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Abstract. We classify clustering algorithms into sequence-based tech-

niques|which transform the object net into a linear sequence|and

partition-based clustering algorithms. Tsangaris and Naughton [TN91,

TN92] have shown that the partition-based techniques are superior. How-

ever, their work is based on a single partitioning algorithm, the Kernig-

han and Lin heuristics, which is not applicable to realistically large object

bases because of its high running-time complexity. The contribution of

this paper is two-fold: (1) we devise a new class of greedy object graph

partitioning algorithms (GGP) whose running-time complexity is mod-

erate while still yielding good quality results. (2) Our extensive quanti-

tative analysis of all well-known partitioning algorithms indicates that

no one algorithm performs superior for all object net characteristics.

Therefore, we propose an adaptable clustering strategy according to a

multi-dimensional grid: the dimensions correspond to particular charac-

teristics of the object base|given by, e.g., number and size of objects,

degree of object sharing|and the grid entries indicate the most suitable

clustering algorithm for the particular con�guration.

1 Introduction

Clustering of logically related objects on the same page is a very powerful op-

timization concept. Unlike other, more restricted models|e.g., the hierarchical

model or the nested relational model|the object-oriented data models allow ar-

bitrary object graphs.We distinguish between sequence-based and partition-based

clustering. Under sequence-based clustering the object graph is transformed into

a linear sequence of objects which is then sequentially assigned to pages. Under

partition-based clustering the object graph is partitioned into object partitions

that �t onto a single page. Tsangaris and Naughton [TN91, TN92] showed that

the partition-based clustering is superior to sequence-based clustering. Unfortu-

nately, the well-known partitioning algorithms|such as the Kernighan and Lin

(KL) algorithm, which was the only one investigated in [TN91, TN92]|have a

very high running-time complexity. This makes their application to realistically

large object bases impossible.

Therefore, in this work we develop a new class of greedy graph partitioning

(GGP) heuristics which have a moderate running-time complexity while still



yielding good quality results. From the basic GGP heuristics we develop more

sophisticated heuristics by incorporating a look-ahead with the possibility of

rejecting less promising choices and a new-chance for those rejected choices at a

later stage. Our extensive quantitative analysis|of which only a fraction could

be covered in the paper|indicates that the quality of the (sophisticated) greedy

partitioning is slightly inferior to the computationally complex algorithms, such

as KL. However, the greedy heuristics are indispensable for two reasons:

1. They are extremely useful for pre-partitioning the cluster graph. These pre-

partitions can then be improved using the computationally complex algo-

rithms, e.g., KL.

2. For (realistically) large object bases the computationally complex algorithms

cannot be employed because of their enormous running-time. In this case we

can employ our greedy heuristic which is far better than the best known

sequence-based algorithms|the best-�rst heuristics.

The above discussion leads to the conclusion that there is no one single cluster

heuristics which is superior for all object base con�gurations. This motivates us

to propose an adaptable cluster strategy according to a multi-dimensional grid:

the dimensions correspond to particular characteristics of the object base|given

by, e.g., number and size of objects, degree of object sharing|and the grid entries

indicate the most suitable clustering algorithm for the particular con�guration.

The rest of the paper is organized as follows. In Section 2 the cluster problem

is de�ned and the related work is classi�ed. Then, in Section 3 the well-known

partitioning algorithms are reviewed and the basics of our greedy graph par-

titioning heuristics is introduced. In Section 4 two enhancements of the basic

GGP heuristics are presented. Section 5 contains some of our extensive quanti-

tative analysis of many di�erent partition-based cluster heuristics. In Section 6

we derive the adaptable cluster strategy controlled by the multi-dimensional

grid. Section 7 concludes the paper.

2 Clustering as a Graph Partitioning Problem

The clustering problem is closely related to the graph partitioning problem where

some graph is to be partitioned into several disconnected subgraphs (partitions).

