
Heuristic and Randomized Optimization for the

Join Ordering Problem

Michael Steinbrunn

�

Guido Moerkotte

+

Alfons Kemper

�

�

Universit�at Passau

+

RWTH Aachen

Fakult�at f�ur Mathematik Lehrstuhl f�ur Informatik III

und Informatik 52074 Aachen, Germany

94030 Passau, Germany

kemper

steinbrunn

@db.fmi.uni-passau.de moer@gom.informatik.rwth-aachen.de

Abstract

Recent developments in database technology, such as deductive database

systems, have given rise to the demand for new, cost-e�ective optimiza-

tion techniques for join expressions. In this paper many di�erent algo-

rithms that compute approximative solutions for optimizing join orders

are studied since traditional dynamic programming techniques are not ap-

propriate for complex problems. First, two possible solution spaces, the

space of left-deep and bushy processing trees, respectively, are evaluated

from a statistical point of view. The result is that the common limita-

tion to left-deep processing trees is only advisable for certain join graph

types. Basically, optimizers from three classes are analysed: heuristic, ran-

domized and genetic algorithms. Each one is extensively scrutinized with

respect to its working principle and its �tness for the desired application.

It turns out that randomized and genetic algorithms are well suited for op-

timizing join expressions. They generate solutions of high quality within a

reasonable running time. The bene�ts of heuristic optimizers, namely the

short running time, are often outweighed by merely moderate optimization

performance.

1 Introduction

In recent years, relational database systems have become the standard in a va-

riety of commercial and scienti�c applications. Because queries are stated in a

non-procedural manner, the need for optimizers arises that transform the straight-

forward translation of a query into a cost-e�ective evaluation plan. Due to their

high evaluation costs, joins are a primary target of query optimizers. If queries

1

are stated interactively, there are generally only few relations involved. The op-

timization of these expressions can be carried out by exhaustive search, possibly

enhanced by pruning techniques that exclude unlikely candidates for good solu-

tions. For instance, in System R [SAC

+

79], a dynamic programming algorithm is

employed for the optimization of joins. This approach works well as long as only

few relations are to be joined, but if the join expression consists of more than

about �ve or six relations, dynamic programming techniques become quickly pro-

hibitively expensive. Queries of this kind are encountered in recent developments

such as deductive database systems, where join expressions may consist of a large

number of relations. Another source for such queries are query-generating data-

base system frontends and complex views. In both cases, very complex queries

may be issued without the end user being aware of that fact. Even in object-

oriented database systems [KM94], complex join expressions may be encountered:

while forward traversal of object references are usually very well supported by

specialized access mechanisms and would not be treated as ordinary join oper-

ations, this is not true for backward traversal. This would require appropriate

index structures such as Access Support Relations [KM92], processing of which,

in turn, involves handling of potentially very complex join expressions for both

initial materialization and maintenance.

Hence, there is a demand for optimization techniques that can cope with

such complex queries in a cost-e�ective manner. In this paper, we shall examine

approaches for the solution of this problem and assess their advantages and dis-

advantages. The rest of the article is organized as follows: In Section 2 we shall

give an exact de�nition of the problem and of the terms, and we present several

cost models we shall be using later on in our analysis. Section 3 deals with the

problem of di�erent solution spaces for evaluation strategies. In Section 4 we de-

scribe common optimization strategies with varying working principle, which are

subject to a quantitative analysis in Section 5. Section 6 concludes the paper.

2 Problem Description

The problem of determining good evaluation strategies for join expressions has

been addressed from the development of the �rst relational database systems

[WY76, YW79, SAC

+

79]. The work in this area can be divided into two major

streams: First, the development of e�cient algorithms for performing the join

itself, and second, algorithms that determine the nesting order in which the joins

are to be performed. In this article, we shall be concentrating on the generation of

low-cost join nesting orders while disregarding the speci�cs of join computing|

[ME92] provides a good overview on this subject.

In relational database systems where queries are stated interactively, join

expressions that involve more than about �ve or six relations are rarely encoun-

tered. Therefore, the computation of an optimal join order with lowest evaluation

2

cost by exhaustive search is perfectly feasible|it takes but a few seconds CPU

time. But if more than about eight relations are to be joined, the|in its gen-

eral form|NP-hard problem of determining the optimal order [IK84] cannot be

solved exactly anymore. We have to rely on algorithms that compute (hope-

fully) good approximative solutions. Those algorithms fall into two classes: �rst,

augmentation heuristics that build an evaluation plan step by step according to

certain criteria, and second, randomized algorithms that perform some kind of

\random walk" through the space of all possible solutions seeking a solution with

minimal evaluation cost.

