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Abstract

Not only in deductive databases, logic programming, and constraint satisfaction

problems but also in object bases where each single dot in a path expression corre-

sponds to a join, the optimizer is faced with the problem of ordering large numbers

of joins. This might explain the renewed interest in the join ordering problem. Al-

though many join ordering techniques have been invented and benchmarked over

the last years, little is known on the actual e�ectiveness of the developed methods

and the cases where they are bound to fail. The problem attacked is the discovery

of parameters and their qualitative in
uence on the complexity of single problem

instances and on the e�ectiveness of join ordering techniques including search pro-

cedures, heuristics, and probabilistic algorithms. Thus an extensive analysis of the

search space is carried out, with particular emphasis on the existence of phase tran-

sitions in this space and on the in
uence the parameters have on these transitions.

Having these parameters on hand serves two important tasks. (1) For a given

heuristic, parameter combinations can be identi�ed where it performs nearly optimal

and others where it performs badly. Hence, on the one hand, we can be con�dent

about the results of a heuristic for well determined cases and, on the other hand, can

avoid the application of a heuristic where it is bound to fail. (2) When benchmarking

join ordering heuristics, one had|up to now|to choose a benchmark arbitrarily.

Given the parameters which in
uence the complexity of a join ordering problem it

becomes possible to consciously design challenging benchmarks.

Index Terms | databases, query optimization, join ordering, cyclic queries, com-

plexity, phase transition, simulated annealing, iterative improvement, heuristics.
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1 Introduction

A join ordering problem occurs whenever several joins occur. A join is the manifestation

of an evaluation of a logical conjunction. Hence, whenever several explicit or implicit

conjunctions occur between relations, predicates, or constraints an equal number of joins

occurs. For example, consider rules in deductive databases or logic programming where

the body mostly is a conjunction of predicates. Consider database queries with conjunc-

tions between relations. Especially high numbers of conjunctions are seen in generated

queries. Further, constraint satisfaction problems as well as object bases apply the notion

of conjunction. Having several conjuncts, the question in which order to evaluate them

| or, in which order to evaluate the corresponding joins | occurs immediatly since the

costs of di�erent join orders may di�er vastly. The problem of �nding an optimal join

order is typically referred to as the join ordering problem which is more precisely de�ned

in the subsequent section.

The standard, and maybe even today prevailing method to determine an optimal join

order is dynamic programming [17]. In 1984, the proof for the NP-completeness of join

ordering for cyclic queries was presented together with an algorithm ordering joins for

tree queries optimally in O(n

2

log n) time [8]. This algorithm was subsequently improved

to O(n

2

) time complexity [13]. A heuristic for join ordering applying this algorithm to the

minimal spanning tree of the join graph started the investigation of non-trivial heuristics

for join ordering [13].

Given the increasing relevance of ordering high numbers of joins, more join ordering

techniques were developed. Most predominant are those based on stochastic optimiza-

tion like simulated annealing, iterative improvement, and combinations of these or with

heuristics [9, 12, 18, 19, 20]. While all these methods were benchmarked, almost nothing

is known on the cases where the join ordering methods perform best and where they

are bound to fail. Further, the relevance of the benchmarks is still not clear. Investi-

gations in this direction are rare. Results are the NP-completeness of join ordering [8]

and characterizations of the search spaces for left-deep and bushy join trees with and

without cross products [10, 11, 16]. These investigations talk about classes of problems

or search spaces rather than single problem instances. Nevertheless, observing the be-

havior of search procedures or heuristics, there are clearly problem instances on which

they perform well and others on which they perform badly. Despite the obvious bene�t

of having this information on hand, further characterizations of these problem instances

are missing.

This situation is di�erent for other classes of problems known to be NP-complete (like

satis�ability [1, 3, 5, 15], graph coloring [1], Hamiltonian circuits [1], traveling salesman

[1], and constraint satisfaction [21]), where a whole bunch of experimental investigations

on the hardness of problem instances was initiated by Cheeseman, Kanefsky, and Taylor

[1].

This paper is a �rst step in �lling this gap for the join ordering problem. Inspired

by the above mentioned work, we designed experiments in order to detect the relevant

parameters which in
uence the hardness of single join ordering instances. The obvious

bene�ts for this case are:

1. The designer of an optimizer can classify queries such that heuristics are applied
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where they guarantee success; cases where they are bound to fail can be avoided.

