or not

compressed) of VARCHAR �elds.

While all this sounds quite complicated, the separation in �ve di�erent parts is very nat-

ural. First of all, it makes sense to separate �xed-sized and variable-sized parts of tuples.

The �rst three parts of a tuple are �xed-sized which means that they have the same size

for every tuple of a table. As a result, compression information and/or the value of a

�eld can directly be retrieved from these parts without further address calculations. In
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encoding for dictionary-based compression

length and offset encoding

Figure 1: Layout of a Compressed Tuple

particular, uncompressed integer, double, date, . . . �elds can directly be accessed regard-

less of whether other �elds are compressed or not. Furthermore, it makes sense to pack

all the length codes of compressed �elds together because we will exploit this bundling

in our fast decoding algorithm, as we will see soon. Finally, we separate small variable-

length (compressed) �elds from potentially large variable-length string �elds because the

length information of small �elds can be encoded into less than a byte whereas the length

information of large �elds is encoded in a two step process as described in Section 3.2.2.

Obviously, not every tuple of the database consists of these �ve parts. For example,

tuples that have no compressed �elds consist only of the third and, maybe, the �fth part.

Furthermore keep in mind that all tuples of the same table have the same layout and

consist of the same number of parts because all the tuples of a table are compressed using

the same techniques.

3.3.2 Length Encoding

From the discussion of the layout of (compressed) tuples, it is fairly obvious how uncom-

pressed �elds and �xed-length compressed �elds are accessed. The open question is how

variable-length compressed �elds are accessed. In the following, we will describe how the

length of such �elds is encoded and packed into the second part of a tuple, and then in

the next subsection, we will describe how this information is decoded.

Recall that we are mostly interested in encoding the length of compressed integer and

double values. (Dates can be compressed and represented as integers and for strings, we

keep the length information separately and compress it just like an integer.) Also recall

that due to byte alignment, a compressed integer can be 1, 2, 3, or 4 bytes long. As a

consequence, we can encode the length of a compressed integer using two bits as shown in

the NOT NULL column of Table 1. If the integer can take NULL values, then we need three

bits to encode the length of the compressed integer because a compressed integer can be

0, 1, 2, 3, or 4 bytes long in this case (the NULL allowed column of Table 1).

Analogously, Table 2 shows the codes for the lengths of a compressed double. Here, recall

that a compressed double can either be 4 or 8 bytes long if NULL values are not allowed,

and 0, 4, or 8 bytes long if NULL values are allowed so that the length can be coded using

only one bit in the �rst case and two bits in the second case.

If a tuple has several variable-length compressed �elds, then we will try to pack the length

codes of as many �elds as possible into a single byte, but we will make sure at the same

time that the code of a single �eld can be retrieved by probing a single byte only. We



Length NOT NULL NULL allowed

0 | 000

1 00 001

2 01 010

3 10 011

4 11 100

Length NOT NULL NULL allowed

0 | 00

4 0 01

8 1 10

Table 1: Length Encoding for Integers Table 2: Length Encoding for Doubles

will illustrate this in the following example. The example compresses tuples that consist

of four integer �elds with NULL allowed, one integer �eld with a NOT NULL constraint, and

a double �eld with a NOT NULL constraint:

R = ha:int, b:int, c:double not null, d:int, e:int, f:int not nulli

If all �elds are compressed as described in Section 3.2.1, then the length codes of all six

�elds are packed into two bytes in the following way:

Byte 1 Byte 2

| bit

a

1

bit

a

2

bit

a

3

bit

b

1

bit

b

2

bit

b

3

bit

c

1

bit

d

1

bit

d

2

bit

d

3

bit

e

1

bit

e

2

bit

e

3

bit

f

1

bit

f

2

Here, bit

x

i

refers to the ith bit of the length encoding for Attribute x, and the �rst bit of

Byte 1 is not used.

3.3.3 Length Decoding

Given the encoding scheme from the previous section, it is easy to determine the length

of a compressed �eld of a speci�c tuple: we simply need to access the right bits for this

�eld in the length-encoding part of the tuple and look up the length in an encoding table

such as Table 1 or 2. Before, we can actually access the �eld, however, we need to solve

another problem: we have to determine the o�set of the �eld which depends on the length

of all the other (compressed) �elds stored in the tuple before that �eld.