2.1 De�nition of Terms

The input of the optimization problem is given as the query graph (or, join graph),

consisting of all relations that are to be joined as its nodes and all joins speci�ed

as its edges. The edges are labelled with the join predicate and the join selectivity.

The join predicate maps tuples from the cartesian product of the adjacent nodes

to ffalse; trueg, depending whether the tuple is to be included in the result or

not. The join selectivity is the ratio \number of tuples in the result/number of

tuples in the cartesian product". As a special case, the cartesian product can be

considered a join operation with join predicate � true and a join selectivity of 1.

The search space (or, solution space) is the set of all evaluation plans that

compute the same result. A point in the solution space is one particular plan,

i.e., solution for the problem. A solution is described by the processing tree

for evaluating the join expression. Every point of the solution space has a cost

associated with it; a cost function maps processing trees to their respective costs.

The processing tree itself is a binary tree that consists of base relations as its

leaves and join operations as its inner nodes; edges denote the ow of data that

takes place from the leaves of the tree to the root.

The goal of the optimization is to �nd the point in the solution space with

lowest possible cost (global minimum). As the combinatorial explosion makes

exhaustive enumeration of all possible solutions infeasible and the NP-hard char-

acteristic of the problem implies that there (presumably) cannot exist a faster

algorithm, we have to rely on heuristics that compute approximative results.

2.2 Cost Models

Our investigations are based on the cost models discussed in this subsection.

Each of these cost models measures cost as the number of pages that have to

be read from or written to secondary memory. The execution environment is

not distributed. The database is assumed to be much larger than available main

memory, so all costs besides I/O can be neglected without introducing too large

an error. All cost models are based on parameters listed in Table 1. The join

operations itself are equijoins. A common term for each of the cost formulae below

3

Parameter Meaning

jRj Cardinality (number of tuples) of relation R

ts

R

Tuple size of relation R (in bytes)

bs Size of a disk block (in bytes)

ps Size of a tuple reference (tuple identi�er, TID)

ms Main memory size (in number bs)

�

12

Join selectivity for join R

1

1 R

2

�

�

12

=

jR

1

1R

2

j

jR

1

�R

2

j

�

b

R

Number of blocks occupied by relation R

fo Fanout of an internal B

+

-tree node

�

fo =

j

0:69 �

bs

ps

k�

x

R

Height of a B

+

-tree index on the join attribute of R minus one

�

x

R

=

l

log

fo

b

r

m

� 1

�

s

R

Selection cardinality of R's join attribute (average number of

tuples with the same value of the join attribute)

Table 1: Cost Model Parameters

is the cost for writing the result of the join operation to secondary memory. This

cost is

C

write

(R

1

1 R

2

) =

�

12

� jR

1

j � jR

2

j

bs=ts

R

12

2.2.1 Nested Loop Join

The cost for performing a nested loop join (depending on the presence of index

structures) is [EN94]:

1. Without index support

C

nl

(R

1

1 R

2

) = b

R

1

|{z}

read R

1

+

 &

b

R

1

ms � 1

'

� b

R

2

!

| {z }

read R

2

and perform join

2. Primary B

+

-tree index on the join attribute of R

2

C

nl

(R

1

1 R

2

) = b

R

1

|{z}

read R

1

+ jR

1

j � (x

R

2

+ 1)

| {z }

use index to �nd matching tuple in R

2

3. Secondary B

+

-tree index on the join attribute of R

2

C

nl

(R

1

1 R

2

) = b

R

1

|{z}

read R

1

+ jR

2

j � (x

R

2

+ s

R

2

)

| {z }

use index to �nd matching tuple in R

2

4

4. Hash index on the join attribute of R

2

C

nl

(R

1

1 R

2

) = b

R

1

|{z}

read R

1

+ jR

2

j � h

| {z }

use index to �nd matching tuple in R

2

h is the average number of page accesses necessary to retrieve a tuple from

R

2

with a given key. We use the value h = 1:2 for a primary hash index,

and h = 2:2 for a secondary hash index.

