
[22] S. T. Shenoy and Z. M. Ozsoyoglu. A system for semantic query optimization. In

Proc. of the ACM SIGMOD Conf. on Management of Data, pages 181{195, San

Francisco, May 87.

[23] P. Valduriez. Join indices. ACM Trans. Database Syst., 12(2):218{246, Jun 1987.

[24] S. Zdonik and D. Maier. Fundamentals of object-oriented databases. In S. Zdonik

and D. Maier, editors, Readings in Object-Oriented Databases, pages 1{32. Morgan-

Kaufman Publ. Co., 89.

44

[9] G. Graefe and D. DeWitt. The EXODUS optimizer generator. In Proc. of the ACM

SIGMOD Conf. on Management of Data, pages 160{172, San Francisco, 1987.

[10] G. Huet. Con
uent reductions: Abstract properties and applications of term rewrit-

ing systems. Journal of the ACM, 27(4):797{821, 1980.

[11] M. Jarke and J. Koch. Query optimization in database systems. ACM Computing

Surveys, pages 111{152, Jun 1984.

[12] B. P. Jeng, D. Woelk, W. Kim, and W. L. Lee. Query processing in distributed

ORION. In Proc. of the EDBT (Extending Data Base Technology) Conf., Venice,

Italy, Mar 1990.

[13] A. Kemper and G. Moerkotte. Access Support Relations: an index structure for

object bases. Technical Report 17/89, Fakult�at f�ur Informatik, Universit�at Karlsruhe,

D-7500 Karlsruhe, Oct 1989. Submitted for publication to: Information Systems

(accepted subject to revision).

[14] A. Kemper and G. Moerkotte. Access support in object bases. In Proc. of the ACM

SIGMOD Conf. on Management of Data, pages 364{374, Atlantic City, NJ, May

1990.

[15] A. Kemper and G. Moerkotte. Advanced query processing in object bases using

access support relations. In Proc. of The Conf. on Very Large Data Bases (VLDB),

pages 290{301, Brisbane, Australia, Aug 1990.

[16] K. C. Kim, W. Kim, and D. Woelk. Acyclic query processing in object-oriented

databases. In Proc. of the Entity Relationship Conf., Italy, Nov 1988.

[17] M. K. Lee, J. C. Freytag, and G. M. Lohman. Implementing an optimizer for func-

tional rules in a query optimizer. Technical Report RJ 6125, IBM Almaden Research

Center, San Jose, CA, 1988.

[18] K. Lehnert. Regelbasierte Beschreibung von Optimierungsverfahren f�ur relationale

Datenbankanfragesprachen. PhD thesis, Technische Universit�at M�unchen, 8000

M�unchen, West Germany, Dec 1988.

[19] G. M. Lohman. Grammar-like functional rules for representing query optimization

alternatives. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages

18{27, 1988.

[20] D. Maier and J. Stein. Indexing in an object-oriented DBMS. In K. R. Dittrich and

U. Dayal, editors, Proc. IEEE Intl. Workshop on Object-Oriented Database Systems,

Asilomar, Paci�c Grove, CA, pages 171{182. IEEE Computer Society Press, Sep

1986.

[21] P. G. Selinger et al. Access path selection in a relational database management

system. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 23{34,

Boston, Ma., Jun 1979.

43

to transform the (simple) example query. However, for experimentation and evaluation

purposes the performance is quite su�cient. In order to gain performance the term

rewriting rules may be converted to C transformation routines.

In summary, we showed that access support relations as an indexing scheme in con-

junction with rule-based query optimization provide a very promising road to performance

enhancement of query processing in object bases.

Acknowledgement

P. C. Lockemann's continuous support of our research is gratefully acknowledged. Further,

we would like to express our thanks to our students W. H�afelinger, A. Horder, U. Oetken,

H. Ott, A. Papapostolou, K. Peithner, A. Saad, H. Spies, M. Steinbrunn, R. Waurig, and

A. Zachmann for their help in \getting the prototype running." Especially K. Peithner

(query evaluator), H. Spies (pattern matcher), and R. Waurig (transformation rules and

search heuristics) worked on the realization of the GOM modules that were described

in this paper. Our colleagues|and most recent GOM project members|C. Kilger and

H.-D. Walter carefully read a preliminary draft of this paper.

References

[1] M. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dittrich, D. Maier, and S. Zdonik.

The object-oriented database system manifesto. In Proc. of the DOOD Conference,

pages 40{57, Kyoto, Japan, Dec 1989.

[2] D. S. Batory, T. Y. Leung, and T. E. Wise. Implementation concepts for an extensible

data model and data language. ACM Trans. Database Syst., 13(3):231{262, Sep 1988.

[3] E. Bertino and W. Kim. Indexing techniques for queries on nested objects. IEEE

Trans. Knowledge and Data Engineering, 1(2):196{214, Jun 1989.

[4] M. Carey and D. J. DeWitt. An overview of the EXODUS project. IEEE Database

Engineering, 10(2):47{53, Jun 1987.

[5] M. J. Carey, D. J. DeWitt, and S. L. Vandenberg. A data model and query language

for EXODUS. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages

413{423, Chicago, Il., Jun 1988.

[6] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic

query optimization. ACM Trans. Database Syst., 15(2):162{207, Jun 1990.

[7] J. Duhl and C. Damon. A performance comparison of object and relational databases

using the Sun benchmark. In Proc. of the ACM Conf on Object-Oriented Program-

ming Systems and Languages (OOPSLA), pages 153{163, San Diego, Ca., Sep. 1988.

[8] J. C. Freytag. A rule-based view of query optimization. In Proc. of the ACM SIGMOD

Conf. on Management of Data, pages 173{180, San Francisco, 1987.

42

evaluation this is only true for the \inner" variables. In the above example a boolean

variable for the greater node would be generated to hold the result of the evaluation

of the corresponding subgraph. This value has to be recomputed only if the variable e

changes its value.

Further we adhere to principles of dependent and late binding. The �rst concept|

dependent binding|is realized whenever a restriction in the binding list of the term

applies. This is the case if, e.g., an access support relation is applicable. Assume, for the

above example, the existence of an access support relation [[Emp:WorksIn:Mgr]]

can

. Then,

the optimizer could have generated the following term representation:

(retrieve :B ((e EMP) (m (getasr [[Emp:WorksIn:Mgr]]

can

:R true

:S (= #0 e)

:P (#2))))

:S (and (> (path e Salary) 200000)

(< (path e WorksIn Pro�t) 0))

:P m)

Then m would only be bound to the managers of the department the employee e works

in. Note, however, that this term is not optimal. The binding of e could be performed by

an additional projection on the last column of the access support relation. As we see most

work to apply dependent binding is already done by the query optimizer when selection

predicates are moved into the binding list.

The principle of late binding states that terms are only evaluated when there value

is needed. This is especially useful if the selection predicate is an and term containing

entries which \consult" di�erent variables. In the above example we could evaluate both

entries in the remaining selection predicate before binding m. This way m is not bound

for employees not satisfying the selection predicate.

9 Conclusion

In this paper we have shown how access support relations can be utilized in query eval-

uation against object bases. The access support manager which controls and maintains

the access support relations has been implemented in C and runs on a DEC station 3100

under Ultrix. We described the essential parts|consisting of 14 term rewriting rules, each

a representative of a larger rule group|of a rule-based query optimizer. The complete

query optimizer was realized in Lisp and consists of a core of about 90 rules dealing with

access support relations|aside from the trivial simpli�cation rules.

Utilizing the rule-based approach we were able to realize the prototype with relatively

modest e�ort. The rule-based design is particularly amenable to

� incorporating new rules due to revised evaluation strategies or new indexing struc-

tures

� researching di�erent search heuristics to �nd a near-optimal evaluation plan without

exhaustive search.

The performance of the query optimizer is|in the current prototype version|not

really su�cient for a production quality system. It took, for example, about a second

41

��

��

query

?

��

��

and

�

�

�

�

�

�

�

�

�

�

�

�9 ?

X

X

X

X

X

X

X

X

X

X

X

Xz

��

��

=

�

�

�

�

�

�� ?

��

��

>

�

�

�	

@

@

@R

��

��

<

?

H

H

H

H

H

Hj

��

��

var m

?

(path

Emp WorksIn Mgr)

X

X

X

X

X

X

X

X

X

X

X

Xz

(path Emp Salary)

@

@

@R

��

��

const

200000

(path

Emp WorksIn Pro�t)

�

�

�

�

�

�

�

�

�

�

�

�9

��

��

const 0

��

��

var e

?

(scan Mgr) (scan Emp)

Figure 6: Query Evaluation Graph for the Running Example

join or semijoin depending on the projected columns and the selection predicate which (if

possible) is distributed over the joins.

Since common subexpressions are mapped onto the same node within G this|in

general|results in an acyclic graph and not in a tree. This is especially important if

some access support relation partitions are shared by several access support relations.

We illustrate the translation process by the above example. The term

8

(retrieve :B ((e EMP) (m MANAGER))

:S (and (= m (path e WorksIn Mgr))

(> (path e Salary) 200000)

(< (path e WorksIn Pro�t) 0))

:P m)

is translated into the graph that is shown in Figure 6.

8.2 Translating the Graph Representation into Executable Code

In the last step this graph representation of the query is translated into executable code.

For every node occurring in the graph a variable is declared to hold the result of the

evaluation of the corresponding subgraph. A computed value then remains valid until

at least one variable holding the value of a subnode changes. During the nested-loop

8

For the purpose of this discussion we assume that optimizer was not able to transform the term.

40

a successor rule group associated or a successor rule. This avoids many useless tests for

possible rule applications. The applied successor rule may also depend on the history of

the term considered.

The �rst choice for a strategy to process a query term is, of course, to �rst prolong and

then split the path expressions in such a way that the existing access support relations be-

come applicable. Then to introduce the getasr operations, move the selection predicates

inwards, then move the getasr operations to the binding list and remove the retrieve. If

this fails a strategy where new access support relations are temporarily created (mkasr)

or appended (appendasr) is followed. The application of joins is delayed to a point where

all other strategies failed. Since every strategy demands a di�erent rule group net, there

exists one corresponding net for each strategy. With each term the current strategy is

associated. The strategy is changed if there is no more successful rule application within

the considered rewriting mode. The successor strategy may depend on the structure of

the term and on its history.