A naive algorithm to determine the o�set of, say, the ith compressed �eld would be to

loop from j = 1 to i � 1, decode the length of the jth �eld, and compute the o�set as

the sum of these lengths. This algorithm would, however, have very high CPU overhead

because it would involve decoding the length information of i � 1 �elds. Fortunately,

we can do much better by materializing all possible o�sets a �eld can have in so-called

decoding tables. To see how this works, let us continue our example from above and look

at one concrete tuple of Relation R. If the compressed value of a of this tuple has 2

bytes, the value of b has 0 bytes, the value of c has 8 bytes, the value of d has 3 bytes, the

value of e has 0 bytes, and the value of f has 4 bytes, then the two bytes that encode the

length of the tuple would look as follows (using the codes of Tables 1 and 2 and setting

the unused bit of Byte 1 to 0):



0 0 1 0 0 0 0 1
Attr. a Attr. b Attr. c

1

0

Attr. a Attr. b

10

35

34

33

32

31

30

127

0 2 2 0 2 1

126

Attr. c

total length

Figure 2: Decoding Byte 1

0 0 1

1

0

Attr. d Attr. e

7

101

100

99

98

97

96

255

0 3 3 0 3 3

254

Attr. f

1 1 0 0 1
Attr. d Attr. e Attr. f

offset
length encoding

Figure 3: Decoding Byte 2

Byte 1 Byte 2

0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1

Now, let us determine the o�set of Attribute e for this tuple. We �rst probe the decoding

table of Figure 2 with Byte 1 to �nd out that with this length encoding, Attributes a, b

and c combined consume 10 bytes. Then, we probe the decoding table of Figure 3 with

Byte 2 to �nd out that we need to add another 3 bytes to determine the full o�set for

Attribute e in this tuple, and to get the length of Attribute e.

In general, we maintain d decoding tables for a relation whose tuples have d bytes in

their length-encoding part. Every decoding table has 2

b

entries, where b is the number of

bits used in the corresponding length-encoding byte; e.g., b = 7 for Byte 1 and b = 8 for

Byte 2 of our example. Every entry of a decoding table has one total length �eld and an

o�set and length �eld for every attribute that is encoded in the corresponding byte (see

Figures 2 and 3). Given this design, the o�set and length of a compressed �eld of a tuple

can be determined by the algorithm shown in Figure 4.

To go back to our example, we note that the decoding tables are really very small. Relation

R from our example would require one decoding table of size 2 KB (128entries � 16bytes)

and one decoding table of size 4 KB (256entries � 16bytes). So, we expect that these

decoding tables can be kept in main memory most of the time just like any other meta

data. If we are willing to invest more memory, we could materialize all possible o�sets into

a single table (rather than one table per byte) and achieve decoding in constant time. For

RelationR, such a universal decoding table would require about 0.5 MB of main memory

(2

15

entries � 16bytes). (Of course, there are also many ways of compromise conceivable.)



Input: Attribute identi�er attr , encoding information codeByte[] of a tuple, an array of decoding

tables table[][] , and encIn which is the number of the Byte in codeByte that records

attr 's length code

Output: o�set of attr in the tuple, length of the value of attr in the tuple

1: o�set = 0;

2: for j = 1 to encIn - 1 do

3: o�set = o�set + table[j][codeByte[j]].total

4: return h o�set + table[encIn][codeByte[encIn]].o�set(attr),

table[encIn][codeByte[encIn]].length(attr) i

Figure 4: Algorithm to Decode Compression Information

4 Executing Queries on Compressed Data

In the previous section, we showed how compression techniques can be integrated and im-

plemented e�ciently in the storage manager of a database system. In this section, we will

describe the necessary adjustments to carry out queries e�ciently in the presence of com-

pression. Obviously, compression could be integrated into a database system without any

adjustments to the query execution engine and query optimizer of a database system by

simply encapsulating compression in the storage manager. Recall from the introduction,

however, that compression can easily turn an IO-bound query into a CPU-bound query,

and since textbook query execution engines have been designed to minimize IO costs,

they need to be extended to minimize CPU costs, too, in order to take full advantage

of database compression. Furthermore, compression can impact the choices made by an

optimizer; for example, the best join orders in a compressed and uncompressed database

may di�er.

In the following, we will �rst present the design of our fully tuned query execution engine

and then discuss the query optimization issues. At the end of this section, we will give a

brief report on the status of our system and on our experiences in building the system.