Furthermore, taking into account the vastly di�erent run time of the di�erent join

ordering heuristics and probabilistic optimization procedures, the designer of an

optimizer can choose the method that achieves a satisfactory result with the least

e�ort.

2. The developer of search procedures and heuristics can use this knowledge to design

methods solving hard problems (as exempli�ed for graph coloring problems [7]).

3. The investigator of di�erent join ordering techniques is able to (1) consciously design

challenging benchmarks and (2) evaluate existing benchmarks according to their

degree of challenge.

The rest of the paper is organized as follows. Section 2 introduces the join-ordering

problem together with its parameters and speci�es the benchmarks we have carried out.

Section 3 thoroughly investigates the variations of the shape of the search space as the

parameters vary. A phase transition will be discovered. The paper then continues with

an investigation of the in
uence of the parameters on the performance of search proce-

dures (Section 4), on the e�ectiveness of heuristics (Section 5) and the performance of

probabilistic optimization techniques (Section 6). Section 7 concludes the paper.

2 General Remarks

2.1 The join-ordering problem

This subsection introduces the join-ordering problem. It can be skipped by the readers

already familiar with it. Since we built on some knowledge of the relational model we

refer the unacquainted reader to, e.g., [14].

An instance of a join-ordering problem is fully described by the following parameters.

First, n relations R

1

; : : : ; R

n

are given. Associated with each relation is its size jR

i

j, also

denoted by n

i

. Second, a query graph whose nodes are the relations and whose edges

connect two relations by an undirected graph constitutes the second parameter. The

edges of the query graph are labelled by their according selectivity. Let (R

i

; R

j

) be an

edge in the query graph. Then, the associated selectivity f

i;j

is an abstraction of a join

predicate p

i;j

:

f

i;j

:=

jft

i

� t

j

jt

i

2 R

i

; t

j

2 R

j

; p

i;j

(t

i

; t

j

)gj

jft

i

� t

j

jt

i

2 R

i

; t

j

2 R

j

gj

where j � j denotes the cardinality of a set and � denotes tuple concatenation. De�ning

the join (1) and the cross product (�) between two relations as follows

R

i

#
#
c
c

p

i;j

R

j

:= ft

i

� t

j

jt

i

2 R

i

; t

j

2 R

j

; p

i;j

(t

i

; t

j

)g

R

i

�R

j

:= ft

i

� t

j

jt

i

2 R

i

; t

j

2 R

j

g

the above de�nition of a selectivity can be rewritten to

f

i;j

:=

R

i

#
#
c
c

p

i;j

R

j

R

i

�R

j
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Since the join predicate p

i;j

is implied by the relations involved in a join, we will just write

R

i

#
#
c
c

R

j

instead of R

i

#
#
c
c

p

i;j

R

j

.

The goal of join-ordering is to give a permutation � of f1; : : : ; ng. This permutation

then corresponds to a join expression

(: : : (R

�(1)

#
#
c
c

R

�(2)

) #
#
c
c

R

�(3)

: : :) #
#
c
c

R

�(n)

:

Such a join expression is often graphically depicted as a join graph. For � being identity,

a join graph for n = 5 is depicted in Figure 1.
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Figure 1: left-deep tree

Of course, there exist n! di�erent permutations and not any one is as good as any

other one. Behind the join operators are real implementation doing the work and their

corresponding costs. This leads to the third parameter of the join-ordering problem: the

cost function. Since there exist several implementations for a join, there exist the several

di�erent according cost functions. The most common implementations of a join operator

are

1. hash loop join

2. sort merge join

3. nested loop join

The according cost functions are:

C

hc

(R

i

#
#
c
c

R

j

) := jR

i

j1:2 + jR

i

jjR

j

jf

i;j

C

smc

(R

i

#
#
c
c

R

j

) := [jR

i

j log(jR

i

j) + jR

j

j log(jR

j

j)] + jR

i

jjR

j

jf

i;j

C

nlc

(R

i

#
#
c
c

R

j

) := jR

i

jjR

j

j+ jR

i

jjR

j

jf

i;j

These deserve some comments. The �rst part of the sum results from the costs necessary

to iterate over the relations and checking the join predicate for a pair of tuples. The
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second part, the same for all cost functions, accounts for the costs of constructing the

(intermediate) result. The 1:2 of the C

hc

cost function accounts for the average length of

the collision list of the hash table.

Sometimes, only the costs of producing the intermediate results is counted for. This

is especially the case, if the intermediate results must be written to disk, since then the

costs of writing to disk clearly overpower the CPU costs for checking the join predicate.