The object graph (OG) is constructed considering objects as vertices and the

inter-object references as directed edges [TN91]. Clustering algorithms partition

the OG by assigning objects to equally sized pages. Instead of the OG clustering

algorithms often use a more speci�c graph as input that is derived from the OG

and/or from information about the applications' access behavior, e.g., access

traces. We follow [TN91] and call this graph the clustering graph (CG). The

vertices and edges of the CG are labeled with weights: vertex weights represent

object sizes and edge weights represent the application's access behavior (higher

weights denote that the start and terminal object of the edge are more often

accessed in succession). For a given partitioning of the CG, the total weight of

all edges crossing partition borders (i.e., page borders) are the external costs of



this partitioning. The clustering problem is to �nd a partitioning of the CG such

that the size of each partition, i.e., the total size of its objects, is less or equal

the page size and the external costs are minimized.

There are two dimensions along which clustering algorithms can be classi-

�ed: (1) the determination of the access patterns, i.e., edge weights, and (2)

the algorithm that is applied to map objects into pages. Along the �rst dimen-

sion|the determination of the access patterns|static and dynamic methods can

be distinguished. Along the second dimension we distinguish sequence-based from

partition-based mapping algorithms.

2.1 Determination of the Access Patterns

Static methods are based on analyzing either the structure of the object base|

e.g. static reference counts of objects

3

[Sta84]|or the access behavior of op-

erations (that are part of the schema) [GKKM92a], or they require input from

the database programmer, e.g., [Ben90, CDRS86]. Dynamic methods analyze the

access trace of former database applications by monitoring the system [Sta84,

HK89]. Usually, it is far more expensive to gather dynamic information on the

access behavior of applications since this requires monitoring the applications.

For a thorough discussion of the pros and cons of static versus dynamic access in-

formation see [GKKM92a]. In the remainder of this paper we assume the weights

of the edges of the CG to be given|either by dynamic or static analysis.

2.2 Sequence-Based Mapping Algorithms

Sequence-based algorithms partition the CG by applying a graph traversal algo-

rithm producing a linear sequence of all objects from the CG. This sequence of

objects is then segmented|from left to right|into partitions. Sequence-based

algorithms can be denoted in the style of a UNIX pipe consisting of the two

steps PreSort and Traversal :

PreSort j Traversal

The Traversal component starts with some object and traverses all objects that

are reachable from the start object and have not been visited before. After the

current traversal is �nished a new (unvisited) object is selected to start the

next traversal. The PreSort method is used for sorting all objects, e.g. order-

ing by type [HZ87, Sta84, Ben90], ordering by decreasing dynamic reference

counts

4

[HK89], and using some arbitrary ordering [Sta84, BKKG88]. The sim-

plest Traversal algorithm maps objects into pages according to their position

in the presort order [Sta84, HZ87]. Depth-�rst and breadth-�rst traversal al-

gorithms for graphs were applied in [Sta84, BKKG88]. In Cactis [HK89] the

3

The static reference count (SRC) of an object equals the number of references point-

ing to that object.

4

The dynamic reference count (DRC) of an object equals the number of times the

object is referenced by a sampling application.



usage of a best-�rst (BSTF) traversal algorithm is proposed. BSTF was the

best Traversal algorithm in many comparison studys of clustering algorithms,

e.g. [TN91, GKKM92a]. Therefore, in the remainder of this paper, we investigate

only BSTF as the representative for sequence-based clustering.

2.3 Partition-Based Mapping Algorithms

Partition-based clustering algorithms segment the CG utilizing graph partition-

ing algorithms. In the literature graph partitioning algorithms for clustering were

only considered in the work of Tsangaris and Naughton [TN91, TN92], where

the algorithm by Kernighan and Lin (KL) was applied [KL70]. The clustering

results obtained by the KL algorithm have been far superior to those obtained

by sequence-based algorithms. Although the work of Tsangaris and Naughton

lead the way to partition-based clustering their results were based on bench-

marks run on a rather small object base where all objects were of uniform size.

In practice there is a large diversity of object nets whose characteristics are es-

sential for the performance and the cluster quality of partitioning algorithms:

(1) The size of the object net which may range from a few hundred to hundreds

of thousands of objects. (2) The size of the objects which may strongly vary. (3)

The degree of sharing: there are tree-like object nets and others which exhibit

a highly connected network strucure. It turns out that no one algorithm can be

identi�ed as superior in all (or even most of the) cases. Therefore, we investigate

a wide range of partitioning algorithms for the clustering problem.