Section 5, then, presents the results of experiments that evaluate the performance of our

engine.

4.1 Query Execution Engine

To achieve lowest-possible CPU overhead during query execution, we propose the following

two techniques: (1) an extended query iterator model, and (2) evaluation of expressions

using a virtual machine which interprets assembler-like programs. The �rst extension is

necessary in order to avoid unnecessary copying of tuples during query execution and

to avoid decompressing certain �elds twice for the same query. The second extension

is necessary in order to minimize the cost to evaluate expressions (e.g., predicates and

aggregate functions).



4.1.1 Extended Iterator Model

In the classic iterator model, every query operator such as table scan, index scan, sort, etc.

(called iterator) provides three methods [Gra93]: open, next, and close. open allocates

resources (main memory, disk for temporary results) and does all computations that need

to be carried out before the iterator can actually produce results. next delivers the result

tuples of an iterator one at a time. close releases all the allocated resources and does

other cleaning up work.

Here, we are concerned about the interface of the next method of an iterator. In the

classic iterator model, next delivers the next result tuple by returning a (main memory)

pointer to that tuple. We generalize this interface and allow the next method to return

an array of pointers (rather than just a single pointer). This extension is necessary

to implement a technique called implicit joins which is known since the seventies and

which avoids copying tuples when pipelined join methods are used [Pal74]. To see how

implicit joins save CPU costs to copy tuples, consider an index nested loop join (NLIJ)

between Relations A and B. In the classic iterator model, the NLIJ iterator must copy

matching tuples from A and B into a result tuple in order to return a pointer to the result

tuple. With implicit joins, the NLIJ iterator simply returns two pointers for every pair of

matching tuples from A and B without copying any tuples from either relation.

The second step we take to generalize the interface of the next method in the iterator

model is to allow iterators to return values of �elds of tuples in addition to just return-

ing pointers to tuples. This extension is necessary to avoid decompressing a �eld twice

in the course of evaluating a query. Consider the following example of an Employee

database: a table scan iterator on Emp evaluates the predicate Emp.salary > 100,000

and pipes the result into an NLIJ iterator that evaluates the predicate Emp.salary < 1%

* Dept.budget (among others). Now, assume that the Emp.salary �eld is compressed

and consider that the next method of an iterator could only return pointers to tuples. In

this case, the table scan iterator would decompress the Emp.salary �elds of all Emp tuples

a �rst time to evaluate the Emp.salary < 100,000 predicate. The table scan iterator

would pass pointers to the resulting (compressed) Emp tuples to the NLIJ iterator so that

the NLIJ iterator would have to decompress the Emp.salary �eld of all resulting tuples

a second time in order to evaluate its join predicate. If we generalize the interface of the

next method, then the table scan iterator could return the decompressed values of the

Emp.salary �elds in addition to the pointers to the resulting Emp tuple, and the NLIJ

iterator could use the uncompressed values generated by the table scan iterator.

To conclude, the interface of the next method in our extended iterator model now becomes

(in C++):

bool next(ZReg[ ]& regSet);

The next method of an iterator returns FALSE when the iterator is done and cannot �nd

any (new) result tuples; next returns TRUE otherwise. Results (i.e., pointers to tuples

and values of �elds) are passed through regSet which is an array of type ZReg. ZReg is

a C++ union type that can take the uncompressed value of the C++ pendant of any

common SQL data type (i.e., integer, double, date, etc.) as well as internal types used



LEQ C D AC 10 14 ``1998-02-09'' 13

AVM STOP

SUB C F CZ 1.0 5 7

ADD C F CZ 1.0 6 8

MUL C F ZZ 7 8 9

MUL A F ZZ 4 9 10

AVM STOP

Figure 5: AVM Prg: shipdate � 1998-02-09 Figure 6: AVM Prg: Aggregate Function

by the query engine such as RID and void �. For reasons that will become clear in the

next subsection, we call every entry of the regSet array a register.

4.1.2 The AODB Virtual Machine

To date, there has been very little published work on the e�cient evaluation of expressions

in database systems. The intuitive approach is to generate an operator tree for every

expression at compile time of a query and to interpret the operator tree during query

execution, and as far as we know, this approach is used by Oracle. The operator-tree

approach was also the approach that we had initially implemented for the AODB system.