This cost function is referred to as C

out

:

C

out

(R

i

#
#
c
c

R

j

) := jR

i

jjR

j

jf

i;j

This is the simplest considerable cost function.

For all cost functions, we will assume a binary equivalent whose input are just the

sizes n

i

and n

j

of the according relations R

i

and R

j

. For example, for C

out

, we have

C

out

(n

i

; n

j

) := n

i

n

j

f

i;j

Now, we are ready to state the join-ordering problem. Given n relations R

1

; : : : ; R

n

,

a query graph with according selectivities f

i;j

, and a cost function C

x

, determine a

permutation � such that the expression

C(�) :=

n

X

i=2

C

x

(

i�1

Y

j=1

((

j�1

Y

l=1

f

�(j);�(l)

)n

�(j)

); n

�(i)

)

is minimal among all possible n! permutations. Note that

Q

i�1

j=1

((

Q

j�1

l=1

f

�(j);�(l)

)n

�(j)

) is the

size of the (intermediate) relation resulting from joining the relations R

�(1)

; : : : ; R

�(i�1)

.

Why is the join-ordering problem a problem? First, the evaluation costs as given

by the above sum of a join order � may vastly di�er for two di�erent �. Second, it is

NP-complete, even for the simple cost function C

out

:

Theorem 2.1 The join-ordering problem with the cost model C

out

is NP-complete.

Since there exists only one proof of NP-completeness [8], where a very complex cost

function taking disk accesses of a very special block wise nested loop join implementation

is applied, we shortly sketch the proof for the C

out

cost function.

Proof 2.2 Obviously the join-ordering problem 2 NP. We will restrict the join-ordering

problem to the Clique problem which is known to be NP-complete [4]. (The question asked

in the Clique problem is, whether a graph G contains a clique of at least size K or not.)

We will represent all n nodes in a graph G by relations of cardinality 1. If there is an edge

between two nodes in G, then the according selectivity of the edge between the corresponding

relations is set to

1

2

. Now, the following is obvious: G contains a clique of size K or more,

i� C

out

(R

�

opt

(1)

1 R

�

opt

(2)

1 : : : 1 R

�

opt

(K)

) =

P

K

i=2

Q

i

j=1

Q

j�1

l=1

f

�

opt

(j);�

opt

(l)

=

1

2

+ (

1

2

)

3

+

(

1

2

)

6

+ : : :+ (

1

2

)

K(K+1)

2

where �

opt

is the optimal join-ordering of the n relations. 2
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The proof already indicates, that the query graph plays an essential role for the com-

plexity of a join-ordering problem instance. This has been made explicit by showing that

if the graph does not contain a cycle, i.e., is a tree, the join-ordering problem can be

solved in polynomial time for all of the above cost functions [8, 13, 2]. Hence, in this pa-

per we concentrate on an experimental study of the complexity of join-ordering problems

for cyclic query graphs.

2.2 Parameters

With the above it is now easy to identify the parameters by which the complexity of the

join-ordering problem is in
uenced:

1. the number of relations n,

2. the relation sizes n

i

,

3. the query graph,

4. the selectivities f

i;j

, and

5. the cost function.

We discuss each parameter in turn.

The number n of relations has a clear impact: the larger n, the more complex the

problem becomes. Since we carried out experiments for which all n! permutations were

needed many times to do meaningful averaging of results, we could not choose an n larger

than 10. For n smaller than 10, the qualitative results as presented in the next sections

remained the same and we are convinced, that this is also true for larger n. Hence, we

further restrict the number of relations to 10.

The relation sizes can be varied without such problems. Hence, we have choosen three

di�erent mean relation sizes: 2480, 24805, and 248050 since these re
ect a wide range of in

praxi occurring values. But not only the relation sizes can be varied from one join-ordering

problem to the next, also the variances of the relation sizes within a given problem.

Again, we have chosen to investigate three variances for relation sizes: 0.0, 6.594e+05,

and 8.832e+06 subsequently denoted by Var 0, Var L, and Var XL. Analogously, we have

investigated three di�erent mean values for the selectivities: 0.05, 0.15, and 0.25, and three

di�erent variances of the selectivity values within a join-ordering problem: 0.0,

1

1200

, and

1

300

. Again, in the �gures below we will refer to the di�erent variances of the selectivities

by Var 0, Var L, and Var XL. Whether we speak of relation sizes or selectivities will

always be indicated. For Var XL for selectivity values, we have a problem: the value of

0.05 is too small to achieve a variance as high as

1

300

. Hence, curves corresponding to this

parameter combination will be missing. We believe that choosing these values for mean

relation sizes, relation size variances, mean selectivites, and selectivity variances covers a

large portion of values occuring in practice. Nevertheless, we have carried out benchmarks

with other parameters. The results will not be presented in this paper, but we assure the

reader that they underline the conclusions that we will draw.