We now come to the management of terms which is highly interconnected with rule

processing. At the beginning of the optimization process there is only one term. This term

is put into the list of active terms which is controlled by the environment manager . After

a successful rule application the result replaces the only term in the active terms list. This

is the default for most of the rules. If alternatives have to be considered|as in the case

of the application of appendasr or mkasr rules|the result term of a rule application

does not replace the original term but is (by default) added to the beginning of the list of

active terms. This results in a depth �rst search. Other search strategies can be speci�ed

as well. This is necessary if the optimization is stopped by some criterion before all terms

are optimized to the normal form where no further rule application is possible. If there is

a change in the rule application strategy, the term is saved in the list of optimized terms

before starting a new optimization phase. The last step of processing is done by polishing

the resulting terms, e.g., taking care of access support relation partitions, eliminating

common subexpressions within a query term, etc. If the resulting list of optimized terms

contains more than one term the cost model [14] will be applied and the terms will be

ordered accordingly. The cheapest term is then chosen according to the recorded database

characteristics and translated into an executable query evaluation plan.

8 Evaluating Optimized Terms

8.1 Translation of Terms into a Graph Representation

In order to perform a nested-loop evaluation the optimized terms are �rst translated into

an acyclic directed graph G = (�; <). This graph results from introducing one node for

each subterm in the term to be translated. Thus there exist query- (including subqueries),

variable-, constant-, and-, asr-, join-nodes, etc. The resulting nodes are then ordered by

< where n

1

< n

2

means that n

1

must be evaluated before n

2

.

Special treatment is necessary for the getasr nodes. So far we have only considered

access support relations under no decomposition, i.e., [[t

0

:A

1

: � � � :A

n

]]

X

. According to

our convention this should have been denoted more precisely as [[t

0

:A

1

: � � � :A

n

]]

(0;n)

X

. In-

troduction of access support relation partitions is now straightforward. For each getasr

applied to a decomposed access support relation the di�erent parts are connected by a

39

d

&%

'$

Mgr

&%

'$

m

&%

'$

e

&%

'$

WorksIn

&%

'$

Pro�t

&%

'$

Salary

&%

'$

=

-�-

�

�

�

�

�

��

=

?

6

-

�

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

[[EMP.Salary]]

can

[[EMP.WorksIn.Mgr]]

can

Figure 5: Access Support Relation Overlay

For each group of rules a mode of application can be given. This mode is either all

or single. If all is de�ned, all rules of this mode are applied until no further rule of this

group is applicable. An example of a rule group where all is speci�ed as the application

mode is the moving selection predicates inwards group. If single is speci�ed there will be

at most one successful rule application of a member of the respective group every time

the rule group is visited by a term. Since there are rules which may be better in some

sense, the rules within a rule group may be ordered.

The successor group from which the next rules are to be applied are declared by

de�ning the rule group net. This net of rule groups is described by giving a successor

group for each rule group for the case that at least one rule applied successfully and|a

di�erent one|for the case that all rules failed to match. To give an example, if there

is a successful application of a getasr introducing rule, the successor is the rule group

containing rules to move selection predicates inwards. If there is no further possibility to

introduce a getasr operation the successor group is the one trying to move set valued

terms into the binding list whenever possible.

Further there are two special rule groups for simplifying expressions one for simpli�ying

Boolean expressions and one for simplifying set expressions. Since application of these

rule groups may not interfere with the order in which the other rule groups are applied,

they are invoked only if necessary and without change to the successor rule group. This

is described by specifying simbool and/or simset in the rule group net for each rule group

where the corresponding set of simpli�cations might be worthwhile to attempt.

Sometimes it does make sense not to obey the default successor rule group given by the

net. Instead one might want to choose the application of a di�erent rule group, or even

the application of a certain rule. As an example consider the rule group prolonging. The

standard successor group in the case of successful application of a rule is the introduction

of a getasr operator. But if the prolonging has been beyond what is covered by an access

support relation subsequent splitting is reasonable. Thus, with every rule there may be

38

d

&%

'$

Mgr

&%

'$

m

&%

'$

e

&%

'$

WorksIn

&%

'$

Pro�t

&%

'$

Salary

&%

'$

=

-�-

�

�

�

�

�

��

=

?

6

-

�

�

�

�

�

�	

Figure 4: Graphical Representation of the Selection Predicate

De�nition 7.1 (connection-path) In this directed graph we call a sequence of nodes

N

0

; N

1

; : : : ; N

m�1

; N

m

a connection-path between nodes N

0

and N

m

i� there exist directed

edges between N

i

and N

i+1

for (0 � i < m). 2

For each existing access support relation [[t

0

:A

1

: � � � :A

n

]]

x

we then analyse whether it is

possibly usable in the evaluation of the selection predicate. This depends on the extension

X. We will outline the algorithm:

if X = can then

�nd a range variable x of type � t

0

|remember that this requires that x is

bound to a set of elements of type t

0

or a subtype thereof|and connection-

paths from x to A

1

and from A

i

to A

i�1

for (1 � i < n)

if X = left then

�nd a range variable x of type � t

0

and �nd the greates p � n such that

connection-paths from x to A

1

and from A

i

to A

i�1

for (1 � i < p) exist

if X = right then

�nd the smallest q for (0 � q < n) such that a range variable x of type � t

q

and connection-paths from x to A

q+1

and from A

i

to A

i�1

for (q < i < n)

exist

if X = full then

�nd the smallest q and the largest p for (0 � q < p � n) such that a range

variable x of type � t

q

and connection-paths from x to A

q+1

and from A

i

to A

i�1

for (q < i < p) exist

The above algorithm re
ects the applicability de�nition of access support relations (cf. Def-

inition 3.6).

Example 7.2 The analysis of possible access support relations is graphically shown in

Figure 5.

In this case|since both ASRs are in canonical extension|we had to �nd a complete

\overlay" of the access support relation path within the directed graph. This is indicated

by the (di�erently) dashed lines. 3

7.2 Rule Organization

The basis of optimizing the rewriting process consists of organizing the rules into groups

of rules with similar intention.

37

7.1 Detection of \Usable" Access Support Relations

The foremost goal of the optimization heuristics is the e�ective utilization of existing

access support relations. Thus, the selection predicate has to be analyzed with respect to

the existing access support relations, the de�nition of which is obtained from the schema

manager . For this analysis the selection predicate of a retrieve term is transformed

into a directed graph structure within which the search for \introducible" ASRs can be

performed e�ciently.

In this analysis we will make two simplifying assumption:

� attributes de�ned in di�erent types of the database schema are named di�erently. It

is easy to relax this restriction|we would just have to maintain the types together

with the attribute name in the subsequent graph representation.

� the selection predicate of the query term consists of a non-nested conjunction. Also

this restriction has been relaxed in our actual implementation.

The directed graph representation of the selection predicate is de�ned as follows (note

that this graph representation is only used to �nd \matching ASRs|it is not used for

further optimization or evaluation steps):

1. for each range variable and for each attribute that occurs in some path expression

a node is introduced which is labelled with the range variable or the attribute,

respectively.

2. for each path expression (path x A

i

: : :A

j

) introduce edges from (the node labelled)

x to (the node labelled) A

i

and from A

l

to A

l+1

for i � l < j.

3. for each term (� (path y B

r

: : : B

q

) (path x A

i

: : : A

j

))

7

introduce the following

edges|depending on �

� if � 2 f=; seteqg then

introduce an edge from B

q

to A

j

and from A

j

to B

q

� if � = in then

introduce an edge from A

j

to B

q

Example 7.1 Let us reconsider a term representation of our running example:

(retrieve :B ((e EMP) (m MANAGER) (d DEPT))

:S (and (= d (path e WorksIn))

(= m (path d Mgr))

(< (path d Pro�t) 0)

(> (path e Salary) 200000))

:P m)

The graph representation of the selection clause is shown in Figure 4. For illustration

purposes we labelled the edges that were introduced due to some operation � among two

access support relations. 3

7

For simplicity, we assume that a term consisting of a single range variable x is represented as (path x).

36

heuristic

 evaluator

cond
mgr

transf
mgr

tool-

box rule
application

pattern

matcher

environment manager

transformation rules

optimized
query alternativesquery

heuristics

Schema Manager

- types
- access support relations

Figure 3: The Module Structure of the Rule Interpreter

35

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

B = ((x) ASRexpr)

3. Q=

�

r

S = true

4. Q=

�

r

P = x

THEN [T14]

1. Q=

�

r

��
!
ASRexpr

and exhaustive manner there would be the problem of exponential explosion of the search

space. Thus guidance is needed to govern the deductive process of term rewriting. We

have developed a number of technics to solve this problem.

The architecture of the rule interpreter is outlined in Figure 3. The query optimizer

was designed in a highly modular, and thus extensible fashion. Therefore, the heuristics as

well as the transformation rules that constitute the essential ingredients of the optimizer,

can be adapted and extended. This is indicated by the \input-arrows" associated with

the two components.

The query optimizer contains a general heuristic evaluator which can interpret any

heuristic that was built according to some speci�cations. This enables us to experiment

with vastly di�erent heuristics in order to analyze their performance. The heuristic eval-

uator governs the optimization process. It mainly interfaces with three modules:

� the tool box , which provides an extensive set of operations to analyse a term. For

example, the algorithms that transform the selection predicate into a directed graph

(cf. Section 7.1) which better supports the detection of \introducible" access support

relations are part of the tool box.

� the pattern matcher , which is used to match patterns against the query term, and

� the condition manager which is used to evaluate whether the preconditions for

applying certain transformation rules are satis�ed.

In general, the optimization process has to be performed in the context of the existing

database types and access support relation schemes, both of which are maintained by the

schema manager .

The environment manager constitutes a set of global variables in which the posi-

tions of \interesting" patterns within the query term are maintained. Furthermore, the

environment manager stores bookkeeping variables that are used in the process of rule

application. Also, the list of alternative query terms is maintained by the environment

manager .

The rule application manager controls the transformation rules and ensures that, after

transforming the query term by the transformation manager , the necessary polishing steps

are performed.

Because of space limitations we cannot provide a detailed description of the query

optimization process. Rather, we pick a few interesting topics and discuss these in more

detail: the detection of introducible access support relations and the organization of rules

into rule groups.

34

IF

1. Q=

�

r

0 = getasr

2. Q=

�

r

30 6= or

3. Q=

�

r

3j = (� #i TERM)

4. i is at the border of some partition of the ASR Q=

�

r

1

THEN [T13]

1. Q=

�

r

2��
!
Q=

�

r

3j

2. Q=

�

r

3j��
!

true

Example 6.6 Using this rule we can now move the selection predicates of our example

into the restriction clause.

(retrieve :B ((d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R true

:S (in #0 (untuple (getasr [[EMP:SALARY]]

can

:R true

:S
(> #1 200000)

:P #0)))

:P (#1 #2)))

:S (and (< (path d Pro�t) 0))

:P m)

T13

��
!