Going through an operator tree, however, involves high CPU costs, and in the experiments

carried out with our �rst version of AODB, these CPU costs were so high that they ate

up all the bene�ts we achieved by saving IO costs with compression. We, therefore,

developed a more e�cient method which is based on generating assembler-like statements

at compile time and interpreting these statements with a special virtual machine that we

call AVM

2

. The only references to a similar idea we found in the literature are an (old)

IBM technical report [LW79] and a paper that describes how a rule-based system can be

used to generate such statements for a given query [FG89]. We were also told that IBM

DB2 uses assembler-like statements to evaluate expressions, but such details of DB2 have

not yet been published.

As an example, Figures 5 and 6 show two AVM programs that we used to implement

Query 1 of the TPC-D benchmark [TPC95]. The �rst program implements the shipdate

predicate of this query, and the second AVM program implements the sum(extended price

� (1 - discount) � (1 + tax)) aggregate function of this query. The instructions of

all AVM programs operate on the registers that are passed around in the iterators; that is,

the instructions take their parameters from registers and they write their results into reg-

isters. For example, the LEQ statement (�) of Figure 5 compares the 10th attribute of the

tuple pointed to by Register 14 with the constant 1998-02-09 and writes the result into

Register 13. Going into the details of the instruction set supported by AVM is beyond the

scope of this paper; it should, however, become clear that AVM allows more e�cient ex-

pression evaluation than operator trees just as compiled programming languages are more

e�cient than interpreted programming languages. Note, however, that the statements

of AVM are machine-independent. Also note that the AVM statements have nothing

compression-speci�c about them.

On the iterator side, iterators get AVM programs (instead of operator trees), and iterators

call AVM to execute these programs, evaluate expressions, and load registers as a side

2

AVM stands for AODB Virtual Machine.



e�ect: scan iterators get an AVM program for all the predicates they apply, join iterators

get separate AVM programs for their primary and secondary join predicates, and group-

by iterators get several AVM programs in order to compute aggregate values (separate

programs to initialize, compute, aggregate, and store the aggregate values). All iterators,

except pipeline breakers such as temp, get an AVM program to be applied to the result

tuples of the iterators; usually, these AVM programs only involve copying a pointer to the

result tuple(s) into a register so that it can be consumed by the next iterator and used as a

parameter in the AVM program of the next iterator. Again note, that the implementation

of the iterators have nothing compression-speci�c about them (just like AVM) so that the

same set of query iterators can be applied to compressed and uncompressed databases.

4.2 Query Optimization

To get the best possible query plans in the presence of compression, two small adjust-

ments to the (physical) query optimizer are required. These adjustments are necessary

because the best query plan for an uncompressed database might not be the best query

plan for a compressed database. Since compression impacts the size of base relations and

intermediate results, compression (ideally) also impacts join ordering and the choice of

join methods. An (index) nested-loop join might, for example, be favorable for a query

in a compressed database because the inner relation �ts in memory due to compression,

whereas a merge join might be favorable for the same query in an uncompressed database

because neither relation �ts in memory due to the absence of compression. One impor-

tant point to notice, however, is that a query plan that shows good performance in an

uncompressed database will also show good performance in a compressed database so that

an optimizer that lacks these adjustments will produce acceptable plans for compressed

databases. The purpose of the two adjustments we list in the following, therefore, is to

�nd as-good-as-possible query plans for compressed databases.

The �rst and most important adjustment we suggest is to make the cost model of the

optimizer \compression-aware." If the optimizer's cost model is compression-aware, the

optimizer will automatically choose the (index) nested-loop join plan in the example of

the last paragraph because this plan has lower cost than the merge join plan, and the

optimizer will also automatically generate a plan with the right join order in the presence

of compression. To make the optimizer's cost model \compression-aware," we need to

carry out the following two steps:

1. The cost model ought to account for the CPU costs to decompress �elds of tuples.

Given the techniques presented in Section 3 and the optimizer's estimates for the

cardinality of base relations and temporary results, these CPU costs are very easy

to predict, and therefore, can easily be considered in the optimizer's cost model.

2. The memory requirements and disk IO estimates of every iterator need to be ad-

justed because they are signi�cantly smaller in the presence of compression. The

exact savings due to compression are di�cult to predict because they depend on the

characteristics of the data set; for the light-weight compression techniques we used

in this work, however, we found that savings of 50% per compressed attribute is a

good rule of thumb.