2.2.2 Sort-Merge Join

The cost for performing a sort-merge join operation is [EN94]:

C

sm

(R

1

1 R

2

) = C

R

1

+ C

R

2

where C

R

1

resp. C

R

2

is computed according to the following cases:

1. The relation is sorted on the join attribute (or there is a primary B

+

-tree

index on the join attribute)

C

R

x

= b

x

i.e., there is only the cost for reading the relation.

2. There is a secondary B

+

-tree index on the join attribute

C

R

x

=

&

jR

x

j �

0:69 � bs

ps

'

+ b

x

i.e., the leaf nodes of the index tree (assumed to be 69% full) have to be

scanned for pointers to the tuples of the relation, and the blocks containing

the tuples itself must be read.

3. No sort order on the join attribute, explicit sorting is required

C

R

x

= b

x

log

ms

b

x

+ b

x

We assume the merge-sort algorithm is applied, where the number of merge

passes depends on the amount of main memory available.

2.2.3 Hash Join

We assume that a \Hybrid Hash Join" is carried out. This algorithm performs

very well over a large range of available main memory. The cost is [Sha86]:

b

R

1

+ b

R

2

+ 2 � (b

R

1

+ b

R

2

) � (1� q)

where q denotes the fraction of R

1

whose hash table �ts into main memory. It is

computed as:

q =

ms �

l

1:4�b

R

1

�ms

ms�1

m

b

R

1

The constant 1:4 accounts for the hash table's load factor of about 71%.

5

3

1

2

1

R

1

��

��

�

�

� A

A

A

R

2

��

��

�

�

� @

@

@

1

1

R

3

��

��

�

�

� A

A

A

R

4

��

��

Figure 1: Computation of processing tree costs

2.2.4 Cost of an Entire Processing Tree

In order to estimate the cost for evaluating an entire processing tree, the cost for

each node is computed recursively (bottom-up, right-to-left) as the sum of the

cost for obtaining the two son nodes and the cost for joining them in order to get

the �nal result.

If the outer relation (R

1

in the cost formulae) is not a base relation, and the

join algorithm is a nested loop join, we assume that pipelining is possible, which

saves the costs for writing an intermediate result to disk and to read it back into

main memory. For instance, the processing tree in Figure 1 (where all join nodes

are supposed to be nested loop joins) is evaluated as follows:

1. The join operation R

3

1 R

4

(node 1) is performed. Because both operands

are base relations, the cost for reading both R

3

and R

4

is included in the

estimate. Furthermore, the result of this operation has to be written to

disk as intermediate relation.

2. The join operation R

1

1 R

2

(node 2) is performed. Again, both operands

are base relations, so the cost for scanning them has to be counted. But in

contrast to node 1, no intermediate result has to be written to disk, because

the tuples can be pipelined to node 3, the root of the processing tree.

3. In node 3, both intermediate results R

1

1 R

2

and R

3

1 R

4

are joined

together in order to compute the �nal result. While R

1

1 R

2

does not need

to be read from disk due to the pipeline from node 2, R

3

1 R

4

must be

read back in, and the �nal result must be written to disk.

We note that the boxed join nodes' results (Figure 1) must be written to sec-

ondary memory. These considerations are valid if (and only if) the two processing

nodes in question are both nested loop joins. If either node 2 or node 3 in the

example tree in Figure 1 were anything else but nested loop joins, the cost for

writing the intermediate result to disk and reading it back into memory would

have to be charged.

6

3 Solution Space for the Join Ordering Problem

Generally, the solution space is de�ned as the set of all processing trees that

compute the result of the join expression and that contain each base relation

exactly once. The leaves of the processing trees consist of the base relations,

whereas the inner nodes correspond to join results of the appropriate sons. As

the join operation is commutative and associative, the number of possible pro-

cessing trees increases quickly with increasing number of relations involved in

the join expression in question. Traditionally, a subset of the complete space,

the set of so-called left-deep processing trees, has been of special interest to re-

searchers [SAC

+

79, SG88, Swa89]. We shall now study the characteristics of

both the complete solution space and the subset of left-deep trees as the most

interesting special cases, although other tree shapes might be contemplated, e.g.,

right-deep trees or zig-zag trees, which are mainly of interest in distributed com-

puting environments (cf., e.g., [LVZ93]).