(retrieve :B ((d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R (in #0 (untuple (getasr [[EMP:SALARY]]

can

:R (> #1 200000)

:S true

:P #0)))

:S true

:P (#1 #2)))

:S (and (< (path d Pro�t) 0))

:P m)

3

6.13 Deletion of the Retrieve Operator

If the selection predicate is empty and only one variable is left in the binding list then we

may remove the outer retrieve. More formally the following rule T14 is valid.

7 The Rule Interpreter and Search Heuristics

In this section we introduce the governing strategies and mechanisms utilized in our query

optimizer. This is a very important issue since if the rules were applied in an unordered

33

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S0 6= or

3. Q=

�

r

Si = (in (x

1

: : :x

n

) ASRexpr)

4. Q=

�

r

Bb

j

= (x

j

type

j

) for 1 � j � n

THEN [T12]

1. append(Q=

�

r

B; ((x

1

: : : x

n

) ASRexpr))

2. remove(Q=

�

r

Si)

3. remove(Q=

�

r

Bb

j

) for 1 � j � n

(retrieve :B ((m MANAGER) (d DEPT))

:S (and (in (d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R true

:S (in #0 (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0)))

:P (#1 #2)))

(< (path d Pro�t) 0))

:P m)

T12

��
!

(retrieve :B ((d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R true

:S (in #0 (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0)))

:P (#1 #2)))

:S (and (< (path d Pro�t) 0))

:P m)

3

6.12 Introduction of Restriction Predicates

The following rule group introduces restriction predicates. It can only be applied once

since there is only one restriction term allowed. Thus this operation is left to the end of

the term rewriting to choose the most selective term for restriction. This rule T13 can be

applied if the term concerns only the entry attribute of the getasr operation (cf. section

5.1 for the semantics of the :R clause). Exploiting the restriction predicates for e�ciently

evaluating an access support relation operation on the basis of the (redundant B

+

tree)

storage model of the ASR partitions is the task of the ASR-Manager|and not further

elaborated here.

32

(retrieve :B ((e EMP) (m MANAGER) (d DEPT))

:S (and (in (
e

d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R true

:S true

:P (#0 #1 #2)))

(< (path d Pro�t) 0)

(in e (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0))))

:P m)

T10;T11

�����
!

(retrieve :B ((m MANAGER) (d DEPT))

:S (and (in (d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R true

:S (in #0 (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0)))

:P (#1 #2)))

(< (path d Pro�t) 0))

:P m)

Note that the optimization includes the removal of the range variable e (by application

of T11) from the binding and from the projection list of the getasr term because e is no

longer referenced within the selection predicate. 3

6.11 Moving Predicates into the Binding List

A predicate that evaluates to a constant, e.g., a predicate that is based on the evaluation

of a getasr expression, should be moved into the binding list of the enclosing retrieve

term. This avoids the nested loop evaluation by iterating exhaustively over all elements of

the speci�ed types. The general transformation rule T12 can be applied for this purpose.

The meta-variable ASRexpr matches any kind of access support relation operation, e.g.,

a getasr or joinasr expression.

Example 6.5 The following transformation that utilizes rule T12 almost concludes the

optimization of our example query:

31

In the formulation of T10 we used two metavariables: RESTR matching any restriction

predicate and ASRselect which matches a selection predicate within the getasr expres-

sion.

6.10 Removal of Range Variables

There are several transformations after which a range variable of the query term may be-

come obsolete. Examples are the path substitution rules (T1 and T2) and the preceding

rule T10 for propagating selection predicates into the getasr expression. If the predi-

cate propagated into the getasr term constituted the second last reference to the range

variable e

l

within the enclosing retrieve term we may also delete e

l

from the in list and,

concurrently, the projection on column #i

l

has removed from the :P clause. Furthermore,

the range variable e

l

may be removed from the binding clause of the enclosing retrieve

term|thereby reducing the number of nested loops of the associated query evaluation

plan. The rule for removing range variables is stated as rule T11.

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

Bb = (e

l

BINDING)

3. Q=

�

r

S

�

a

i = (in (e

1

: : : e

l

: : : e

k

) (getasr [[t

0

:A

1

: � � � :A

n

]]

X

:R RESTR

:S ASRselect

:P (#i

1

: : :
#i

l

: : :#i

k

)))

4. nrOccurrences(Q=

�

r

, e

l

) = 2

THEN [T11]

1. Q=

�

r

S

�

a

i ��
!

(in (e

1

: : : e

l�1

e

l+1

: : : e

k

) (getasr [[t

0

:A

1

: � � � :A

n

]]

X

:R RESTR

:S ASRselect

:P (#i

1

: : :#i

l�1

#i

l+1

: : :#i

k

)))

2. remove(Q=

�

r

Bb)

Analogous rules exist for the other operations on access support relations, likemkasr,

appendasr, joinasr.

Example 6.4 Consider the following transformation steps which illustrate the full use

of T10 in combination with T11.

30

6.8 Introduction of Union

If \nothing else works" a disjunctive selection predicate may be evaluated separately, with

the possibility of �rst transforming the predicate into disjunctive normal form. Rule T9

constitutes one such \last resort" to evaluate a disjunction.

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S = (or orArg

1

: : :orArg

n

)

THEN [T9]

1. Q=

�

r

��
!

(union (retrieve :B Q=B :S orArg

1

:P Q=P)

: : :

(retrieve :B Q=B :S orArg

n

:P Q=P)

6.9 Moving Selection Predicates Inwards

The following rule group can be applied to move selection predicates \inwards." In rule

T10 the meta-variable C can be any set valued term, e.g., a term with outer operator

getasr. The predicate that matches the range variable e

l

against the constant (set) C is

IF

1. Q=

�

r

= retrieve

2. Q=

�

r

S

�

a

0 = and

3. Q=

�

r

S

�

a

i = (in (e

1

: : : e

l

: : : e

k

) (getasr [[t

0

:A

1

: � � � :A

n

]]

X

:R RESTR

:S ASRselect

:P (#i

1

: : :#i

l

: : :#i

k

)))

4. Q=

�

r

S

�

a

j = (in e

l

C)

THEN [T10]

1. Q=

�

r

S

�

a

i��
!
(in (e

1

: : : e

l

: : : e

k

) (getasr [[t

0

:A

1

: � � � :A

n

]]

X

:R RESTR

:S (and (in #i

l

C)

ASRselect)

:P (#i

1

: : : i

l

: : :#i

k

)))

2. remove(Q=

�

r

S

�

a

j)

moved inside the getasr expression. This has two distinct advantages:

1. the ASR-Manager has to move fewer tuples to the query evaluator (during run-

time).

2. one occurrence of the range variable e

l

is eliminates. This brings us one step closer

to the goal to completely eliminate range variables from the query|remember, each

range variable incured one level of nesteing in the evaluation.

29

6.7 Further Operators on Access Support Relations

6.7.1 Creating Temporary Access Support Relations

If there exists a path for which no access support relation is given one may introduce a

temporary access support relation using the operator mkasr. The most straightforward

representative from this rule group is formulates as T7. The rules for utilizing such

a temporary access suppport relation are analogous to counterparts in the preceding

sections.

IF

1. Q=

�

v

= (path x A

1

: : :A

m

)

2. set-valued((path x A

1

: : :A

m

))

THEN [T7]

1. Q=

�

v

��
!

(untuple (mkasr [[type(x):A

1

: � � � :A

m

]]

:S (= #0 x)

:P #m))

6.7.2 Joining Access Support Relations

A predicate based on the comparison of two path expressions for both of which an ap-

plicable access support relation exists may be transformed into the join of the two access

support relations as exempli�ed in rule T8.

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S

�

v

= (� (path x A

i

: : :A

j

) (path y B

k

: : :B

l

)) with � 2 f=; 6=;�; <;>;�g

3. Applicable([[s

0

:A

1

: � � � :A

m

]]

X

; type(x):A

i

: � � � :A

j

)

4. Applicable([[t

0

:B

1

: � � � :B

n

]]

X

0

; type(y):B

k

: � � � :B

l

)

THEN [T8]

1. Q=

�

r

S

�

v

��
!

(in (x y) (joinasr [[s

0

:A

1

: � � � :A

m

]]

X

[[t

0

:B

1

: � � � :B

n

]]

X

0

:J (� #j #(m+ 1 + l))

:P (#(i� 1) #(m+ 1 + k)))

The :J denotes the join predicate which, in this case, it matches the j

th

column of the

�rst ASR with the (m+ 1 + l)

th

column of the second ASR.

Since the join may be a very costly operation one should try every other possibility

before committing this transformation T8.

Having committed the join operation one should try to optimize the join as much as

possible. If the enclosing retrieve term contains a selective binding for x and y, e.g.,

:B (: : : (x C

1

) : : : (y C

2

) : : :)

then these should be propagated inside the joinasr operation by replacing the ASRs by

equivalent getasr terms. The selective bindings should then be moved into the :S clauses

of the respective getasr term in order to minimize the number of joined tuples.

28

interconnected paths shown in the precondition (3) of the rule T6. Thereby, rule T6

may be essential to achieve the utilization of an existing ASR over the segmented path

expression. In rule T6 the (k+1)-ary tuple (e

0

e

1

: : : e

k

) is matched against the set of

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S0 = and

3. The following terms exist for l

j

2 IN with �

j

2 f=; ing (1 � j � k):

(i) Q=

�

r

Sl

1

= (�

1

e

1

(path e

0

A

i

0

+1

: : :A

i

1

))

(ii) Q=

�

r

Sl

2

= (�

2

e

2

(path e

1

A

i

1

+1

: : :A

i

2

))

.

.

.

(k) Q=

�

r

Sl

k

= (�

k

e

k

(path e

k�1

A

i

k�1

+1

: : :A

i

k

))

4. Applicable([[s

0

:A

1

: � � � :A

n

]]

X

; type(e

0

):A

i

0

+1

: � � � :A

i

k

)

THEN [T6]

1. Q=

�

r

Sl

1

��
!

(in (e

0

e

1

: : : e

k

) (getasr [[s

0

:A

1

: � � � :A

n

]]

X

:R true

:S true

:P (#i

0

#i

1

: : :#i

k

)))

2. remove(Q=

�

r

Sl

j

) for 2 � j � k

tuples obtained in the getasr expression.

Example 6.3 The rule T6 can be applied to our running example in order to match the

range variables e, d, and m against the access support relation [[EMP.WorksIn.Mgr]]

can

.

(retrieve :B ((e EMP) (m MANAGER) (d DEPT))

:S (and (= d (path e WorksIn))

(= m (path d Mgr))

(< (path d Pro�t) 0)

(in e (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0))))

:P m)

T6

��
!