The second adjustment we propose is to make the optimizer decide whether temporary

results should be compressed or not. If large temporary results must be written to disk

(e.g., for sorting), it is sometimes good to compress those �elds that are not already

compressed (e.g., results of aggregate functions) �rst in order to save disk IO. If, however,

the sort can be carried out in memory completely because the temporary results are small

or if there are no CPU cycles left to be spent, then it does not make sense to compress

�elds because no advantage can be expected from compression.

4.3 Implementation Status

We have implemented the extensions to the storage manager described in Section 3 and

most of the extensions to the query engine described in this section as part of the AODB

project using C++ as a programming language. At this point, the only component

that is not working well is the query optimizer. This de�ciency is, however, not due to

compression. It is due to the fact that the system has been growing dramatically in the

last couple of months, so that we have not been able to keep the optimizer's up-to-date

in order to consider all di�erent join and group-by methods we have implemented.

One important observation we made is that our changes to the query execution engine

(extended iterator model and AVM) helped to improve the performance of queries on

compressed and uncompressed databases: in both cases, we observed savings in CPU

costs by more than a factor of two due to these changes. Also, integrating compression

into the storage manager did not a�ect the performance of queries on uncompressed data

(see Section 3.3.1). Not a�ecting the performance of queries on uncompressed data was

very important for us because it allowed us to explicitly study the performance tradeo�s

of database compression, which is the subject of the next section.

5 TPC-D Benchmark Results

In this section, we will present the results of running the TPC-D benchmark [TPC95] on

a compressed database using the techniques described in the previous two sections. To

study the performance tradeo�s of database compression, we compare these results with

the results of the TPC-D benchmark on an uncompressed database. We will �rst describe

the details of our implementation of the TPC-D benchmark, and then the database sizes,

the bulk loading times, and the running times of the seventeen queries and two update

functions.

5.1 Implementation of the TPC-D Queries and Update Func-

tions

As mentioned before, we used the AODB database system as an experimental platform.

AODB is pretty much a textbook relational database system with the special features

described in Sections 3 and 4 (e.g., extended iterator model, AVM, etc.). Since the

AODB optimizer does not currently work very well, we had to craft the query plans for



the TPC-D queries and update functions by hand. In doing so, we were guided by the

query plans produced by commercial database systems for the TPC-D queries. The plans

were mostly left-deep with group-by operators sitting at the top of the plans (i.e., we

did not consider any early aggregation alla [YL94, CS94]). Grace-hash and block nested-

loop were the preferred join methods [HR96, HCLS97], and we also used hashing for

most of our group-by operations. The plans (including the memory allocation) we used

for the compressed and uncompressed databases were identical; that is, we �rst found a

good plan for a query using the uncompressed database, and then ran this plan on the

compressed and the uncompressed database. As described in Section 4.2, this approach

was conservative: it might have been possible to achieve better response times on the

compressed database with compression-speci�c query plans so that the results we present

can, in some sense, be seen as a lower bound for the performance improvements that can

be achieved by compression.

In our implementation of the TPC-D benchmark we did not use any indexes. The current

version of AODB supports a rudimentary implementation of B-trees as the only index

structure, and our B-tree index scans were simply too expensive for the kind of heavy-

weight TPC-D queries|regardless of whether compression was used or not. It should

be noted that indexes do not a�ect the performance tradeo�s of database compression.

First, indexes can be implemented and work completely independently from base data

compression if a �ne-grained compression technique is used. Second, indexes reduce the

number of disk IOs to execute a query; at the same time, however, indexes also reduce

the amount of data that needs to be decompressed so that indexes reduce the bene�ts

and overhead of compression by the same proportion.

To compress the TPC-D database, we used the following compression techniques: we

used numeric compression as described in Section 3.2.1 for all integers and decimals, and

we used dictionary-based compression for all ag �elds as described in Section 3.2.3.

We turned all CHAR(n) strings into VARCHARs and compressed the length information of

VARCHARs as described in Section 3.2.2. We did not use any Hu�man coding or so to

further compress strings. We felt that using such sophisticated compression techniques

for long string �elds (e.g., comments in the TPC-D tables) would have been unfair in

favor of compression because they would have resulted in high compression rates (i.e.,

high IO savings) without paying the price for this compression as these �elds are rarely

used in the TPC-D queries. Also, we did not compress any date �elds, and we did not

compress the REGION and NATION tables as they �t into a single page on disk.