3 The Graph Partitioning Algorithms

According to [SM91] graph partitioning algorithms can be divided into two

classes: constructive partitioning and iterative improvement. Constructive algo-

rithms build a partitioning of a graph from the scratch; iterative algorithms start

with some initial partitioning and repeatedly try to improve this partitioning.

Iterative algorithms usually produce better results than constructive algorithms,

but have a very large running-time compared to constructive algorithms. In the

remainder of this section we sketch four graph partitioning algorithms known

from the literature. Further, we describe the basics of our new greedy heuristics

for graph partitioning|more sophisticated heuristics are developed in Section 4.

3.1 Iterative Algorithms

The Kernighan-Lin Heuristics. The Kernighan-Lin algorithm (KL) [KL70]

was designed for the placement of VLSI chips|that is why KL is not well suited

for clustering in object bases. The KL algorithm starts with an arbitrary par-

titioning of the CG and iterates over all pairs of partitions, trying to improve

the partitioning by exchanging objects between the pair of partitions currently

considered. Thus, the object sizes must not be strongly diverging for allowing

objects to be swapped. While this may be true for VLSI applications, it is in

general not true for object bases.



The Fiduccia-Mattheyses Heuristics. The graph partitioning algorithm by

Fiduccia and Mattheyses (FM) [FM82] is derived from the KL algorithm. The

main modi�cation is that objects are moved across partition borders instead of

being swapped . This modi�cation allows for handling unbalanced partitions and

non-uniform object sizes. On the other hand, swapping as employed in the KL

heuristics, is advantageous in case of uniform size and nearly full pages|in this

case no objects can be moved by the FM heuristics. Further, the FM heuristics

is able to adapt the number of objects of the partitions, and even the number

of partitions (if all objects are removed from some partition, the partition can

be deleted). KL remains always stuck with the number of objects per partition

and the number of partitions that was initially chosen.

Hierarchical Partitioning. The hierarchical partitioning algorithm (HP) is a

combination of the KL and FM algorithms. The HP algorithm works as follows:

All objects are assigned to one partition whose size is P = 2

x

� PageSize where

x is chosen to be the smallest integer such that the total size of all objects is less

than or equal to P . This partition is split such that the objects are distributed

equally (by size) among both partitions. The resulting partitions are improved

using the KL or the FM heuristics. This method is recursively applied until the

size of every partition is below the page size. The idea that lead to the HP

algorithm was taken from the work of Breuer [Bre77].

3.2 Constructive Algorithms

Optimum Partitioning of Trees. Lukes [Luk74] presents a pseudopolynomi-

nal-time algorithm for computing an optimum partitioning for the vertices of

a tree, based on dynamic programming. The complexity of the algorithm is

O(n � B

2

max

) where n is the number of vertices of the tree and B

max

is the

maximum number of objects per page.

The Greedy Graph Partitioning Heuristics. Because of the very good

clustering results but poor running-time performance of known partition-based

clustering algorithms, we have developed a new heuristics for graph partition-

ing, called Greedy Graph Partitioning (GGP). The GGP algorithm was �rst

proposed in [GKKM92a]. Graph partitioning is strongly related to subset opti-

mization problems for which greedy algorithms often �nd good solutions very

e�ciently. The GGP algorithm is based on a simple greedy heuristics that was

derived from Kruskal's algorithm for computing the minimum weight spanning

tree of a graph [Kru56]. First, all partitions are inhabited by a single object

only, and all partitions are inserted into the list PartList . For all objects o

1

, o

2

connected by some edge in the CG with weight w

o

1

;o

2

a tuple (o

1

; o

2

; w

o

1

;o

2

) is

inserted into the list EdgeList . All tuples of EdgeList are visited in the order of

descending weights. Let (o

1

; o

2

; w

o

1

;o

2

) be the current tuple. Let P

1

, P

2

be the

partitions to which the objects o

1

and o

2

are assigned. If P

1

6= P

2

and if the total



size of all objects assigned to P

1

and P

2

is less than the page size the two par-

titions are joined.