(retrieve :B ((e EMP) (m MANAGER) (d DEPT))

:S (and (in (e d m) (getasr [[EMP:WorksIn:Mgr]]

can

:R true

:S true

:P (#0 #1 #2)))

(< (path d Pro�t) 0)

(in e (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0))))

:P m)

3

27

(retrieve :B ((e EMP) (m MANAGER) (d DEPT))

:S (and (= d (path e WorksIn))

(= m (path d Mgr))

(< (path d Pro�t) 0)

(in e (untuple (getasr [[EMP:SALARY]]

can

:R true

:S (> #1 200000)

:P #0))))

:P m)

Note, that there is no ASR to evaluate the path expression (path d Pro�t)|therefore

this term cannot be substituted by a more e�cient getasr operation. 3

6.6 Multi-Target Expressions

So far, we have utilized access support relations only for path expressions that are involved

in a comparison predicate with a constant (c). Let us now consider comparisons with range

variables (or even with other path expressions).

6.6.1 Bi-Connected Expressions

A two-target expression may, for example, have the form (in y (path x A

i

: : : A

j

)), where

y and x are both range variables. If at all possible, one should try by using rules like

T1 and T2 (path substitution) to eliminate one of the two range variables. But this is

not always possible. Therefore, the next rule provides for utilizing an existing ASR to

support the evaluation of such a two-target expression. Note however, that this rule T5

should only be applied if there is no chance to eliminate one of the range variables. This

is controlled by the heuristics (cf. Section 7).

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S

�

v

= (� y (path x A

i

: : :A

j

)) with � 2 f=; ing

3. Applicable([[s

0

:A

1

: � � � :A

n

]]

X

; type(x):A

i

: � � � :A

j

)

THEN [T5]

1. Q=

�

r

S

�

v

��
!

(in (x y) (getasr [[s

0

:A

1

: � � � :A

n

]]

X

:R true

:S true

:P (#(i� 1) #j)))

In this rewrite rule T5, the range variables x and y are grouped to form tuples that

are matched against the tuples returned by the getasr expression.

6.6.2 Multipily-Connected Paths

The rule T5 can be generalized to multipily-connected path expressions. Note that further

references to the range variables e

i

for (1 � i � k) may obstacle the prolonging of the

26

together with an intermediate simpli�cation to remove the nested ands.

(retrieve :B ((e EMP) (m MANAGER))

:S (and (= m (path
e WorksIn

Mgr))

(< (path e WorksIn Pro�t) 0)

(> (path e Salary) 200000))

:P m)

T3;T1

���
!

(retrieve :B ((e EMP) (m MANAGER)

(d DEPT))

:S (and
(= d (path e WorksIn))

(= m (path d Mgr))

(< (path
d

Pro�t) 0)

(> (path e Salary) 200000))

:P m)

Note, that this transformation actually results in a less e�cient query evaluation plan

of the retrieve term. This \step backwards", however, is only committed by the optimizer

if it eventually leads to a subsequent transformation step that will utilize an access support

relation which vastly optimizes the evaluation. 3

6.5 Utilization of ASRs for Single-Target Path Expressions

A selection predicate based on a path expression for which an applicable access support

relation exists should be transformed into an equivalent operation on the access support

relation. Rule T4 provides the basis for this transformation:

IF

1. Q=

�

v

= (� (path x A

i

: : :A

j

) c) with � 2 f =; >; �; <; � g

2. isConst(c)

3. Applicable([[s

0

:A

1

: � � � :A

m

]]

X

; type(x):A

i

: � � � :A

j

)

THEN [T4]

1. Q=

�

v

��
!

(in x (untuple (getasr [[s

0

:A

1

: � � � :A

m

]]

X

:R true

:S (� #j c))

:P (#(i� 1))))

Attributes of the access support relations are referenced by their position, e.g., #j

references the (j + 1)

nth

attribute (the �rst attribute is denoted #0).

Example 6.2 Application of the above rule yields for our running example:

(retrieve :B ((e EMP) (m MANAGER) (d DEPT))

:S (and (= d (path e WorksIn))

(= m (path d Mgr))

(< (path d Pro�t) 0)

(> (path e Salary) 200000))

:P m)

T4

��
!

25

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S0 6= or

3. Q=

�

r

Si = (� arg

1

arg

2

)

4. arg

p

= (path x A

1

: : :A

m

B

1

: : :B

n

) with m � 1; n � 0; p 2 f1; 2g

5. single-valued((path x A

1

: : :A

m

))

6. nrOccurrences(Q; y) = 0

THEN [T3]

1. append(Q=

�

r

B; (y type((path x A

1

: : :A

m

))))

2. Q=

�

r

Sip ��
!

(path y B

1

: : :B

n

)

3. Q=

�

r

Si ��
!

(and Q=

�

r

Si

(= y (path x A

1

: : :A

m

)))

We had to add \(y type((path x A

1

: : : A

m

)))" to the binding list of the directly en-

closing retrieve. Then, in further transformation steps, y may be substituted for any other

path pre�x \(path x A

1

: : : A

m

)" giving rise to the following abstract example:

: : :

(and (= y (path x A

1

: : :A

m

))

(� TERM (path x A

1

: : :A

m

D

r

: : :D

q

))

: : :)

: : :

��
!

: : :

(and (= y (path x A

1

: : :A

m

))

(� TERM (path y D

r

: : :D

q

))

: : :)

: : :

The combination of T3 (splitting) and T1 and T2 (substitution of path pre�x) can be

used to factor out common path pre�xes in order to avoid multiple reference traversal along

the same reference chain. This is built-into the search heuristics of the term rewriting

system (cf. Section 7).

Example 6.1 Consider again our running example. In the remainder of this section we

will transform this example step by step under the assumption that the following two

access support relations exist:

� [[EMP.Salary]]

can

and

� [[EMP.WorksIn.Mgr]]

can

Then the �rst step of our optimization is to factor out common subpaths that could be

supported by an existing access support relation. Here, the rules T3 and T1 are applied

24

(retrieve :B ((e BINDING) BINDING LIST)

:S (and (in e (path v A

i

: : :A

j

))

(in T (path e A

j+1

: : :A

l

))

SEL PREDICATE)

:P PROJ)

��
!

(retrieve :B (BINDING LIST)

:S (and (in T (path v A

i

: : :A

j

A

j+1

: : :A

l

))

SEL PREDICATE)

:P PROJ)

The substitution may be applied if e does not occur free in SEL PREDICATE , T (stand-

ing for a term) and PROJ . The general rule for this substitution is stated as T2|again,

the rule is generalized to handle nested retrieve terms as well. Precondition (7) requires

that e occurs exactly three times in the retrieve term at position Q=

�

r

: once in the bind-

ing list, and in the two predicates at positions Q=

�

r

S

�

a

p and Q=

�

r

S

�

a

q. In precondition (5)

we require that the \
attened" range of the path expression is a subset of the range of

the variable e. This is determined on the basis of the types of the path expression and

the range variable, i.e., it is deduced from the subtype/supertype relationship determined

from the database schema.

IF

1. Q=

�

r
= retrieve

2. Q=

�

r

S

�

a

0 = and

3. Q=

�

r

S

�

a

p = (in e (path v A

i

: : :A

j

))

4. Q=

�

r

S

�

a

q = (in arg

1

(path e A

j+1

: : :A

l

))

5.
atRange((path v A

i

: : :A

j

)) � range(e)

6. Q=

�

r

Bb = (e BINDING)

7. nrOccurrences(Q=

�

r

; e) = 3

THEN [T2]

1. Q=

�

r

S

�

a

q ��
!

(in arg

1

(path v A

i

: : :A

j

A

j+1

: : :A

l

))

2. remove(Q=

�

r

S

�

a

p)

3. remove(Q=

�

r

Bb)

There is another rule which allows prolonging if the intermediate (connecting) range

variable e is further quali�ed only in a disjunction, i.e., in a term of the form

(or TERM

1

TERM

2

: : :)

In this case e may be eliminated even if it occurs in more than one disjunct TERM

i

.

6.4 Splitting Path Expressions

Splitting of path expressions may be needed to \factor out" the subpath that is supported

by an existing access support relation [[t

0

:A

1

: � � � :A

n

]]

X

. We will provide the rule for linear

paths only|an analogous rule exists for set-valued path expressions.

Let y be a new variable not occurring anywhere in the entire term Q|this condition

is stated in condition (6) of rule T3.

23

abstract example the range variable e is itself generalized to a linear path expression (path

x A

1

: : :A

m

). Furthermore, as opposed to the abstract example rule T1 is generalized to

nested retrieve terms.

IF

1. Q=

�

r

0 = retrieve

2. Q=

�

r

S

�

a

0 = and

3. Q=

�

r

S

�

a

i = (= (path x A

1

: : :A

m

) (path y B

1

: : :B

n

))

4. Q=

�

r

S

�

a

j = (� arg

1

arg

2

) with � 2 f =; in; <; �; >; �; : : :g

5. i 6= j

6. arg

p

= (path y B

1

: : :B

n

A

m+1

: : :A

m+k

) with p 2 f1; 2g

THEN [T1]

1. Q=

�

r

S

�

a

jp ��
!

(path x A

1

: : :A

m

A

m+1

: : :A

m+k

)

In this rule the path expression \(path y B

1

: : :B

n

A

m+1

: : :A

m+k

)" is replaced by the

equivalent path expression \(path x A

1

: : :A

n

A

m+1

: : :A

m+k

)". The equivalence of the

two path expressions is ensured by the term at position Q=

�

r

S

�

a

i. The motivation behind

this rewriting rule is indicated by the choice of meta-variable names for attributes, i.e.,

A

1

, : : : , A

m

, A

m+1

, : : : , A

m+k

. One uses this rule T1 to \line up" a path expression for

which an access support relation [[t

0

:A

1

: � � � :A

n

]]

X

exists.

6.3.2 Prolonging a Set-Valued Path Expression

The formulation of the rules for prolonging set-valued path expressions require some care

in order to guarantee that the transformation yields a semantically equivalent term. Let

us illustrate the intrinsic problem on the following (counter) example:

(retrieve :B ((m MANAGER) (c CAR))

:S (and (in c (path m Cars))

(= `Jaguar' (path c Make))

(= 150 (path c HorsePower)))

:P m)

6�

(retrieve :B ((m MANAGER))

:S (and (in `Jaguar' (path m Cars Make))

(in 150 (path m Cars HorsePower)))

:P m)

The left-hand retrieve term �nds all MANAGERs who own a `Jaguar' with 150 Horse-

Powers. The right-hand term, however, retrieves the MANAGERs who own one CAR

made by `Jaguar' and one CAR (the same one or another one) that has 150 HorsePower .

Therefore, the rule T1 for prolonging linear paths has to be properly restricted for set-

valued path expressions because only special cases guarantee semantic equivalence after

prolonging a path expression involving a set-valued attribute. For example, a prolonging

is|at least|possible if the intermediate range variable e is quali�ed only once in the :S

clause. An abstract example is as follows:

22

8. analogously,
atRange(p) returns for a set-valued path expression p the \
attened"

range.