We ran all TPC-D queries and update functions on compressed and uncompressed databases

with scaling factor SF=1. The machine we used was a Sun Ultra I workstation with a 167

MHz processor and 400 MB of main memory. To execute the queries, however, we limited

the size of the database bu�er pool to 24 MB. The databases were stored on a 4 GB

Seagate Barracuda disk drive, and we had another 4 GB Seagate Barracuda disk drive

to store temporary results of queries. The operating system was Sun Solaris Version 2.5.

We con�gured AODB to use 4 KB as the page size.



Table Compressed Uncompressed

lineitem 427,360 758,540

order 132,164 177,900

partsupp 112,588 124,600

part 24,120 29,680

customer 22,916 28,256

supplier 1,412 1,640

nation 4 4

region 4 4

total 720,568 1,120,634

Table 3: Size in KB of the Compressed and Uncompressed Tables (SF=1)

5.2 Size of the Compressed and Uncompressed Databases

Table 3 shows the size of the compressed and uncompressed databases. Depending on

the TPC-D table, we achieved compression rates between 10% and 45%. The highest

compression rate we achieved was for the LINEITEM table because the LINEITEM table has

many numerical values (integers, decimals etc.) that we did compress. On the other hand,

the fraction of (long) string values for which we only compressed the length information

was quite high in the other tables so that we did not achieve high compression rates for

these tables. As a rule of thumb, we found that our light-weight compression techniques

achieve about 50% compression rate on those �elds which we did compress. As stated

above, we did not compress the REGION and NATION tables because they �t into a single

4 KB page.

5.3 Loading the Compressed and Uncompressed Databases

Table 4 shows the times to bulkload the compressed and uncompressed databases. We

observe that the bulkloading times tend to be 20% to 50% higher for compression. While

compression does reduce the cost to write (new) pages to disk, bulkloading is a CPU-

bound operation because bulkloading involves parsing the input �le a character at a time.

Typically, we had more than 90% CPU utilization during bulkloading both the compressed

and the uncompressed databases, and compressing tuples which is part of bulkloading has

very high CPU overhead; much higher in fact than decompressing tuples. We do not show

the bulk loading times for the REGION and NATION tables in Table 4 because they were

too small to be measured.

5.4 Running Times of the TPC-D Queries and Update Func-

tions

Table 5 lists the running times, CPU costs, and CPU utilization of the seventeen queries

and two update functions of the TPC-D benchmark. Just looking at the results for the

seventeen queries, we observe that compression never looses; that is, in all these queries



Table Compressed Uncompressed

lineitem 17:13.8 11:31.5

order 3:06.9 2:08.1

partsupp 1:35.2 1:14.3

part 27.3 17.4

customer 22.4 15.1

supplier 1.5 1.2

total 22:47.1 15:27.6

Table 4: Time (min:secs) to Bulkload the TPC-D Database (SF=1)

the bene�ts due to reduced IO costs outweigh the CPU overhead of compression. The

performance improvements due to compression, of course, depend on the kind of query;

i.e., the selectivity of the predicates, the number of joins and the tables involved in the

joins, the presence of ORDER BY and GROUP BY clauses, and on the columns used in the

expressions and in the result of the query. In six cases (Q1, Q6, Q14, Q15, Q16, and

Q17), we found compression to improve the running time by a factor of two or even more,

whereas we only found two cases (Q3 and Q11) in which the savings in running time were

less than 20%.

Looking closer at the CPU costs and CPU utilizations of the queries, we can see how

important it is to implement compression in such a way that the CPU overhead of com-

pression is as small as possible. None of these queries has 100% CPU utilization, but

CPU utilizations of more than 75% are pretty common, if compression is used. A naive

decoding algorithm that does not take advantage of decoding tables (see Section 3.3.3),

alone, would triple the CPU costs of decompression for most queries. Increasing the CPU

costs by a factor of three would not only eat up all the bene�ts of reduced disk IO, it

would result in overall much higher running times for the compressed database than for

the uncompressed database.