5

Otherwise, the edge is merely discarded|and the partitions

remain invariant. If e denotes the number of edges of the CG the running-time

complexity of the GGP algorithm is O(e log e)|the dominating factor is here

the sorting of the list EdgeList .

4 New Heuristics for Greedy Graph Partitioning

In [GKKM92a] we have extensively benchmarked the GGP heuristics on various

forms of CG's comparing it to several clustering strategies for object-oriented

database systems. The performance of GGP indicated the best cost e�ectiveness

in terms of running-time and clustering quality. In this section we present two

heuristics that further improve the results of GGP:

1. bounded look-ahead: Before the partitions incident to the current edge, i.e.,

the edge with maximum weight, are being joined, a BSTF traversal is per-

formed locally in order to look for better candidate partitions to be joined.

2. new-chance: If the bounded look-ahead heuristics �nds potentially better

candidate partitions the current edge is rejected. Rejected edges need be

re-considered (triggered) if the condition that lead to the rejection changes.

We identify the enhanced GGP algorithm by GGPla (GGP with look-ahead).

Subsequently, both improvements are discussed in more detail. The complete

description of the algorithm GGPla can be found in [GKKM92b].

4.1 k-Look-Ahead

During each iteration the GGP algorithm takes the edge with maximum weight

from the EdgeList and tries to join the partitions of the objects incident to that

edge. Of course, this is not necessarily the best decision. Consider the example

shown in Fig. 1. The CG is visualized in Fig. 1 (a); the maximum external costs

are EC

max

= 28.

6

We assume uniform object sizes and a page capacity of 2

objects. Without look-ahead GGP decides to assign the objects o

2

and o

3

to

the same partition resulting in a �nal partitioning with external costs of 18,

visualized in Fig. 1 (b). Obviously, the optimum partitioning of this CG has

only external costs of 10 (Fig. 1 (c)). The idea of the bounded look-ahead is to

detect situations where it is advantageous to reject the current edge, i.e., the

edge with maximum weight, and to consider other edges �rst. Subsequently, this

rough outline of bounded look-ahead is detailed.

Consider the CG depicted in Fig. 2. The objects o

l

and o

r

have been assigned

to the partitions P

l

and P

r

. Besides the edge (o

l

; o

r

) there are n external edges

incident to o

l

with weights w

l

1

; : : : ; w

l

n

and m external edges incident to o

r

with weights w

r

1

; : : : ; w

r

m

. Assume the next edge to be considered by GGP

5

Partitions are represented as binary trees to accelerate the join operation.

6

Squares denote objects, dashed boxes denote partitions.
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Fig. 1. An Example for Non-Optimal GGP Clustering

is (o

l

; o

r

) with weight w, which implies w � maxfw

l

1

; : : : ; w

l

n

; w

r

1

; : : : ; w

r

m

g.

Further assume that the partitions P

l

and P

r

could be joined because their total

size being less than or equal to the page size.
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Fig. 2. Clustering Graph Before Analyzing the Edge (o

l

; o

r

)

To decide whether it is bene�cial to join the partitions P

l

and P

r

(or not) we

proceed in two steps:

1. We evaluate the potential gain in the case P

l

and P

r

are being joined and

the resulting partition is being �lled up to the maximum size. For that,

a BSTF traversal is performed on the external edges of the CG starting

at the objects fo

l

; o

r

g.

7

The traversal is terminated if either (1) the depth

of the traversal exceeds some integer bound k, or (2) the total size of all

partitions encountered (including P

l

and P

r

) exceeds the page size. Let

w

l

1

; : : : ; w

l

i

; w

r

1

; : : : ; w

r

j

be the weights of all edges accessed during the

BSTF traversal. Then, W

join

= w+w

l

1

+ : : :+w

l

i

+w

r

1

+ : : :+w

r

j

denotes

the potential gain in the case that the partitions P

l

and P

r

are being joined

and the resulting partition were �lled up completely using a BSTF traversal

starting at the objects fo

l

; o

r

g.