Additionally, the in�x functions +;�, etc. are evaluated at rule application time if

they specify a column number in a projection clause.

Each of the subsequent subsections will present a rule group|except for the next sub-

section. For each rule group we exemplify the rules therein with a representative rewriting

rule which, whenever possible, is illustrated by application to our running example. The

optimization is separated into three main phases. First is a preprocessing phase intro-

duced in the next subsection which is followed by the main optimization phase where the

di�erent rules are applied (subsequent subsections).

6.2 Preprocessing

First, the negations are eliminated. Further there exist two sets of rules which serve to

simplify expressions. One is for the simpli�cation of Boolean expressions, the other serves

to simplify set expressions. These rule groups stand somewhat outside the regular rule

system and are applied whenever necessary (cf. Section 7).

6.3 Prolonging Path Expressions

In order to utilize an existing access support relation [[t

0

:A

1

: � � � :A

n

]]

X

to evaluate a query

it may be necessary to �rst prolong the path expressions contained in the :S clause. This

may be essential to make the access support relation applicable (cf. De�nition. 3.6)|

depending on the extension X of the respective ASR. The reader should recall that, for

example, the cannonical extension of an access support relation [[t

0

:A

1

: � � � :A

n

]]

can

can only

be utilized if the path expression originates in t

0

and leads to t

n

via the attribute chain

A

1

: � � � :A

n

.

6.3.1 Prolonging a Linear Path Expression

Let T be a retrieve term in which the :S clause contains a linear path expression of

the following form (all capitalized words denote term variables, and e and v denote term

variables for range variables only):

T �

2

6

6

6

4

(retrieve :B ((e BINDING) BINDING LIST)

:S (and (= e (path v A

i

: : : A

j

))

SEL PRED)

:P PROJ LIST)

3

7

7

7

5

Then the following transformation can be applied throughout the SEL PRED of the term

T , not a�ecting nested retrieves where e is not free:

(path e A

j+1

: : :A

l

) ��
!

(path v A

i

: : :A

j

A

j+1

: : :A

l

)

A further simpli�cation is possible if|after the transformation|the range variable e is

not further quali�ed in T . In this case \(e BINDING)" may be dropped from the binding

clause and the term \(= e (path v A

i

: : : A

j

))" can be dropped from the :S clause.

Having motivated prolonging on the above (abstract) example let us now formulate the

rule T1 which handles the general case of linear path expressions|that is, in terms of our

21

i�

�

v

=

�

w

i, and L=

�

w

= (L

0

: : : L

n

). The last two functions needed are append and

frontappend which append a list to the end or the front of a list, respectively. Thus

append(L=

�

v

; L

0

) := L=

�

v

! (L

1

: : :L

n

L

0

)

and

frontappend(L=

�

v

; L

0

) := L=

�

v

! (L

0

L

1

: : : L

n

)

if L=

�

v

= (L

1

: : : L

n

).

Our rule system does not contain rules which apply unrestrictedly. Rather, in order

to guarantee semantic correctness they have the form

IF condition-part THEN rewrite-part

The condition-part consists of a list of conditions logically connected by and. The rewrite-

part consists of a list of rewrite speci�cations which are all executed if the rule is applied

to a term. This is done only if the condition-part is satis�ed.

The following additional evaluable functions may occur in a rule speci�cation. They

allow the computation of arguments to operators which play a role in the applicability

test of a rule or within the rewrite part. Analogous to the above rewriting functions they

are written in italics. The number of occurrences of a list L

0

in a list L will play a major

role as a precondition to the rewrite rules speci�ed below. The number of occurrences

nrOccurrences : IL� IL! IN

is de�ned as

nrOccurrences(L;L

0

) := jf

�

v

jL=

�

v

= L

0

gj:

where IL denotes the set of all lists.

The list of evaluable functions further contains:

1. Applicable(a; p), returning true if the access support relation a is applicable for

evaluating the path p.

2. single-valued(p), returning true if the path p is single-valued.

3. set-valued(p), returning true if the path p is set-valued.

4. type(x) returns for an expression x its type.

5. FlatTargetType(p) returns for a set-valued path p the type of the elements of the

result set.

6. isConst(c) returns true if c is a constant or a set of constants

7. range(p) constitutes the result set of evaluating the path expression p. However, the

range predicate is|in the term rewriting system|used to relate two path expres-

sions in the form

range(p) � range(p

0

)

where the satisfaction can be deduced based on the syntactical super/sub-type re-

lationship without actually evaluating the range of either path expression p or p

0

.

20

6 Transformation Rules to Optimize Term Expres-

sions

6.1 Preliminaries

The query optimization steps are described as transformation rules or term rewriting

rules [10]. A rule is given in the form l ! r which speci�es that the term l is to be

replaced by the term r . Since our term language consists only of lists we recast the major

de�nitions of [10] to �t them for lists. But �rst we introduce some notational conventions

used throughout the rest of the paper. Let IN denote the set of natural numbers, and IN

�

the set of �nite sequences of natural numbers. These sequences will be used to denote

positions within our terms. Consequently, we call them positions. The elements of IN

�

are denoted by

�

a

; : : : ;

�

z

, or � which denotes the empty sequence. For an element

�

a

2 IN

�

j

�

a

j de�nes the length of

�

a

. Concatenation of elements

�

v

;

�

w

2 IN

�

is denoted by

�

v

�

w

. We

further de�ne a partial ordering (�) on the elements of IN

�

by

�

u

�

�

w

, 9

�

v

2 IN

�

:

�

u

�

v

=

�

w

:

Thus

�

u

�

�

w

i�

�

u

is a pre�x of

�

w

.

Next we de�ne the in�x operator = de�ned for a list and a position. The result

is the sublist occurring at the speci�ed position. More formally we de�ne for a list

L = (L

0

: : : L

n

) with sublists L

i

(0 � i � n):

L=

�

v

:=

8

>

>

<

>

>

:

L if

�

v

= "

(L

i

)=

�

w

if 0 � i � n and

�

v

= i

�

w

" else

We speak of L=

�

v

as L at the position

�

v

.

In order to make the notation more mnemonic we use the following constants, B for

1, S for 2, and P for 3. These constants are used to identify the position of the :B, :S,

and :P subterm of a retrieve expression, respectively. Thus, for example, Q=

�

v

S

�

w

stands

for Q=

�

v

2

�

w

(and means the position

�

w

within the selection predicate in the retrieve term

at position

�

v

of the Query Q. Note that we do not count the labels within a list. Thus

for the de�nition of the position they are treated as non-existent.

It is sometimes hazardous to specify the rewrite process using the simple notation

L ! L

0

since we need functions with speci�c side-e�ects on our terms. Thus, we de�ne

some abbreviation with mnemonic identi�ers. This will also enhance readability. For two

lists L = (L

0

: : :L

n

) and L

0

, and a position

�

v

we de�ne the function replace:

replace(L;

�

v

; L

0

) :=

8

<

:

L

0

if

�

v

= "

(L

0

: : :L

i�1

replace(L=i;

�

w

; L

0

) L

i+1

: : :L

n

) if

�

v

= i

�

w

which is normally abbreviated by L=

�

v

! L

0

.

The function remove is de�ned as

remove(L=

�

v

) :=

�

L=

�

w

! (L

0

: : :L

i�1

L

i+1

: : : L

n

)

�

19

5.1.7 Terms

Terms, as used for the selection predicate, SELPRED and RESTR, are of the form

(op t

1

: : : t

n

) where t

1

: : : t

n

are terms. Here, op is a boolean connector, e.g., and, or,

not (in this case, n = 1), and the terms t

i

are either terms, that again, represent selec-

tion predicates, or they consist of constants, variables, or path expressions of the form

(path v A

1

: : :A

n

) for a variable v and attributes A

i

, and op being a comparator, e.g.,

=, >, in, seteq, etc.

Additionally to the main operators introduced so far there exist some more technical

operators like unset and untuple. The operator unset turns a singleton, i.e., a set with

a single element, into this element. The untuple operator returns for a set of tuples with

a single column the projections onto this column.

5.2 Translation of Retrieve Expressions into Term Represen-

tation

The initial translation of a retrieve expression into a term is straightforward. The range

clause is translated into a binding list, marked :B, the retrieve clause into a projection

list :P, and the where clause into a selection predicate pre�xed with :S.

Example 5.1 To make things more concrete we give the translation of the query in

Example 2.2 into the corresponding term representation:

(retrieve :B ((e EMP) (m MANAGER))

:S (and (= m (path e WorksIn Mgr))

(< (path e WorksIn Pro�t) 0)

(> (path e Salary) 200000))

:P m)

3

This not yet optimized term expression gives way to a very simplistic evaluation: the

nested loop evaluation. The strategy is to convert the terms of the binding list into nested

loops and for each binding of the range variables separately evaluate the :S clause.

In the term resulting from the translation of a query all negations are eliminated in

the usual way using de Morgan's law and reverting the comparators.

5.3 Evaluation of Term Expressions

In this short subsection we give a sneak preview of how terms are evaluated. In order

to evaluate a term it is translated into executable code which then is executed. This

translation follows the nested-loop paradigm. For the above example term we get the

following code.

foreach e in EMP do

foreach m in MANAGER do

if

m = e.WorksIn.Mgr and e.WorksIn.Pro�t > 0 and e.Salary > 200000

then

output(m);

The problem of translating terms into executable code is discussed in more detail in

Section 8.

18

(getasr ASR :R RESTR :S SELPRED :P PROJ)

This operator retrieves tuples (projected onto the attributes in the PROJ list) from an

access support relation ASR, for which RESTR ^ SELPRED is satis�ed. The :R clause

is used to give explicit entries into the B

+

tree used to guarantee fast access to the tuples

in the access support relations. Thus

6

, the RESTR predicate can only refer to attributes

at the left and/or right of an access support relation partition.

5.1.3 Creating Temporary Access Support Relations

In order to avoid the nested loop evaluation of queries it may be more advantageous to

create a temporary access support relation:

(mkasr ASRSPEC :S SELPRED :P PROJ)

This operator materializes a new temporary access support relation. ASRSPEC is the

speci�cation of an access support relation as de�ned in De�nition 3.4. The result contains

the projection speci�ed by PROJ of those tuples of the speci�ed access support relation

which satisfy the selection predicate SELPRED.

5.1.4 Extending an Existing ASR

(appendasr ASR PATHEXPR :S SELPRED :P PROJ)

The appendasr operator is utilized to extend an existing access support relation

beyond the originally de�ned attribute chain

5.1.5 Joining Two Access Support Relations

Each of the two operators above returns an internal main memory representation of an

access support relation, ASR. Besides those new operators dealing with access support

relations there exist some useful operators from relational algebra, e.g., join, semijoin,

union, etc.