Turning to the results of the update functions, we observe that compression does increase

the running time of update function UF1 by a factor of two. UF1 inserts about 6000

tuples which are speci�ed in a text �le into the database, and we see basically the same

performance degradation due to compression as in the bulkloading experiments (see Ta-

ble 4). The tuples can be appended to the ORDER and LINEITEM tables with fairly little

disk IO so that CPU costs for parsing the text �le dominate the running time of UF1 and

compression looses due to the high cost to compress tuples. For update function UF2, on

the other hand, compression wins by a signi�cant margin. Update function UF2 deletes

6000 ORDER and LINEITEM tuples and involves a fair amount of disk IO in order to �nd

the right tuples to delete. Compression saves costs to carry out these disk IOs and has an

additional advantage in this particular case: compression has (almost) no additional CPU

overhead in this case because tuples that are deleted need not be decompressed. (Only

the primary keys need to be decompressed in order to �nd the right tuples to delete.)



Query Compressed Uncompressed

Update Time CPU %-CPU Time CPU %-CPU

Q1 64.7 60.6 93.7 121.2 40.3 33.3

Q2 24.2 8.8 36.4 28.7 6.0 20.9

Q3 166.5 112.5 67.6 188.7 84.6 44.8

Q4 113.6 76.3 67.2 177.8 65.3 36.7

Q5 96.0 76.4 79.6 154.0 59.2 38.4

Q6 53.9 32.0 59.4 121.0 24.8 20.5

Q7 107.0 81.0 75.7 162.6 60.9 37.5

Q8 86.6 66.2 76.4 146.4 41.8 28.6

Q9 226.5 167.0 73.7 280.4 138.2 49.3

Q10 133.1 84.5 63.5 197.5 63.1 31.9

Q11 21.5 8.0 37.2 24.5 5.0 20.4

Q12 107.7 88.7 82.4 168.1 76.5 45.5

Q13 80.5 47.5 59.0 149.8 34.3 22.9

Q14 63.6 42.0 66.0 128.0 31.3 24.5

Q15 60.8 45.0 74.0 120.7 34.2 28.3

Q16 84.3 44.4 52.7 175.3 42.8 24.4

Q17 109.3 68.8 62.9 246.9 57.0 23.0

UF1 1.2 1.2 100.0 0.6 0.6 100.0

UF2 253.2 50.5 19.9 418.6 63.3 15.1

total 1854.2 1161.4 62.6 3010.8 929.2 30.9

Table 5: TPC-D Power Test: Running Time (secs), CPU Cost (secs), and CPU Utilization

(%)

6 Conclusion

In this work, we showed how compression can be integrated into a database system. While

there has been a large body of related work describing speci�c database compression

algorithms, this paper is the �rst paper that really describes in full detail and at a low

level how these algorithms can be built into a database system. Our experience shows

that such low-level considerations are very important to make compression perform well

because the execution of many queries involves the decompression of millions of tuples.

We de�ned the layout of compressed tuples in which variable-length �elds are separated

from �xed-length �elds and compressed �elds are separated from uncompressed �elds.

This layout allows direct access to �xed-length �elds, and it allows to compress individual

�elds without a�ecting other (uncompressed) �elds. Furthermore, we developed very fast

encoding and decoding algorithms so that compressed �elds can be accessed almost as

fast as uncompressed �elds.

In addition to the low-level storage manager issues for the integration of compression,

we described the (novel) design of our AODB query execution engine with its extended

iterator model and AVM for very fast expression evaluation during query execution. The

development of the highly tuned AODB query engine was triggered by our work on high-

performance compression, but there is nothing compression-speci�c about the AODB



query engine and the enhancements are good for any kind of database system, including

systems that provide no support for compression at all.

As a result of all these e�orts, we were able to show that compression can signi�cantly

improve the performance of database systems, in addition to providing disk space savings.

We implemented the TPC-D benchmark on a compressed and an uncompressed database

and saw that compression improves the running times of queries by a factor of two or

slightly more in many cases. For read-only queries, we could not �nd a single case in

which compression would result in worse performance. These observations indicate that

compression should de�nitely be integrated into decision support systems (or data ware-

houses) that process a great deal of TPC-D style queries. The experiments also showed

that CPU costs continue to be an important factor of query performance, even consid-

ering today's hardware trends. It is, therefore, important to implement the techniques

proposed in this work in order to achieve good performance with compression.

While compression shone brightly for read-only queries, we did see signi�cant performance

penalties for insert and modify operations. In particular, insert operations tend to be

very CPU-bound and with the techniques we use, compressing a tuple has signi�cantly

higher CPU cost than decompressing a tuple so that we cannot foresee that compression

is going to improve the performance of OLTP-style applications any time soon.
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