2. We evaluate the e�ect of not joining P

l

and P

r

. To do so, we perform two

BSTF traversals (on the external edges of the CG) starting at o

l

(left traver-

sal) and o

r

(right traversal). The left (right) traversal is terminated as soon

as the depth of the traversal exceeds k or when the total size of all partitions

7

Note that the BSTF search inspects only paths that emanate from o

l

and o

r

|instead

of inspecting all objects already in partitions P

l

and P

r

. Our experiments showed

that the running-time becomes prohibitively large, otherwise.



encountered including P

l

(P

r

) exceeds the page size. Let W

left

denote the to-

tal weight of all edges traversed by the left traversal, and let P

left

denote the

set of partitions encountered during the left traversal (including P

l

). W

left

denotes the gain that can potentially be achieved by GGP on the left part

of the CG if the partitions P

l

and P

r

are not joined in the current stage of

GGP. W

right

and P

right

are de�ned analogously for the right traversal.

Based on the de�nitions made above we can de�ne two heuristics H1 and H2:

Heuristics H1: The edge (o

l

; o

r

) is rejected, i.e., P

l

and P

r

are not joined in

the current stage of GGP, if either

{ W

left

> W

join

and the total size of all objects on pages in P

left

[ fP

r

g

exceeds the page size, or

{ W

right

> W

join

and the total size of all objects on pages in P

right

[ fP

l

g

exceeds the page size.

Heuristics H1 rejects the edge (o

l

; o

r

) if either the gain on the left part of the

CG (rooted at o

l

) or on the right part of the CG (rooted at o

r

) is larger than

the gain achieved by joining the partitions P

l

and P

r

.

Note, however, that by this heuristics the optimal partitioning of the CG shown

in Fig. 1 is not found. This observation leads to the de�nition of

Heuristics H2: The edge (o

l

; o

r

) is rejected, i.e., P

l

and P

r

are not joined in

the current iteration of GGP, if

{ W

left

+W

right

> W

join

and the total size of all objects on pages in P

left

[

P

right

exceeds the page size.

Under heuristics H2, the total gain that can be potentially achieved by not

joining the partitions P

l

and P

r

is compared to the gain potentially achieved by

joining P

l

and P

r

. It is easy to see that the condition of H2 is always true if the

condition of H1 is ful�lled|thus, H2 is a strengthening of H1. A similar heuristics

that introduces more look-ahead into the Fiduccia-Mattheyses algorithm was

proposed by Krishnamurthy [Kri84].

4.2 New-Chance

In this section we discuss the \fate" of edges that were rejected by the k-look-

ahead heuristics. Rejected edges must not be removed from the EdgeList because

they should be re-considered as soon as the condition leading to the rejection

changes. Technically, in our implementation, edges are given a new chance by

moving them to the end of the EdgeList when they are rejected.

The set of the external edges which has been visited in the k-look-ahead for

some rejected edge e

r

is called the trigger-set of e

r

. Now let us assume that

some edge e is considered and is not being rejected during the current iteration

of GGP. Further assume that e is in the trigger-set of the rejected edge e

r

. In

this case the edge e

r

is said to be triggered. After the join of the partitions

incident to e the local situation in the CG that was responsible for rejecting the



edge e

r

has changed. In this new situation the edge e

r

would possibly survive

(i.e., not being rejected). Thus, we propose to retry any rejected edge when it

is triggered.

8

Triggered edges are moved to the �rst position of the EdgeList as

their weight is greater than or equal to the maximum of the weights of all edges

that have not yet been considered.

5 Quantitative Analysis

In this section we investigate the quality of clustering algorithms (1) in terms

of quality, i.e., external costs and (2) in terms of running-time. We decided to

use the external costs of the partitioning to evaluate the quality of the clus-

tering because this measure does not depend on the choice of the benchmark

applications, the bu�er size, the replacement policy, nor the working set window

size. The experiments were carried out using a graph generator|that is part of

our simulation workbench TEXAS.

9

The graphs used in the experiments consist

of 10 modules, each constituting a highly connected subgraph. Every module is

connected to one randomly selected module by an edge with minimal weight 1.