The next parameter we discuss is the query graph. Already from the NP-completeness

result above and from the knowledge that acyclic queries can be solved in polynomial time,
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we see that this is one of the most critical parameters at hand if it comes to determining

the complexity of a join-ordering problem instance. Since acyclic query graphs can be

solved in polynomial time, we concentrate on cyclic query graphs. We construct query

graphs by starting from a simple cycle involving each relation once (Fig. 2, left outermost

graph) and then adding edges as indicated in Figure 2. This is done until we reach a

certain average connectivity within the resulting graph. (The connectivity of a graph is

de�ned as the average number of edges a node is involved in.) This connectivity then

constitutes the most important parameter for our benchmarks. In fact, in all curves we

will present, the connectivity varying from 2 to 9 (for 10 relations) will be the label for

the x-axis. Nevertheless, it will become clear, that it is just a matter of representing

numbers and that the information contents of all �gures put together is not in
uenced

by this choice, i.e., is complete considering our choices of the parameters for which we

measure their in
uence on the complexity of a join-ordering problem.

Last not least, we have to �x our cost model. While we measured even more cost

models than stated above, it became quite clear to us that the additional information

and the conclusions which can be drawn from the observations from the experiments do

qualitatively not depend on the choice of the cost model. Nevertheless, we have chosen

to include at least (and at most) the experimental results for two di�erent cost models.

Once this decision was made, the choice of which representatives to take became easy.

Remembering the de�nition of the cost functions one can see that they are more or less

symmetric in their two arguments. Hence, we have chosen to give the results for C

hc

as

the most asymmetrical cost function and for C

nlc

as the most symmetrical cost function,

neglecting choices inbetween.

Figure 2: Increasing the connectivity

3 Search Space Analysis

The goal of this section is to determine the in
uence of the parameters on the shape

or structure of the search space of left-deep join trees. We are particularly interested

in the existence and position of phase transitions. More speci�cally, we are interested

in answering two questions. First, we are interested in the cost di�erence of the worst

and the best solution for the di�erent possible parameter combinations. Second, we are

interested in how a variation of the parameters impacts the phase transitions. In order to

do so, we investigate the in
uence of the parameters on the percentage of good solutions

among all solutions. The more good solutions exist, the easier the problem. Hence, within

this section we will use this as the complexity measure of a problem. A phase transition

then occurs where the complexity of a problem is highest.
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The quality of a solution is measured by the factor its cost deviates from the optimal

permutation. For each of these aspects there exists a separate subsection. The last

subsection summarizes the investigations on the search space.

3.1 The Best and the Worst Case

Each picture in �gures 3 to 6 shows the average optimum case cost and the average worst

case cost for a speci�c setting of the parameters listed above. The x-axis corresponds the

connectivity of the query graph, the y-axis to the costs.

On a �rst glance, all the pictures exhibit a similar pattern. We �rst describe and

explain the reasons for this pattern and then describe and explain the in
uence of the

di�erent parameters in detail.

� Both curves descend steadily.

Clearly, the main factor in
uencing the cost of a given join is the size of intermediate

results. This size depends both on relation sizes and on selectivities. Thus, a join

order will be the cheaper, the smaller the intermediate results are, which in turn

will be the case the more selectivities are involved and the smaller these selectivities

are. Thus the steady decrease in cost can be quite easily explained: The higher

the connectivity of a join graph, the more selectivities are involved, the smaller the

intermediate result sizes, the cheaper the join order.

� For low connectivities, the worst case and optimum cost lie very closely together.

Since a low connectivity implies that only a few selectivities exist, no big cost dif-

ferences can be obtained.

� Up to a certain (parameter depending) connectivity, the gap between the best and

the worst case grows steadily.

We assume that in order to obtain the optimal solution, the optimizer tries to

minimize intermediate results. The selectivities have the main in
uence on these

sizes, i.e. the optimizer will try to take advantage of the small selectivities as early

as possible, joining the appropriate relations �rst. On the other side, in order to

obtain the worst case, joining relations connected by an edge has to be deferred as

long as possible. With increasing selectivities, the optimizer can improve the quality

of the solution very fast by using the appropriate relations, that means, the cost for

the optimal solution will shrink quite fast with increasing selectivities. On the other

hand side, to obtain the worst case, the usage of small selectivities can be avoided

for some time, accounting for the slower decrease in worst case cost.