(joinasr ASR ASR :J JOINPRED :S SELPRED :P PROJ)

The same syntax as for the join term applies for the semijoin operator.

(semijoinasr ASR ASR :J JOINPRED :S SELPRED :P PROJ)

In the latter case the projection is restricted to columns of the �rst ASR.

5.1.6 Scanning Type Extensions

The scan operator scans the extension of the typeTYPE for objects satisfying the selection

predicate SELPRED. Note that the selection predicate must be restricted to concern only

attributes within an object of type TYPE. Thus, it is not allowed to reference objects

other than of type TYPE.

(scan TYPE :S SELPRED)

6

This limitation is due to the storage structure of ASRs|discussed in Section 3 on page 13.

17

5 The Term Language: A Neutral Query Represen-

tation Language

5.1 The Term Language

One of the main arguments for the term language used here is that every term corresponds

to a query evaluation plan. The second argument is the simplicity of the �rst translation

step of translating queries in the QUEL-like language into the term representation. Of

course, this step may be more complicated for other query languages than the one used

here. But then at least the indepencence of the term language from the query language

guarantees that only the preprocessing phase of the query optimizer has to be redesigned.

In the following we represent terms in pre�x notation utilizing (general) lists with

the operator being the �rst element of the list. The other list elements represent the

arguments of the operator. We will often use mnemonic labels (denoted by :L for a

label L) to increase readability. To avoid representing an abstract grammar for our term

language we discuss the main operators together with its intended semantics within this

section. Note that the list of introduced operators is not complete. This is due to the fact

that we cannot discuss all rules contained in our query optimizer. As a consequence we

thus concentrate on the \kernel" of the optimizer emphasizing the exploitation of access

support relations. The discussion of the term language is organized top down.

5.1.1 The Retrieve Operator

The �rst \top level" operator of the term language is the retrieve operator with the

following parameters:

(retrieve :B BINDING :S SELPRED :P PROJ)

This term|directly|yields a nested loop evaluation of the query speci�ed by the para-

meters. In the :B clause the variables are bound from left to right to every possible object

(or value) of the corresponding set. This is denoted by the list of pairs in the :B clause

each one consisting of (a) range variable(s) and a type name|which, more precisely,

stands for the extension of the type|or a set valued expression. During the evaluation

of the retrieve term the selection predicate following the label :S is evaluated on each

binding, and in the case of success the binding of the variable corresponding to the one

in the :P clause is gathered. For an example query evaluation plan see Section 5.3. Of

course, di�erent permutations of the pairs in the :B clause show di�erent performance.

But since this problem has already been excessively treated elsewhere we do not concern

ourselves herewith.

The \low level" operators which are utilized in the optimization in order to increase

performance by accessing the access support relations are discussed now.

5.1.2 Utilizing Access Support Relations

The main goal of our optimization is to exploit existing access support relations for query

evaluation. This is facilitated mainly by the getasr operator:

16

ASR-Schema

Code Generation

Selection and Polishing

Rule Application

Translation and Preprocessing

QUEL-Query

Cost Model

Rule Base

Heuristics

executable query evaluation plan

(QEP)

(near) optimal term

list of optimized terms

term representation

-

?

?

?

?

?

�

H

H

H

H

H

HY

�

�

�

�

�

��

Figure 2: Outline of the GOM Query Processing Architecture

15

The storage structure of access support relations is borrowed from the binary join

index proposal by Valduriez [23]. Each partition is redundantly stored in two B

+

-trees:

the �rst being clustered (keyed) on the left-most attribute and the second being clustered

on the right-most attribute. This storage scheme is well suited for traversing paths from

left-to-right (forward) as well as from right-to-left (backward) within the access support

relations even if they span over several partitions.

The di�erent decompositions and extensions provide the database designer a large

spectrum of design choices to tune the access support relations for particular applica-

tion characteristics ([13] contains cost models that can be used to determine the best

con�guration for a given load pro�le).

The next de�nition states under what conditions an existing access support relation

can be utilized to evaluate a path expression that originates in an object (or a set of

objects) of type s.

De�nition 3.6 (Applicability) An access support relation [[t

0

:A

1

: � � � :A

n

]]

X

under ex-

tension X is applicable for a path s:A

i

: � � � :A

j

with s � t

i�1

under the following condition|

depending on the extension X:

Applicable([[t

0

:A

1

: � � � :A

n

]]

X

; s:A

i

: � � � :A

j

) =

8

>

>

>

<

>

>

>

:

X = full ^ 1 � i � j � n

X = left ^ 1 = i � j � n

X = right ^ 1 � i � j = n

X = can ^ 1 = i � j = n

Here s � t

i�1

denotes that type s has to be identical to type t

i�1

or a subtype thereof. 2

4 Overview of the GOM Architecture

In Figure 4 the architecture of the GOM query processing system is outlined. Currently,

our optimizer supports only the declarative QUEL-like query language. In the future

we intend to support other declarative query languages as well as the optimization of

procedurally speci�ed database access.

The declarative QUEL query is validated and translated into a neutral query repre-

sentation language: the term language which is the subject to the next section. The term

rewriting system is applied to this term representation by the Rule Application module.

The Rule Base as well as the Heuristics module are designed in a highly modular and ex-

tensible fashion. The Rule Base currently comprises 90 non-trivial term rewriting rules.

Application of the rewriting rules is governed by the existing access support relations

which are determined from the ASR-Schema. The Rule Application module generates a

list of (equivalent) optimized terms of which the most e�cient is chosen in the Selection

and Polishing phase. The Cost Model forms the basis for this selection since it allows

to estimate costs incurred by di�erent query evaluation plans. The chosen term repre-

sentation is directed to the Code Generation module that transforms the term into an

executable query evaluation plan (QEP).

14

Example 3.2 For the path of Example 3.1 the full extension, which is denoted as

[[EMP.WorksIn.Mgr.Cars.Make]]

full

, looks as follows:

[[EMP.WorksIn.Mgr.Cars.Make]]

full

OID

EMP

OID

DEPT

OID

MANAGER

OID

CAR

STRING

: : : : : : : : : : : : : : :

id

1

id

5

id

8

id

11

\Jaguar"

id

2

id

5

id

8

id

11

\Jaguar"

id

2

id

5

id

8

id

12

\BMW"

id

3

id

6

id

9

| |

| id

7

id

10

id

13

\Benz"

: : : : : : : : : : : : : : :

3

This extension contains all paths and subpaths corresponding to the underlying path

expression. The �rst three tuples actually constitute complete paths which would be

present in the canonical extension as well; however the last two paths would be omitted

in the canonical extension. In the left-complete extension the �rst four tuples would

be present, whereas the last one would be omitted since it does not originate in EMP .

Analogously, the right-complete extension would contain the �rst three and the last tuple

and omit the fourth tuple since it does not \go all the way through" to a STRING

representing the Make of some CAR.

Aside from extensions, we also allow decomposition of access support relations. The

following formally de�nes valid (lossless) decompositions:

De�nition 3.5 (Decomposition) Let [[t

0

:A

1

: � � � :A

n

]]

X

be an (n+1)-ary access support

relation with attributes S

0

; : : : ; S

n

under extension X, for X 2 fcan; full ; left ; rightg.

Then the relations

[[t

0

:A

1

: � � � :A

n

]]

(0;i

1

)

X

: [S

0

; : : : ; S

i

1

] for 0 < i

1

� n

[[t

0

:A

1

: � � � :A

n

]]

(i

1

;i

2

)

X

: [S

i

1

; : : : ; S

i

2

] for i

1

< i

2

� n

� � �

[[t

0

:A

1

: � � � :A

n

]]

(i

k

;n)

X

: [S

i

k

; : : : ; S

n

] for i

k

< n

are called a decomposition of [[t

0

:A

1

: � � � :A

n

]]

X

. The relations [[t

0

:A

1

: � � � :A

n

]]

(i

j

;i

j+1

)

X

are

called partitions for (0 � j � k)

5

They are materialized by projecting the corresponding

attributes of [[t

0

:A

1

: � � � :A

n

]]

X

:

[[t

0

:A

1

: � � � :A

n

]]

(i

j

;i

j+1

)

X

:= �

(S

i

j

;S

i

j

+1

;:::;S

i

j+1

)

�

[[t

0

:A

1

: � � � :A

n

]]

X

�

If every partition is a binary relation the decomposition is called binary. The above de-

composition is denoted by (0; i

1

; i

2

; : : : ; i

k

; n). 2

5

For notational convenience let i

0

:= 0 and i

k+1

:= n.

13

[[EMP.WorksIn]]

OID

EMP

OID

DEPT

id

1

id

5

id

2

id

5

id

3

id

6

id

4

id

6

id

8

id

5

: : : : : :

[[DEPT.Mgr]]

OID

DEPT

OID

MANAGER

id

5

id

8

id

6

id

9

id

7

id

10

: : : : : :

[[MANAGER.Cars]]

OID

MANAGER

OID

CAR

id

8

id

11

id

8

id

12

id

10

id

13

id

10

id

14

: : : : : :

[[CAR.Make]]

OID

CAR

STRING

id

11

\Jaguar"

id

12

\BMW"

id

13

\Benz"

id

14

\Toyota"

: : : : : :

3

Note, that [[Emp.WorksIn]] contains also tuples like (id

8

; id

5

) that relate a MANAGER

instance to the DEPT instance that is referenced via WorksIn. This is due to the fact

that MANAGER is a subtype of EMP.

Let us now introduce di�erent possible extensions of the access support relation

[[t

0

:A

1

: � � � :A

n

]]. We distinguish four extensions:

1. the canonical extension, denoted [[t

0

:A

1

: � � � :A

n

]]

can

contains only information about

complete paths, i.e., paths originating in t

0

and leading (all the way) to t

n

. There-

fore, it can only be used to evaluate queries that originate in an object of type t

0

and \go all the way" to t

n

.

2. the left-complete extension [[t

0

:A

1

: � � � :A

n

]]

left

contains all paths originating in t

0

but

not necessarily leading to t

n

, but possibly ending in a NULL.

3. the right-complete extension [[t

0

:A

1

: � � � :A

n

]]

right

, analogously, contains paths leading

to t

n

, but possibly originating in some object o

j

of type t

j

which is not referenced

by any object of type t

j�1

via the A

j

attribute.

4. �nally, the full extension [[t

0

:A

1

: � � � :A

n

]]

full

contains all partial paths, even if they

do not originate in t

0

or do end in a NULL.