The weights of the intra-module edges are uniformly distributed in the range

2; : : : ; 20. We classify the characteristics of the examined clustering graphs ac-

cording to �ve dimensions:

database average number of deviation of degree of static reference

cardinality objects per page object sizes sharing count (SRC)

The cardinality of the database is the dominant factor of the running-time of the

algorithms, whereas the remaining four parameters inuence the quality of the

partitionings generated by the algorithms. The degree of sharing is stated in %

and determines the ratio of the number of shared objects to the total number of

objects. We conducted experiments on many combinations of the �ve parameters.

However, because of space restrictions in this paper, we discuss only the inuence

of the �rst four dimensions (omitting the SRC of shared objects) on the choice

of the cluster algorithm|see [GKKM92b] for a more complete treatment. The

following algorithms were measured: BSTF, GGP, GGPla, HP, Lukes and KL(x),

FM(x) each with pre-partitioning produced by x, for x 2 f GGPla, BSTF g. The

(iterative) algorithms KL(x) and FM(x) were run until no further improvement

was achieved (ormaxintwas reached). To compensate for one major disadvantage

of Lukes' algorithm (producing memory overow when working on high trees)

we limited the keeping of the best assignments of objects to partitions only up

to the average number of objects per page.

5.1 Running-Time vs. Quality of Cluster Algorithms

The �rst experiment evaluates the cluster algorithms BSTF, GGP, GGPla,

FM(GGPla), KL(GGPla), and HP in terms of (1) their partitioning quality|

8

To avoid exhaustive searching we employ special data structures facilitating the

direct access from the current edge to the set of triggered edges.

9

The EXtensible Access Simulator for object bases.



that is, we compute the relative savings in external costs in relation to a random

placement|and (2) their running-time dependent on the database cardinality.

The algorithms worked on a scalable database of n � 32 modules|each consti-

tuting a random graph with 1000 objects and 4 edges per object on the average.

Fig. 3 visualizes the results where the database size is plotted against the x-

axis. In Fig. 3(a) the running-time is plotted against the y-axis, in Fig. 3(b)

the relative savings of the obtained clustering to a random placement is plotted

against the y-axis. The vertical (error) bars in the plots of Fig. 3 (b) visualize

the standard deviation of the clustering results for the di�erent graphs.

(a) Running-Time

10 s

1 m

10 m

0.5 h

1 h

2 h

4 h

8 h

1 2 4 8 16 32

r
u
n
n
i
n
g
-
t
i
m
e

database size [1000 nodes]

HP KL(GGPla)
FM(GGPla)

GGPla

GGP

BSTF

(b) Clustering Quality

32

32.5

33.0
 ...
35.0

35.5

36.0

36.5

37.0

37.5

1 2 4 8 16 32

s
a
v
i
n
g
s
 
t
o
 
r
a
n
d
o
m
 
[
%
]

database size [1000 nodes]

HP

FM(GGPla)

KL(GGPla) GGPla

GGP

BSTF

database average number of deviation of degree of static reference

cardinality objects per page object sizes sharing count (SRC)

variable 15 300 100% 4

Fig. 3. Performance of Clustering Algorithms Dependent on the Database Size

The most important result of this experiment is that the running-times of the

algorithms are drastically di�erent. Whereas the constructive algorithms GGPla

and GGP, and the sequenced-based technique BSTF are very fast (30 minutes

for 32000 objects), the running-time of the iterative algorithms KL(GGPla),

FM(GGPla), and HP is not acceptable for large databases. We limited the max-

imal running-time to 24 hours; Thus, HP is only feasible for small databases up

to 2000 objects and KL/FM may be feasible for databases up to 8000 objects|if

the long reorganization time is tolerable at all. Note, that even small di�erences

in relative savings (the range is from 32% to 37%) exhibit enormous di�erences

in absolute external costs|e.g., 40273 between BSTF and GGPla at a data-

base cardinality of 32000 objects. The iterative algorithms HP, KL(GGPla), and

FM(GGPla) exhibited the best partitioning results. Nevertheless, the results of

the KL and FM heuristics strongly depend on the quality of the pre-partitioning.