� At some point the curve displaying the optimum cost exhibits a bend after which it

falls slower.

After a number of relations have been joined, the intermediate result tends to be so

small that the joining of the last relations has nearly no in
uence on the total cost

of the according join order. The bend represents exactly this point.

� After this connectivity is reached, the di�erence rests more or less constant or de-

creases slightly.
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Now, with the general pattern being explained, let us have a look at the in
uence of

the various parameters:

� Cost Model

Obviously the two di�erent cost models don't have an impact on the curves, compare

for instance �gures 3 and 4. Although the curves are not identical they don't show

signi�cant di�erences.

� Relation Sizes

Figures 3 and 4 show the curves for di�erent relation sizes for the hash loop and

nested loop cost model, respectively. From left to right the mean relation size

increases by one magnitude of order for each column.

Obviously the di�erence in the cost increases with growing relation sizes. This is

not surprising, since the absolute costs increase as well.

� Variance of Relation Sizes

Within Figures 3 and 4 the relation size variances increase from top to bottom.

Again, the cost deviation increases as well. Again, the reason is quite obvious:

With highly di�ering relation sizes, extremer cost deviations can be reached, than

with relations of equal size or of only a small di�erence.

� Selectivity Sizes

Figures 5 and 6 show the curves for di�erent selectivities for both cost models.

From left to right, the mean selectivity sizes increase. As the �gures show, the gap

decreases with growing mean selectivity. At the same time, the absolute costs are

increasing. The reason for both phenomena is, that the higher the mean selectivity

is, the smaller is the di�erence in cost between a join and a cross product.

� Variance of Selectivities

Figures 5 and 6 show di�ering variances in selectivity sizes as well. These variances

increase from top to bottom. As explained in the previous section the bottom left

picture is missing, as the combination of this very low average selectivity with the

very high variance is not possible. Di�erent variances in selectivity sizes don't seem

to have an impact on the curves. The curves are more or less identical for the

di�erent variances in selectivity sizes.

3.2 The Shape of Search Space

In extensive benchmark experiments, we determined the cost of every possible permuta-

tion and compared it to the cost of the optimal solution. More speci�cally, we accumulated

the number of permutations showing less than a 10%, 50%, 100% etc. deviation from the

optimum. Figures 7-10 show the in
uence of the parameters on the shape of the resulting

curves. Again, the x-axis is labelled by the connectivity of the query graph. The y-axis

corresponds to the percentage of solutions. The di�erent curves in one picture show the

percentage of all permutations whose cost deviates from the optimum permutation by a

factor smaller than the factor by which the curve is labelled. The lowest curve is labelled

by the factor 1.1, the second lowest by a factor of 1.5, then the factors 2, 5, 10, 50, 100

and so on follow.

9



Global Picture At a �rst glance, we observe the following:

1. All pictures presented show the same global pattern: All curves have more or less a

U-shape where some pictures only display some left part of the U.

2. All curves in one picture reach their minimum at the same connectivity.

3. The position of this minimum obviously di�ers depending on the value of the pa-

rameters.

Now note following. The minima of the U curves characterize problem instances where

the percentage of good solutions to bad solutions is at a minimum. Hence, these minima

re
ect the problems of the highest complexity. Thus, the minima correspond to phase

transitions.

We further observe that the number of curves displayed in each pictures strongly

varies. The more curves are visible, the greater the variance in solution costs. Converting

the percentage of good solutions to the notion of complexity of the problem, we can state

that for each parameter combination, there exists a connectivity for which the resulting

problem is the most di�cult one since the percentage of good solutions reaches a minimum.

Besides the arguments already applied in the previous subsection, these �ndings can

be illustrated as follows. First, let us bring the observation to a point: with increasing

connectivity, the join ordering problem becomes more complex up to a certain point and

then less complex again. To see how this might happen, consider the following special,

though illustrative case. Assume equal relation sizes and equal selectivities. Then, the

optimization potential worst case/optimum is clearly larger or equal to 1. Further, it is 1

for connectivity 0 (no edges in the join graph) and 9 (a clique). In between there exists a

connectivity exhibiting the maximum optimization potential. This was already observed

in Figures 3 to 6. If we assume an almost equal distribution of the costs of all alternatives

between the costs of the best and the worst case, then the observation of the U-shapes

follows immediately from the corresponding observation on the optimization potential.