3.1 Left-Deep Trees

This subset consists of all processing trees where the inner relation of each join is

a base relation. For a �xed number of base relations, the speci�cation \left-deep"

does not leave any degrees of freedom concerning the shape of the tree, but there

are n! ways to allocate n base relations to the tree's leaves. It has been argued

that good solutions are likely to exist among these trees, because such trees are

capable of exploiting the cost-reducing pipelining technique on each of its join

processing nodes. In case a processing tree consists solely of nested loop joins

(either with or without index support), not a single intermediate result has to be

materialized on secondary memory.

3.2 Bushy Trees

In this solution space, we also permit join nodes where both operands are \com-

posites" (i.e., no base relations). Thus, the solutions in this space are in no way

restricted. Consequently, this solution space includes left-deep as well as other

special tree shapes as (strict) subsets. Because the shape of possible processing

trees can be arbitrary, the cardinality of this set is much higher than the car-

dinality of the left-deep space: For n base relations, there are

�

2(n�1)

n�1

�

(n � 1)!

di�erent solutions. However, although the degrees of freedom in constructing

bushy trees are much higher, the capability of exploiting the pipelining technique

is restricted to a subset of the tree's join processing nodes. The more the shape

of the tree tends toward right-deep (i.e., the join nodes' left operands are base

relations), the smaller is the size of this subset. For a right-deep tree, none of its

join processing nodes is capable of pipelining.

7

In [OL90], an adaptable plan enumeration strategy for linear (chain) and star-

shaped join graphs is proposed that reduces the number of feasible plans (whose

costs have to be evaluated) considerably. If n denotes the number of relations in

the join graph, there are (n

3

� n)=6 (bushy tree solution space) resp. (n � 1)

2

(left deep tree solution space) feasible joins for linear graphs. For star graphs,

there are (n � 1) � 2

n�2

(bushy tree solution space) feasible joins. However, this

approach requires an especially tailored \join plan enumerator" for every class

of join graphs that might be encountered, and for arbitrary join graphs still the

entire solution space must be considered in order to guarantee that the optimal

solution cannot be missed.

4 Join Ordering Strategies

The problem of �nding a good nesting order for n-relational joins can be tackled

in several di�erent ways:

1. Deterministic Algorithms

Every algorithm in this class constructs a solution step by step in a deter-

ministic manner, either by applying a heuristic or by exhaustive search.

2. Randomized Algorithms

Algorithms in this class pursue a completely di�erent approach: �rst, a set

of moves is de�ned. These moves constitute edges between the di�erent

solutions of the solution space; two solutions are connected by an edge if

(and only if) they can be transformed into one another by exactly one move.

Each of the algorithms performs a random walk along the edges according

to certain rules, terminating as soon as no more applicable moves exist or

a time limit is exceeded. The best solution encountered so far is the result.

3. Genetic Algorithms

Genetic algorithms make use of a randomized search strategy very similar to

biological evolution in their search for good problem solutions. Although in

this aspect genetic algorithms resemble randomized algorithms as discussed

above, the approach shows enough di�erences to warrant a consideration of

its own. The basic idea is to start with a random population and generate

o�spring by random crossover and mutation. The \�ttest" members of the

population (according to the cost function) survive the subsequent selection;

the next generation is based on these. The algorithm terminates as soon

as there is no further improvement or after a predetermined number of

generations. The �ttest member of the last population is the solution.

4. Hybrid algorithms

Hybrid algorithms combine the strategies of pure deterministic and pure

8

randomized algorithms: solutions obtained by deterministic algorithms are

used as starting points for randomized algorithms or as initial population

members for genetic algorithms.

4.1 Deterministic Algorithms

The algorithms discussed in this section either employ heuristics or a (pruned)

search of the solution space in order to optimize the given join expression. We

shall take a closer look at �ve di�erent algorithms of this class with varying

complexity and performance.

4.1.1 Dynamic Programming

This is the classical algorithm that has been used for join order optimization in

System-R [SAC

+

79]. It searches the solution space of left-deep processing trees.

First, the set of partial solutions is initialized with all possible scan nodes for

all relation attributes that participate in the query. For instance, if there is an

index on attribute R:A, then both the index scan and the ordinary �le scan

are considered feasible partial processing trees. In the next step, every element

with a cheaper, equivalent alternative is pruned from the set of possible partial

solutions, where an alternative is considered \equivalent" if it joins the same set of

relations and the sort order of the partial result is the same. In the following loop,

the algorithm constructs in the kth iteration a set of k-relation partial solutions

from a set of (k � 1)-relation partial solutions. When this loop terminates, the

set partialsolutions consists of at least one, possibly several equivalent, optimal

solutions.