Utilizing a poor-quality pre-partitioning KL and FM cannot achieve such good

results. Among the algorithms whose running-time is reasonably low GGP and

GGPla performed best. The relative ordering of the algorithms|in running-time

as well as in clustering quality|that was observed in this experiment remains

stable in the majority of the experiments we conducted.



5.2 Changing the Partition Size

The number of objects per page has an important inuence on the clustering

results. Therefore, the page size is an e�ective tuning parameter in physical

database design. Note, that varying the average object size instead of the page

size would have the analogous e�ect. In the subsequent experiment we measure

the performance of the clustering algorithms Lukes, HP, KL, FM, and GGPla

under varying page sizes. Fig. 4 (a) visualizes the results for a tree-structured

graph (sharing = 0) and Fig. 4 (b) visualizes the result for a graph with 50 %

shared objects and an SRC of 11 for shared objects. All objects were of equal

size. Thus, in this case our approximation of Lukes' algorithm is optimal.
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Fig. 4. Inuence of the Page Size on the Clustering Results

Lukes' algorithm achieves 93 % savings compared to random placement. The

plot of the results of KL(GGPla) runs very close to this optimum|indicating

that KL with the high quality pre-partitioning of GGPla is a good candidate for

clustering trees of moderate size. The clustering results in Fig. 4 (b) range from

20 % to 40 % savings to random. Thus, if the degree of sharing is high and the

page size is small, only small improvements can be achieved by clustering. With

an increasing page size, the potential improvement by clustering increases, too.

5.3 Varying Object Sizes

Usually, the objects' sizes vary signi�cantly|note, that the object net is com-

posed of objects of many di�erent types. E.g., there may be tuple-structured

objects of just 50 bytes, whereas the size of set- or list-structured objects easily

may even reach the page size. Fig. 5 (a) visualizes the results for a page capacity

of 5 objects, and Fig. 5 (b) visualizes the results for a page size of 20 objects,

both with 50 % sharing and SRC=11.
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Fig. 5. Performance of Clustering Algorithms Under Varying Object Sizes

The main observation is that the relative saving increase upon increasing

the deviation of object sizes. The second result of this experiment is that FM

performs better than KL if the object sizes vary substantially. Below a page

capacity of 20 objects the break even point between KL and FM is at a standard

deviation of object sizes of about 300 (Fig. 5 (b)). If the page capacity is only

5 objects per page on the average, the break even point is moved to a standard

deviation of 150 (Fig. 5 (a)). To understand this result, consider Fig. 6. Neither

KL nor FM can improve the partitioning of the graph depicted in Fig. 6 (a),

where strong internal edges prevent from moving or swapping objects between

the two partitions. If the number of objects decreases the probability of �nding

clustering subgraphs similar to those in Fig. 6 (b) and (c) increases. FM can

improve the partitioning by moving a single object while KL cannot improve

the partitioning as there are no pairs of objects to be swapped.

H

H

� � �

�

�

�

�

� � �

H

H

(a)

�

�

� � �

H

H

(b)

H

H

� � �

�

�

(c)

Fig. 6. Three Partitioning Problems

5.4 Degree of Sharing

The experiment in Section 5.2 already indicated that object sharing makes clus-

tering more di�cult. The next experiment is designed to investigate the inuence



of the degree of sharing on the clustering results. We measure the algorithms

HP, KL(GGPla), KL(BSTF), GGPla, and BSTF on a graph with uniform ob-

ject sizes and an SRC of 2 for shared objects. Fig. 7 (a) visualizes the results

for a page capacity of 5, Fig. 7 (b) for a page capacity of 20 objects per page on

the average. The degree of sharing varies from 0 % to 50 % (plotted against the

x-axis).
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Fig. 7. Performance of Clustering Algorithms Under Varying Degrees of Sharing

As expected, the plots of all algorithms show a steep decline as the degree

of sharing increases. With 5 objects per page on the average the savings relative

to random placement drop by about 10 %, with 20 objects per page even by

15 %. In both experiments, HP and KL(GGPla) yield the best clustering results

among the algorithms tested.