Cost Model No clear in
uence can be perceived, as e.g. a comparison of �gures 7 and

8 reveals. This is analogous to the results of previous subsection.

In
uence of Relation Sizes Figures 7 and 8 show the in
uence of varying relation

sizes. With growing mean relation sizes, the phase transition moves to the right, and the

x-position of the phase transition coincides with the x-position of the bend of the curves

in the previous section.

In
uence of Variance in Relation Sizes The higher the variance in relation sizes,

the more curves can be seen, i.e., the more di�cult the problem becomes. The position

of the phase transition is not in
uenced.

In
uence of Selectivity Sizes Figures 9 and 10 show the in
uence of the selectivities.

Changing average selectivity sizes in
uences the pictures in two ways:
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� The smaller the selectivities, the more curves are visible, i.e., the more complex the

optimization problem becomes.

� With growing selectivities, the position of the phase transition of the curves moves

to the right. The x-position of the phase transition coincides with the x-value of

the bend observed in the pictures in the previous subsection.

Both observations can be explained by the arguments already used in the previous sub-

section.

In
uence of Variance of Selectivities The pictures show no in
uence of the variances

in the average selecitivity sizes on the shape of the curves. Again, this is analogous to the

observations of the previous section.

3.3 Summary of the Search Space Analysis

The experiments presented in this sections showed that the search space for left-deep join

trees possesses a phase transition. The position of this transition as well as the general

shape of the search space is clearly in
uenced by a number of parameters:

� connectivity of the query graph,

� average relation sizes,

� average selectivity sizes,

� variance in relation sizes (in
uences only the overall di�culty, and not the position

of the phase transition).

On the other hand, the search space is obviously not in
uenced by the following param-

eters:

� cost model,

� variance in selectivity sizes.

Further, the minimal connectivity of the most di�cult problem for a given combination

of the remaining parameters is not in
uenced by the variance of the relation sizes.

4 Search Procedures

For evaluating the in
uence of the parameters on the performance of a search procedure,

we analyzed the behavior of the best-�rst search procedure (denoted by bf ).

The bf algorithm keeps a queue of left-deep trees ordered by their respective costs.

The �rst tree, i.e. the one with the lowest costs, is discarded. It is expanded by all relations

which are not yet joined and these expansions are inserted into the queue, if there does

not already exist an alternative within the queue joining the same set of relations and
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Figure 3: Search space analysis for varying relation parameters (HL)

producing cheaper cost. The queue is initialized with all the single relations ordered by

their size.

There exists an alternative of bf which keeps track of all already computed alternatives

and uses them for pruning. Obviously, this alternative will produce smaller numbers of

expansions. We tested this alternative as well, but apart from the anticipated reduction

of expansions, the pattern of the generated curves didn't di�er much from the pattern of

the curves generated by bf. Thus we present only the results of the latter in this section.

The same argumentation holds for di�erent cost models, here, too, not much change in

the curves could be observed. Hence, we limit the presentation to the hash loop cost

model.

Figure 11 shows the results for varying relations sizes together with their variances

and the selectivities together with their variances. The x-axis depicts as usually the

connectivities, the y-axis depicts the number of expansions produced by bf.

In
uence of Relation Sizes The left column of Figure 11 gives the results for di�er-

ent mean relation sizes and di�erent relation size variances. The relation size variances

increase from top to bottom. Each picture contains three curves corresponding to the

12
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Figure 4: Search space analysis for varying relation parameters (NL)

di�erent mean relation sizes.

We observe the following:

� All curves have a peak at a certain connectivity.

� This connectivity does not depend on the relation size variances,

� and only slightly depends on the absolute relation size where

� the peak moves to higher connectivities for higher relation sizes.

� All curves decline steeply after the peak and then 
atten.

While the in
uence of the relation sizes is the only one observed, it is not strong. Never-

theless, comparing the results with the U-curves of the previous section, one observes that

there exists a correspondence between the connectivity where the U-curves exhibit the

phase transition and the point where the curves of the search procedure start 
attening.
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Figure 5: Search space analysis for varying selectivity parameters (HL)

In
uence of Selectivities The right column of Figure 11 gives the results for di�erent

mean selectivities and di�erent selectivity variances. The selectivity variances increase

from top to bottom. Each picture, except for the last one, contains �ve curves cor-

responding to di�erent mean selectivities. Again, for the lowest mean selectivity, the

hightest variance could not be reached.