A pseudo code rendering of this algorithm is shown in Figure 2. Apart from

the removal of all equivalent alternatives but the cheapest one, the original al-

gorithm according to the cited reference performs further pruning of the search

tree: it defers the introduction of cartesian products into partial solutions as long

as possible, thus removing unlikely candidates for the optimal solution. How-

ever, although this strategy reduces the computational complexity, the result is

no longer guaranteed to be optimal.

A major disadvantage of this algorithm is the high memory consumption

for storing partial solutions. That (and the exponential running time) makes

its application for queries that involve more than about ten to �fteen relations

prohibitively expensive.

4.1.2 Minimum Selectivity

Good solutions are generally characterized by intermediate results with small

cardinality. The minimum selectivity heuristic builds a left-deep processing tree

step by step while trying to keep intermediate relations as small as possible. The

9

function DynProg

inputs Rels \Set of relations to be joined"

outputs pt \Processing Tree"

partialsolutions := fAll scans for all attributes involvedg

\Remove all elements from partialsolutions with equiv-

alent, lower-cost alternative"

for i := 2 to jRelsj

for all pt in partialsolutions

for all R

i

in Rels

pt :=

 J

J

pt

�

�

�

R

i

1

end

end

\Remove all elements from partialsolutions with equiv-

alent, lower-cost alternative"

end

return \Arbitrary element from partialsolutions"

Figure 2: Algorithm \Dynamic Programming"

selectivity factor � of the join R

1

1 R

2

can be used to achieve this goal. First,

the set of relations to be joined is divided into two subsets: the set of relations

already incorporated into the intermediate result, denoted as R

used

(which is

initially empty), and the set of relations still to be joined with the intermediate

result, denoted as R

remaining

(which initially consists of the set of all relations).

Then, in each step of the algorithm, the relation R

i

2 R

remaining

with the lowest

selectivity factor

�

i

:=

�

�

�

�

�

R

i

1

1

R

u

2R

used

R

u

!

�

�

�

�

�

jR

i

j �

�

�

�

�

�

1

R

u

2R

used

R

u

�

�

�

�

�

is joined with the (so far) intermediate result and moved fromR

remaining

to R

used

.

Figure 3 shows the complete algorithm for left-deep processing trees.

10

function MinSel

inputs rels \List of relations to be joined"

outputs pt \Processing Tree"

pt := NIL

do

if pt = NIL then

R

i

:= \Relation with smallest cardinality"

pt :=

�

�

�

R

i

else

R

i

:= \Relation from rels with smallest selectivity factor for

the join with pt"

pt :=

 J

J

pt

�

�

�

R

i

1

end

rels := rels n [R

i

]

while rels 6= []

return pt;

Figure 3: Algorithm \Minimum Selectivity"

4.1.3 Top-Down Heuristic

Another simple heuristic is the Top-Down heuristic. Its working principle is

based on the observation that the last joins are the most important joins in

the expression in terms of cost, simply because the intermediate results tend to

be rather large towards the end of the evaluation. Therefore, the Top-Down

heuristic selects the relation from the set that can be joined with lowest cost with

the remaining relations. This strategy is applied repeatedly until no relations are

left (Figure 4).

4.1.4 Krishnamurthy-Boral-Zaniolo Algorithm

On the foundation of [Law78] and [MS79], Ibaraki and Kameda showed in [IK84]

that it is possible to compute the optimal nesting order in polynomial time,

provided the query graph forms a tree (i.e., no cycles) and the cost function is

a member of a certain class. Based on this result, Krishnamurthy, Boral and

Zaniolo developed in [KBZ86] an algorithm (from now on called KBZ algorithm)

11

function TopDown

inputs Rels \List of relations to be joined"

outputs pt \Processing tree"

if Rels 6= [] then

R

i

:= \Relation from rels that incurs the lowest cost when

joined with all other relations from rels"

Rels := Rels n [R

i

]

end

return

 J

J

TopDown(rels)

�

�

�

R

i

1

Figure 4: Algorithm \Top-Down"

that computes the optimal solution for a tree query in O(n

2

) time, where n is the

number of joins.

In the �rst step, every relation plays, in turn, the role of the root of the query

tree. For all roots, the tree is linearized by means of a ranking function that

establishes the optimal evaluation order for that particular root. The linearized

tree obeys the tree's order, in other words, a parent node is always placed before

the son nodes. The evaluation order with lowest cost is the result of the algorithm.