6 The Case for Adaptable Algorithms

The results of the quantitative analysis presented in the previous section lead

to the conclusion that no one algorithm performs superior for all object base

con�gurations. Therefore, we derive a multi-dimensional grid: the dimensions

correspond to particular characteristics of the object base con�gurations and

the grid entries determine the best clustering algorithm for the particular con-

�guration.

The grid is shown in Fig. 8. Three dimensions are visualized by the axes of

the grid, i.e., the average number of objects per page, the standard deviation of

the object sizes, and the degree of sharing. The fourth dimension, i.e., the size of

the database in number of objects, is visualized by the coloring of the grid entries

shown on the right hand side. Here, we distinguish three con�gurations: (1) a
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database with less than 2000 objects, (2) a database with more than 2000 and

less than 8000 objects, and (3) a database with more than 8000 objects. For each

con�guration, the coloring (shading) of the grid indicates the most appropriate

clustering algorithm. Subsequently, we briey discuss the entries of the grid.

Let us start with the left hand side of the grid|representing a sharing of 0 %.

In this case, the approximation of Lukes' algorithm is optimal if all objects are

of equal size. Our experiments further indicate that the approximation of Lukes'

algorithm yields good results as long as the ratio of the standard deviation

of the object size to the average number of objects per page is small (white

colored area). When this ratio increases other algorithms perform better than

the approximation of Lukes, e.g., HP. We have found that beyond a database

cardinality of 2000 objects Lukes' algorithm ran out of memory. That is why

we propose to use KL/FM(GGPla) for medium cardinality and GGPla for large

cardinality object bases even if the CG forms a tree. Next we investigate the

right hand side of the grid, where the degree of sharing is greater than 0. If the

database is of low or medium cardinality, i.e., below 8000 objects, KL(GGPla) or

FM(GGPla) are the algorithms of choice: (1) Because KL is based on swapping

objects, it is superior to FM if the standard deviation of the object size is small.

(2) Beyond a standard deviation of around 300, FM achieves better results. For

a database cardinality below 2000 objects HP can be used as an alternative to

KL/FM (in the majority of the experiments we conducted HP produced the

best results). When sharing is high, the page capacity is small, and the object



sizes vary strongly (upper right grid corner), the FM heuristics is superior to KL

because in this special case, moving objects achieves better results than swapping

objects (see Section 5.3). Beyond a database cardinality of 8000 objects, the

GGPla heuristics is the only method yielding acceptable cluster quality under

reasonably low running-times.

7 Conclusion

Reconsider the title of this paper \Partition-Based Clustering in Object Bases:

From Theory to Practice". The theory of partition-based clustering was devel-

oped by Tsangaris and Naughton [TN91]. They, in particular, proved the supe-

riority of partition-based techniques over the sequence-based approaches. How-

ever, the hitherto known partition-based cluster approaches had to rely on the

known computationally rather complex iterative partitioning algorithms, e.g.,

the Kernighan and Lin heuristics. Therefore, partition-based clustering was im-

practical for realistically large databases. Our greedy graph partitioning heuris-

tics GGPla supplemented with the look-ahead and new-chance of once rejected

choices has a much lower running-time complexity than the iterative algorithms.

Nevertheless, the partitioning quality generated by GGPla is quite good com-

pared to the computationally complex iterative partitioning heuristics and far

better than sequence-based clustering algorithms. This makes the GGPla heuris-

tics indispensable for two purposes:

1. As a pre-partitioning heuristics for small to medium cardinality object nets|

on which iterative algorithms are then applied for improvement.

2. As the only applicable method on large cardinality object nets.

In conclusion, we therefore propose an adaptable clustering strategy which

applies the most appropriate iterative partitioning method|in conjunction with

a pre-partitioning by GGPla|on small to medium cardinality object nets and

(pure) GGPla on large cardinality object nets. The adaptability is controlled by

a multi-dimensional grid whose dimensions correspond to the object net charac-

teristics which have to be established by, e.g., sampling the object base extension.

The entries of the grid then determine the most appropriate cluster algorithm

for the particular object base con�guration.
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