Obviously all the curves have some characteristics in common:

� All curves have a peak at a certain connectivity.

� All curves decline steeply after the peak and then 
atten.

(This point does not exist for those curves, where the peak is close to the right

border of the picture).

The changes in variance does not have much impact on the shape of the curves. They di�er

somehow, but no clear pattern can be observed. Further, the connectivity at which the

maximum is reached, is clearly independent of the variance, matching the corresponding

observation of the previous section.

In contrary, the in
uence of the average selectivity sizes is quite obvious: with growing

selectivities, the peak moves to the right. Moreover, we observe that the peak conincides
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Figure 6: Search space analysis for varying selectivity parameters (NL)

with a point where the U-curves of the previous sections start 
attening, typically shortly

before the U-curves reach the point of the phase transition.

Further, the connectivity of the end of the steep decrease in the number of expansions

for bf coincides with the connectivity of the minimum in the permutation curves.

Summary and Explanation We conclude that for search procedures high mean se-

lectivities and relation sizes as well as lower connectivities are challenging. The in
uence

of variances thereof remains neglectable. If the connectivity is high enough (higher than

the peak or departure connectivity), then the problem will be solved with less expanded

nodes than needed by dynamic programming (about 1000 for 10 relations).

Thus it seems that the increasing optimization potential spreads the costs of the single

permutations apart enough before all relations have been joined, such that the best-�rst

procedure has the possibility to prune early. Hence, the increasing optimization potential

of the search space | as documented by the steep descend to the minimum in the U-

curves | makes it easier for the search procedure to �nd the optimal solution. That

the number of left-deep trees considered by the best-�rst procedure does not increase

afterwards can be explained by an argument of the previous section. After the minimum
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Figure 7: Search space analysis for varying relation parameters (HL)

of the U-curves, the intermediate result becomes that small, that the cost of joining

subsequent relations remains neglectable. Hence, once a good deal of the bottom part of

the left-deep processing tree has been constructed | which can be done fast after the

minimum of the U-curves | the rest can be considered without the harm of invalidating

the bottom part.

5 Heuristics

For analyzing the in
uence of the parameters on the performance of heuristics, we an-

alyzed a couple of di�erent simple and advanced heuristics proposed in the literature.

Since the curves do not di�er much in what can be said about the behavior of heuristics,

we exemplify our investigations by giving the �gures only for one simple heuristic which

can easily be understood even by readers not familiar with the �eld. Intuitively, it seems

a good idea, to choose the relation next, which has the smallest selectivities to already

joined relations. For the start, we chose the smallest relation. Let us call this heuristic

MinSel .

The results of the experiments are presented in Figure 12. The x-axis is labelled with
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Figure 8: Search space analysis for varying relation parameters (NL)

the connectivity, the y-axis with the deviation of the heuristic's solution from the opti-

mum. The pictures of the left column correspond to the di�erent variances of the relation

sizes. Each of the three curves within a picture corresponds to a di�erent relation size.

The pictures of the right column correspond to the di�erent variances of the selectivities.

Each of the curves within a picture corresponds to a mean selectivity value.

At a �rst glance, the pictures look far less regular (if not chaotic) than those presented

so far. This clearly indicates the unstabibilty of the heuristic. Nevertheless, we can extract

the following correspondingly rough observations. If one idealizes the curves one can

guess a certain connectivity where each of the idealized curves reaches a maximum, i.e.,

a connectivity where the heuristic performs worst. This connectivity roughly corresponds

to the connectivity where the U-curves reach display the phase transition. Then, one can

also see that the peak connectivity is dependent on the selectivity size but not as regular

as in the previous curves. Further, higher selectivities 
atten the curves, that is, heuristics

perform better at higher selectivities. An analogous observation for relation sizes cannot

be drawn.

Despite the unstability of the heuristic, we can conclude that there is a correspondence

between the performance of the heuristic and the shape of the search space.
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Figure 9: Search space analysis for varying selectivity parameters (HL)

6 Probabilistic Optimization Procedures

To optimization problems for which no polynomial time algorithm is known, probabilistic

procedures are often applied with some success. Among the predominant algorithms used

are simulated annealing (SA) and iterative improvement (II). Among the optimization

problems to which these are applied are problems from many di�erent areas including

arti�cial intelligence and databases. In the latter area, probabilistic procedures have been

applied to the join ordering problem [6, 9, 12, 18, 19].