De�nition 3.4 (Extensions) Let 1 (1 ; 1 ; 1) denote the natural (outer, left

outer, right outer) join on the last column of the �rst relation and the �rst column of

the second relation. Then the di�erent extensions are obtained as follows:

[[t

0

:A

1

: � � � :A

n

]]

can

:= [[t

0

:A

1

]] 1 : : : 1 [[t

n�1

:A

n

]]

[[t

0

:A

1

: � � � :A

n

]]

full

:= [[t

0

:A

1

]] 1 � � � 1 [[t

n�1

:A

n

]]

[[t

0

:A

1

: � � � :A

n

]]

left

:=

�

� � �

�

[[t

0

:A

1

]] 1 [[t

1

:A

2

]]

�

1 � � � [[t

n�1

:A

n

]]

�

[[t

0

:A

1

: � � � :A

n

]]

right

:=

�

[[t

0

:A

1

]] 1 � � �

�

[[t

n�2

:A

n�1

]] 1 [[t

n�1

:A

n

]]

�

� � �

�

2

12

The second part of the de�nition is useful to support access paths through sets

4

. If it

does not apply to a given path the path is called linear . An access path that contains at

least one set-valued attribute is called set-valued .

For simplicity we require each path expression to originate in some type t

0

; alterna-

tively we could have chosen a particular collection C of elements of type t

0

as the anchor

of a path.

As we will see the information contained in a path can be hold in a relation. Con-

sequently, we will use relation extensions to represent access paths. The next de�nition

maps a given path expression to the underlying access support relation declaration.

De�nition 3.2 (Access Support Relation) Let t

0

; : : : ; t

n

be types, t

0

:A

1

: � � � :A

n

be a

path expression. Then the access support relation [[t

0

:A

1

: � � � :A

n

]] is of arity n+1 and has

the following form:

[[t

0

:A

1

: � � � :A

n

]] : [S

0

; : : : ; S

n

]

The domain of the attribute S

i

is the set of identi�ers (OIDs) of objects of type t

i

of

de�nition 3.1 for (0 � i � n). If t

n

is an atomic type then the domain of S

n

is t

n

, i.e.,

values are directly stored in the access support relation. 2

We distinguish several possibilities for the extension of such relations. To de�ne them

for a path expression t

0

:A

1

: � � � :A

n

we need n auxiliary relations [[t

0

:A

1

]], : : : , [[t

n�1

:A

n

]].

De�nition 3.3 (Auxiliary Binary Relations) For each i (1 � i � n)|that is, for

each attribute in the path expression|we construct the auxiliary binary relation [[t

i�1

:A

i

]].

The relation [[t

i�1

:A

i

]] contains the tuples (id(o

i�1

); id(o

i

)) for every object o

i�1

of type t

i�1

and o

i

of type t

i

such that

� o

i�1

:A

i

= o

i

if A

i

is a single-valued attribute.

� o

i

2 o

i�1

:A

i

if A

i

is a set-valued attribute.

If t

n

is an atomic type then id(o

n

) corresponds to the value o

n�1

:A

n

. Note, however, that

only the last type t

n

in a path expression can possibly be an atomic type. 2

Example 3.1 Let us re-consider the path expression of our schema Company (now we

indicate the types of the subpaths by the underbraces):

P � EMP :WorksIn

| {z }

DEPT

:Mgr

| {z }

MANAGER

:Cars

| {z }

CAR

:Make

| {z }

STRING

For this path expression the auxiliary binary relations have the following extensions:

4

Note, however, that we do not permit powersets.

11

range e : EMP, m : MANAGER

retrieve m

where m = e.WorksIn.Mgr and e.Salary > 200000 and e.WorksIn.Pro�t < 0

Even though, the predicate of this query is much more complex, the QUEL formulation

is still easy to understand. For our example object base Company the result of this query

is the one MANGER object with OID id

9

. 3

3 Access Support Relations

In an earlier paper [14] we introduced access support relations as an index structure to

support the evaluation of path expressions. They are brie
y reviewed here.

A path expression has the form

o:A

1

: � � � :A

n

where o is a tuple structured object containing the attribute A

1

and o:A

1

: � � � :A

i

refers to

an object or a set of objects, all of which have an attribute A

i+1

. Thus, the result of the

path expression is the set R

n

, which is recursively de�ned as follows:

R

0

:= fog

R

i

:=

[

v2R

i�1

v:A

i

for 1 � i � n

Thus, R

n

is a set of OIDs of objects of type t

n

or a set of atomic values of type t

n

if t

n

is

an atomic data type, such as INT .

It is also possible that the path expression originates in a collection C of tuple-

structured objects, i.e., C:A

1

: � � � :A

n

. Then the de�nition of the set R

0

has to be revised

to: R

0

:= C.

Formally, a path expression or attribute chain is de�ned as follows:

De�nition 3.1 (Path Expression) Let t

0

; : : : ; t

n

be (not necessarily distinct) types. A

path expression on t

0

is an expression t

0

:A

1

: � � � :A

n

i� for each 1 � i � n one of the

following conditions holds:

� The type t

i�1

is de�ned as type t

i�1

is [: : : ; A

i

: t

i

; : : :], i.e., t

i�1

is a tuple with an

attribute A

i

of type t

i

3

.

� The type t

i�1

is de�ned as type t

i�1

is [: : : ; A

i

: t

0

i

; : : :] and the type t

0

i

is de�ned as

type t

0

i

is ft

i

g, i.e., t

0

i

is a set type whose elements are instances of t

i

. In this case

we speak of a set occurrence at A

i

in the path t

0

:A

1

: � � � :A

n

. 2

For simplicity of the presentation we assumed that the involved types are not being

de�ned as a subtype of some other type. This|of course| would be possible; it would

only make the de�nition a bit more complex to read.

3

meaning that the attribute A

i

can be associated with objects of type t

i

or any subtype thereof.

10

2.4 The Query Language

For our object model we developed a QUEL-like query language along the lines of the

EXCESS object query language that was designed as the declarative query language for

the EXTRA object model [5].

Let x

i

be variables, T

i

set typed expressions or type names, and S a selection predicate.

Then, a query has the following form:

range x

1

: T

1

; : : : ; x

n

: T

n

retrieve x

i

where S(x

1

; : : : ; x

n

)

The selection predicate S in variables x

1

; : : : ; x

n

may consist of path expressions, compari-

son operators, set operators, boolean connectors and may also contain a (nested) retrieve

statement. Note, however, that our current implementation of the GOM query language

facilitates single-target queries only.

Example 2.1 In this example query we want to utilize the path expression which was

already described above: EMP.WorksIn.Mgr.Cars.Make The query considered is as fol-

lows:

\Retrieve the EMP loyees whose MANGER drives, among other CARs, a

Jaguar"

range e : EMP

retrieve e

where \Jaguar" in e:WorksIn:Mgr:Cars:Make

In terms of our example database shown in Figure 2.1 the result of this query is the

set fid

1

; id

2

g, i.e., the OIDs of the two qualifying EMP instances named \Versace" and

\Lagerfeld".

In an object base that provides no access support|other than the uni-directional

references|the number of pages to be accessed in the evaluation of this query is proporti-

nal to

2

#(EMP) + #(DEPT) + #(MANAGER) + #(CAR)

where #(t) denotes the cardinality of the extension of type t. This cost is induced

because|no matter how good the query evaluation algorithm performs|every instance

of the respective type has to be visited at least once. 3

Example 2.2 The following example query will be used later on in this paper for demon-

strating our query transformation rules. Again, the query is based on our Company object

base:

\Retrieve the managers of departments which generate losses and, at the

same time, pay at least one of their employees an exorbitant salary exceeding

200000."

2

If we assume that every DEPT has at least one EMP and every MANAGER manages at least one

DEPT and every CAR is used by at least one MANAGER.

9

id

1

Name: \Versace"

WorksIn: id

5

Salary: 100000

id

2

Name: \Lagerfeld"

WorksIn: id

5

Salary: 100000

id

3

Name: \Hinault"

WorksIn: id

6

Salary: 260000

id

4

Name: \LeMond"

WorksIn: id

6

Salary: 100000

id

5

Name: \Clothes"

Mgr: id

8

Pro�t: 200000

id

6

Name: \Bicycles"

Mgr: id

9

Pro�t: �100000

id

7

Name: \Shoes"

Mgr: id

10

Pro�t: 0

id

8

Name: \Boss"

WorksIn: id

5

Salary: 150000

Cars: fid

11

; id

12

g

id

9

Name: \Chief"

WorksIn: id

6

Salary: 280000

Cars: fg

id

10

Name: \Master"

WorksIn: id

7

Salary: 900000

Cars: fid

13

; id

14

g

id

11

License: \Y-B-POOR"

Make: \Jaguar"

HorsePower: 295

id

12

License: \G-O-FAST"

Make: \BMW"

HorsePower: 250

id

13

License: \B-A-BY"

Make: \Benz"

HorsePower: 180

id

14

License: \J-A-PAN"

Make: \Toyota"

HorsePower: 60

Figure 1: Example Extension of the Object Base Company

A (small) database extension based on the above schema is shown in Figure 1.

The id

j

for j = f1; 2; 3; : : :g denote the object identi�ers (OID) which are system-wide

unique. References via complex attributes are|as mentioned before|maintained uni-

directionally in GOM. For example, in an extension of the above schema there exists a

reference in the form of a stored OID from an EMP loyee to his DEPT , but not vice versa.

These references are maintained by storing the unique OID of the referenced object.

Based on the example schema, we want to give an intuitive description of a path

expression|the formal de�nition is provided in De�nition 3.1 on page 9. The following

is a path expression on the Company schema:

EMP :WorksIn:Mgr :Cars:Make

This path expression starts in some object type and|implicitly|traverses all objects

referenced by the intermediate attributes. These attributes are either single-valued, as

WorksIn, Mgr , and Make, or set-valued, as Cars. Graphically, the above path expression

can be outlined as follows:

EMP DEPT MANAGER CAR STRING

- - -- -

WorksIn Mgr Cars Make

The single arrows represent single-valued attributes, the double arrows denote set-valued

attributes.

8

strong typing GOM is strongly typed, meaning that all database components, e.g.,

attributes, set elements, etc., are constrained to a particular type and, further, that

the type correctness can be veri�ed at compile time.

instantiation Types can be instantiated to render a new object instance.

uni-directional references Even though this is actually an implementation issue, be-

cause of its relevance to our indexing scheme we want to mention here, that GOM|

like almost all other object models|maintains references from one object to another

only uni-directionally.

2.2 Type De�nitions

If s; t; t

1

; : : : ; t

n

are types, and a

1

; : : : ; a

n

are pairwise distinct attribute names then

type t [supertype s] is

[a

1

: t

1

; : : : ; a

n

: t

n

]

is a tuple structured type de�nition

1

. In this case, the supertype s must itself be a tuple-

structured type. The type t is called a (direct) subtype of s and inherits all attributes

of s (including those that s inherited from its supertype, if any).