By transforming the query tree into a rooted tree, a parent node for every

node can be uniquely identi�ed. Thus, the selectivity of a join, basically an edge

attribute of the query graph, can be assigned to the nodes as well. If the cost

function C can be expressed as C(R

i

1 R

j

) = jR

i

j �g(jR

j

j) where g is an arbitrary

function, the join cost can be assigned to a particular node, too. The cost can

be computed recursively as follows (� denotes the empty sequence, and l

1

and l

2

partial sequences):

C(�) = 0

C(R

i

) =

(

jR

i

j if R

i

is the root node

g(jR

i

j) else

C(l

1

l

2

) = C(l

1

) + T (l

1

)C(l

2

)

The auxiliary function T (l) is de�ned as:

T (l) =

(

1 if l = � (empty sequence)

Q

R

k

2l

�

k

jR

k

j else

�

k

denotes the selectivity of the join of R

k

with its parent node.

12

function Linearize

inputs root \Root of a (partial) tree"

outputs chain \Optimal join order for the tree-shaped join graph with

root `root' "

chain := []

for all succ in Sons(root)

lin := Linearize(succ)

\Merge lin into chain according to ranks"

end

chain := root + chain

\Normalize the root node `root' (cf. text)"

return chain;

Figure 5: Auxiliary Function \linearize"

The algorithm is based on the so-called \Adjacent Sequence Interchange Prop-

erty" [IK84] for cost functions that can be expressed as C(R

i

1 R

j

) = jR

i

j�g(jR

j

j).

If the join graph J is a rooted tree and A, B, U and V are subsequences of J

(U and V non-null), such that the partial order de�ned by J is not violated by

AV UB and AUV B, then

C(AV UB) � C(AUV B), rank(U) � rank(V)

The rank of a non-null sequence S is de�ned as

rank(S) :=

T (S)� 1

C(S)

Thus, the cost can be minimized by sorting according to the ranking function

rank(S), provided the partial order de�ned by the tree is preserved.

The algorithm for computing the minimum cost processing tree consists of the

auxiliary function \linearize" and the main function \KBZ." First, the join tree

is linearized according to the function linearize in Figure 5, where a bottom-up

merging of sequences according to the ranking function is performed. In the last

step, the root node becomes the head of the sequence thus derived. However,

it is possible that the root node has a higher rank than its sons, therefore a

normalization of the sequence has to be carried out. That means that the �rst

relation in the sequence (the root node) is joined with its successor. If necessary,

this step has to be repeated until the order of the sequence is correct. The cost

of the sequence is computed with the recursive cost function C.

13

function KBZ

inputs joingraph

outputs minorder \join order"

tree := \Minimum spanning tree of joingraph"

mincost :=1

forall node in tree

lin := Linearize(node)

\Undo normalization"

cost := Cost(lin)

if cost < mincost then

minorder := lin

mincost := cost

end

end

return minorder;

Figure 6: KBZ-Algorithm

In the main function KBZ (Figure 6), this procedure is carried out for each

relation of the join graph acting as the root node. The sequence with lowest total

cost is the result of the optimization.

The algorithm can be extended to general (cyclic) join graphs in a straight-

forward way, namely by reducing the query graph to its minimal spanning tree

using Kruskal's algorithm [Kru56]. The weight of the join graph's edges is deter-

mined by the selectivity of the appropriate join, and the minimal spanning tree

is determined as the tree with the lowest product of edge weights, rather than

the sum of the edges' weights, as usual in other applications of Kruskal's algo-

rithm. This extension has been suggested in [KBZ86]. However, if the join graph

is cyclic, the result is no longer guaranteed to be optimal|it is but a heuristic

approximation. When we speak of the \KBZ algorithm" in later sections, we

refer to this extension with the computation of the minimal spanning tree of the

join graph.

Due to its working principle, the KBZ algorithm requires the assignment

of join algorithms to join graph edges before the optimization is carried out.

This requirement and the restrictions concerning the cost model are the main

drawbacks of the KBZ algorithm. The more sophisticated and detailed the cost

model is, the more likely it is that KBZ's optimal result based on a (almost

inevitably crude) approximation is di�erent from the real optimum. Furthermore,

separating the two tasks of join order optimization and join method assignment

14

function AB

inputs joingraph

outputs minorder \join order"

while number of iterations � N

2

do

begin

randomize methods;

while number of iterations � N

2

do

begin

apply KBZ;

change order;

change methods;

end;

end;

post process;

return minorder;

Figure 7: AB-Algorithm

invalidates the main advantage of the KBZ algorithm, namely to yield the optimal

solution in O(n

2

) time. In the following section, an algorithm is discussed that

tries to remedy this situation.