Before we start our investigation let us �x our notion of complexity. We de�ne the

complexity of an optimization problem for a probabilistic algorithm by the number of

alternatives the algorithm has to consider in order to solve the optimization problem.

Since we consider probabilistic algorithms, the solution should be determined absolutely,

but is to be de�ned in terms of some deviation of the cost of the solution found from

the cost of the (global) optimum. Hence, for probabilistic optimization algorithms, an

optimization problem is an instance of an ordinary optimization problem together with

a percentage q of allowed deviation from the global optimum. The complexity of the

problem with respect to a probabilistic algorithm is then de�ned by the number of nodes
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Figure 10: Search space analysis for varying selectivity parameters (NL)

the algorithms has to expand in order to �nd a solution whose cost is not more than q%

higher than the global optimum.

Given this notion of complexity of a problem instance for a certain probabilistic opti-

mization algorithm, we can again ask for the complexity of a given problem for a proba-

bilistic optimization procedure and for the parameters in
uencing this complexity.

It has been pointed out by Ioannidis and Kang, that the structure of the search space

plays an essential role for the complexity [10, 11]. If the search space forms a well, then

the optimization is easier for probabilistic procedures. A well is essentially characterized

by two features:

1. The di�erence in cost of two local minima is small.

2. There exists a path between two local minima whose elements have not too high a

cost.

As also pointed out by Ioannidis and Kang, the search space of left deep trees is a little

less appropriate than the search space of bushy trees.

However, no more details are known on the parameters which in
uence the complexity

of a join ordering problem for SA or II. In this Section, we investigate the in
uence of the
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Figure 11: Impact of parameters on the search procedure

average connectivity and average selectivity on the complexity of SA and II. We assume

that the readers are familiar with both, SA and II, and can imagine their application to

the join ordering problem. If not, we refer to the literature [6, 9, 12, 18, 19].

Our experimental results are exempli�ed in Figure 13. In all cases, the algorithms had

to produce a solution, which deviates at most 10% from the optimal solution. In order

to get this number, we computed the optimal solution together with its cost before hand

and stopped the probabilistic algorithms as soon as a �rst plan was encountered whose

cost was within the 10% allowed deviation from the optimum. In order to get within

the 10% range, the SA and II had to be carefully tuned. SA starts with a random join

sequence with a starting temperature which averages the standard deviation of the costs
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Figure 12: Impact of parameters on MinSel

of 50 random join sequences. These are not considered when counting the number of

generated alternatives. At each step 25 alternatives are generated and after each step,

the temperature is multiplied by 0.95. II is organized into runs. Each run starts with

a random join sequence. A run stops if 500 generated random successor states of the

current state fail to improve the cost.

The �gure is organized as follows. The left-hand side corresponds to SA, the right-

hand side to II. The curves in the top row correspond to di�erent mean selectivities, the

main rows investigate di�erent relation variances. We consciously skipped varying the

selectivity variances, since they are of no in
uence. Within each such picture, a single

curve corresponds to a mean relation size.
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We observe the following. II performs better than SA. The peaks of both, SA and

II, i.e., where they exhibit their worst performance, correspond to the connectivity where

the U-curves reach the phase transition. That is, the performance of both algorithms is

directly tied to the shape of the search space. This nicely re
ects the probabilistic nature

of both algorithms.
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7 Conclusion

We investigated the in
uence of connectivity, cost functions, selectivity, relation size and

the variances of the latter two onto

� the shape of the search space, particulary on the existence and position of phase

transitions

� the performance of

{ search procedures,

{ heuristics, and

{ probabilistic optimization algorithms.

The shape of the search space is clearly determined by the parameters. Since the analysis

was exhaustive, this allows to predict the shape. Further, the performance of search

procedures as well as probabilistic optimization algorithms is directly tied to the shape

of the search space. Hence, their performance can also be predicted from the parameters.

Only the heuristics show a very unstable performance which is only roughly tied to the

search space. Their usage can be recommended solely for very small connectivities (2 or

3 at most).

All these �ndings are experimental. The main remaining challenge is to develop an-

alytical tools to derive these �ndings and justify the observations. But since this is tied

to one of the most challenging problems in computer science, namely the NP-P-question,

fast progress in this direction seems unlikely.

Acknowledgements. We thank all our colleagues for hundreds of CPU-hours on their
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Figure 13: Impact of parameters on probabilistic procedures
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