Aside from tuple-structured types GOM provides built-in support for two collection

types: sets and list which are de�ned as follows:

type t is

fsg

type t is

< s >

Here, s has to be a tuple-structured (i.e., complex) object type or an atomic type. At

the present we do not deal with nested set types with respect to our indexing structures.

Since the access support on ordered collection, i.e., lists, is analogous to sets we will not

elaborate on list-structured types in the remainder of this paper.

2.3 Running Example

In this subsection we will introduce an example object base, called Company. This

database will be used throughout the paper to illustrate our optimization concepts. The

type de�nitions are as follows:

type EMP is

[Name: STRING,

WorksIn: DEPT,

Salary: INT];

type MANAGER

supertype EMP is

[Cars: fCARg];

type DEPT is

[Name: STRING,

Mgr: MANAGER,

Pro�t: INT];

type CAR is

[License: STRING,

Make: STRING,

HorsePower: INT]

1

We presented only the structural parts of our object type de�nitions; of course, there are type-speci�c

operations that can be de�ned by the database user.

7

considered to derive a near-optimal evaluation plan.

Related work on object-oriented query processing is reported in [12, 16] where a graph-

based approach was chosen for optimizing a limited class of queries, i.e., only queries that

correspond to an acyclic graph are considered. Also, the cited work does not take general

access support relations into account|it is based solely on (binary) indexes as known in

relational DBMSs.

The remainder of this paper is organized as follows. Our object model together with

its declarative query language is presented in Section 2. In Section 3 we outline the access

support relations as a means for access support along reference chains. Section 4 outlines

the architecture of the GOM query processing system. Then in Section 5 we develop a

term representation into which the QUEL-like queries are translated for the optimization

process. The transformation rules are discussed in Section 6. In order to reduce the

search costs we develop heuristics for the sequence of applying the transformation rules in

Section 7. In Section 8 our approach to query evaluation is outlined. Section 9 concludes

the paper with a summary and a discussion of future developments.

2 GOM and its Declarative Query Language

2.1 Main Concepts of GOM

This research is based on an object-oriented model that unites the most salient features of

many recently proposed models in one coherent framework. In this respect, the objective

of GOM can be seen as providing a syntactical framework of the essential object-oriented

features identi�ed in the \Manifest" [1]|albeit the GOM model was developed much

earlier. Similarly, Zdonik and Maier developed the so-called Reference Model in [24]. The

features that GOM provides are relatively generic such that the results derived for this

particular data model can easily be applied to a variety of other object-oriented models.

This helps to overcome the diversity of existing object-oriented models which is due to the

lack of a commonly adhered to base model which, for example, helped in the relational

database area to focus the research in one direction.

GOM provides the following object-oriented concepts:

object identity Each object instance has an identity that remains invariant throughout

its lifetime. The object identi�er is invisible for the database user; it is used by the

system to reference objects. This allows for shared subobjects because the same

object may thus be associated with many database components.

values GOM has a built-in collection of elementary (value) types, such as char , string,

integer , etc. Instances of these types do not possess an identity.

type constructors The most basic type constructor is the tuple constructor|denoted

as []|which aggregates attributes to one object. In addition, GOM has the two

built-in collection type constructors set, denoted as fg, and list, denoted as <>.

subtyping A tuple-structured type t may be de�ned as the subtype of one other tuple-

structured type t

0

which means that t inherits all attributes of the supertype t

0

.

6

1 Introduction

Record-oriented database systems, e.g., those based on the pure relational or the CO-

DASYL network model, are for a variety of reasons believed to be inappropriate for

engineering applications. Object-oriented database systems are emerging as the next gen-

eration DBMSs for|at least|the non-standard application domains. However, these

systems are still not adequately optimized: for applications which involve a lot of asso-

ciative search for objects on secondary memory they still have problems even to keep up

with the performance achieved by, for example, relational DBMSs [7]. Yet it is essential

that the object-oriented systems will yield at least the same performance that relational

systems achieve: otherwise their acceptance in the engineering �eld is jeopardized even

though they provide higher functionality by type extensibility and type-associated oper-

ations that model the context-speci�c behavior. Engineers are generally not willing to

trade performance for extra functionality and expressive power. Therefore, we conjecture

that the next couple of years will show an increased interest in optimization issues in the

context of object-oriented DBMSs. The contribution of this paper can be seen as one

important piece in the mosaic of performance enhancement methods for object-oriented

database applications.

Of course|as some authors point out, e.g., [12]|there are vast similarities between

query processing in relational DBMSs and object bases. Therefore, the large body of

knowledge of relational optimization techniques (e.g., [21, 11]) and semantic query opti-

mizer techniques, e.g., [6, 22], can be applied to object-oriented databases. However, the

full potential of the object-oriented paradigm can only be exploited for optimization if

new access support structures and their utilization in query evaluation are tailored specif-

ically for the object-oriented model(s)|and not merely assimilated from the relational

model. The access support relations (ASRs)|�rst introduced in [14]|described in this

paper constitute one such approach. Access support relations are a generalization of an

indexing technique for path expressions �rst proposed for the GemStone data model [20]

and, later, applied to ORION [3]. Whereas the GemStone (and ORION) path expressions

were limited to only single-valued attributes the access support relations allow also set-

valued attributes along the path. Also, access support relations can be maintained in four

di�erent extensions, determining the amount of reference information that is kept in the

index structure. Furthermore, an access support relation can be decomposed into arbi-

trary large partitions, which allows to adjust the indexing scheme to particular application

pro�les.

After reviewing the access support relations the second part of this paper describes

the essential parts of a rule-based query optimizer which|unlike the GemStone system|

makes the exploitation of existing access support relations entirely transparent to the

database user. Rule-based query optimization is not an entirely new idea: it is borrowed

from relational query optimization, e.g., [8, 11, 18]. [9] reports on a rule-based query

optimizer generator, which was designed for their database generator EXODUS [4]. In

the present work the idea of rule-based query optimization is utilized as a powerful tool

to integrate the new index structure based on access support relations in object-oriented

query evaluation. It is shown that the rule-based approach leads to a very modular

design of such a complex transformation system. This enables the designer to experiment

with di�erent search heuristics to limit the number of transformations that have to be

5

7 The Rule Interpreter and Search Heuristics 32

7.1 Detection of \Usable" Access Support Relations : : : : : : : : : : : : : : : 35

7.2 Rule Organization : 36

8 Evaluating Optimized Terms 38

8.1 Translation of Terms into a Graph Representation : : : : : : : : : : : : : : 38

8.2 Translating the Graph Representation into Executable Code : : : : : : : : 39

9 Conclusion 40

4

Contents

1 Introduction 4

2 GOM and its Declarative Query Language 5

2.1 Main Concepts of GOM : 5

2.2 Type De�nitions : 6

2.3 Running Example : 6

2.4 The Query Language : 8

3 Access Support Relations 9

4 Overview of the GOM Architecture 13

5 The Term Language: A Neutral Query Representation Language 15

5.1 The Term Language : 15

5.1.1 The Retrieve Operator : 15

5.1.2 Utilizing Access Support Relations : : : : : : : : : : : : : : : : : : 15

5.1.3 Creating Temporary Access Support Relations : : : : : : : : : : : : 16

5.1.4 Extending an Existing ASR : 16

5.1.5 Joining Two Access Support Relations : : : : : : : : : : : : : : : : 16

5.1.6 Scanning Type Extensions : 16

5.1.7 Terms : 17

5.2 Translation of Retrieve Expressions into Term Representation : : : : : : : 17

5.3 Evaluation of Term Expressions : 17

6 Transformation Rules to Optimize Term Expressions 18

6.1 Preliminaries : 18

6.2 Preprocessing : 20

6.3 Prolonging Path Expressions : 20

6.3.1 Prolonging a Linear Path Expression : : : : : : : : : : : : : : : : : 20

6.3.2 Prolonging a Set-Valued Path Expression : : : : : : : : : : : : : : : 21

6.4 Splitting Path Expressions : 22

6.5 Utilization of ASRs for Single-Target Path Expressions : : : : : : : : : : : 24

6.6 Multi-Target Expressions : 25

6.6.1 Bi-Connected Expressions : 25

6.6.2 Multipily-Connected Paths : 25

6.7 Further Operators on Access Support Relations : : : : : : : : : : : : : : : 27

6.7.1 Creating Temporary Access Support Relations : : : : : : : : : : : : 27

6.7.2 Joining Access Support Relations : : : : : : : : : : : : : : : : : : : 27

6.8 Introduction of Union : 28

6.9 Moving Selection Predicates Inwards : 28

6.10 Removal of Range Variables : 29

6.11 Moving Predicates into the Binding List : : : : : : : : : : : : : : : : : : : 30

6.12 Introduction of Restriction Predicates : 31

6.13 Deletion of the Retrieve Operator : 32

3

Abstract

Object-oriented database systems are emerging as the next generation databases

for non-standard applications, e.g., VLSI-design, mechanical CAD/CAM, software

engineering, etc. While the large body of knowledge of relational query optimization

techniques can be utilized as a starting point for object-oriented query optimization

the full exploitation of the object-oriented paradigm requires new, customized opti-

mization techniques|not merely the assimilation of relational methods. This paper

describes such an optimization strategy used in the GOM project which combines

established relational methods with new techniques designed for object models. The

optimization method unites two concepts: (1) access support relations and (2) rule-

based query optimization. Access support relations constitute an index structure

that is tailored for accessing objects along reference chains leading from one object

to another via single-valued or set-valued attributes. The idea is to redundantly

maintain frequently traversed reference chains separate from the object representa-

tion. The rule-based query optimizer generates for a declaratively stated query an

evaluation plan that utilizes as much as possible the existing access support rela-

tions. This makes the exploitation of access support relations entirely transparent

to the database user. The rule-based query optimizer is particularly amenable to

incorporating search heuristics in order to prune the search space for an optimal (or

near-optimal) query evaluation plan.

Categories and Subject Descriptors: H.2.0 [Database Management]: General;

H.2.2 [Database Management]: Physical Design|access methods; H.2.4 [Database

Management]: Systems|query processing

General Terms: Algorithms, Design, Performance

Additional Keywords: object-oriented databases, access support, indexing, query op-

timization, query transformation, term rewriting system, query evaluation, performance

enhancement

2

Advanced Query Processing in Object

Bases:

A Comprehensive Approach to

Access Support, Query Transformation and Evaluation

Alfons Kemper Guido Moerkotte

Interner Bericht Nr. 27/90 � September 1990

1