4.1.5 AB Algorithm

The AB algorithm has been developed by Swami and Iyer [SI93]. It is based on

the KBZ algorithm with various enhancements, trying to remove the restrictions

that are imposed on the join method placement. The algorithm permits the

use of two di�erent cost models, namely nested loop and sort-merge. The sort-

merge cost model has been simpli�ed by Swami and Iyer such that it conforms

to the requirements of the KBZ algorithm (C(R

1

1 R

2

) = jR

1

j � g(jR

2

j) for some

function g, cf. Section 4.1.4). The algorithm runs as follows (cf. Figure 7):

1. In randomize methods, each join in the join graph is assigned a randomly

selected join method. If the join graph is cyclic, a random spanning tree is

selected �rst.

2. The resulting tree query is optimized by the KBZ algorithm (apply KBZ).

3. change order attempts to further reduce the cost by swapping relations

such that \interesting orders" can be exploited.

15

4. The next step comprises a single scan through the join order achieved so

far. For each join, an attempt is made to reduce the total cost by changing

the join method employed (change method).

5. Steps 2 to 4 are iterated until no further improvement is possible or N

2

iterations are performed (N = number of joins in the join graph).

6. Steps 1 to 5 are repeated as long as the total number of iterations of the

inner loop does not exceed N

2

.

7. In a post-processing step (post process), once more the order of the relations

is changed in an attempt to reduce the cost.

The AB algorithm comprises elements of heuristic and randomized optimizers.

The inner loop searches heuristically for a local minimum, whereas in the outer

loop several random starting points are generated in the manner of the Iterative

Improvement algorithm (cf. Section 4.2.1). However, without sacri�cing the con-

tribution of the KBZ algorithm, even with the AB extension it is hardly possible

to make use of a sophisticated cost model.

4.2 Randomized Algorithms

Randomized algorithms view solutions as points in a solution space and connect

these points by edges that are de�ned by a set ofmoves. The algorithms discussed

below perform some kind of random walk through the solution space along the

edges de�ned by the moves. The kind of moves that are considered depend

on the solution space: if left-deep processing trees are desired, each solution

can be represented uniquely by an ordered list of relations participating in the

join. Two di�erent moves are proposed in [SG88, Swa89] for modifying these

solutions: \Swap" and \3Cycle." \Swap" exchanges the positions of two arbitrary

relations in the list, and \3Cycle" performs a cyclic rotation of three arbitrary

relations in the list. For instance, if R

1

R

2

R

3

R

4

R

5

was a point in the solution

space, application of \Swap" might lead to R

1

R

4

R

3

R

2

R

5

, whereas \3Cycle" could

yield R

5

R

2

R

1

R

4

R

3

.

If the complete solution space with arbitrarily shaped (bushy) processing trees

is considered, the moves depicted in Figure 8 (introduced in [IK90]) are used for

traversal of the solution space.

4.2.1 Iterative Improvement

If the solution space of the join optimization problem did contain but one global

cost minimum without any local minima, we could use a simple hill-climbing

algorithm for �nding this minimum. However, because the solution space does

contain local minima, hill-climbing would almost certainly yield one of them.

16

1

A

�

� A

A

B

=)

1

B

�

� A

A

A

1

1

A

�

� A

A

B

�

� A

A

C

=)

1

A

�

� A

A

1

B

�

� A

A

C

Commutativity Associativity

A 1 B) B 1 A (A 1 B) 1 C) A 1 (B 1 C)

1

1

A

�

� A

A

B

�

� A

A

C

=)

1

1

A

�

� A

A

C

�

� A

A

B

1

A

�

� A

A

1

B

�

� A

A

C

=)

1

B

�

� A

A

1

A

�

� A

A

C

Left Join Exchange Right Join Exchange

(A 1 B) 1 C) (A 1 C) 1 B A 1 (B 1 C)) B 1 (A 1 C)

Figure 8: Moves for Bushy-Tree Solution Space Traversal

The Iterative Improvement Algorithm [SG88, Swa89, IK90] tries to overcome

this problem in the following way (Figure 9): After selecting a random starting

point, the algorithm seeks a minimum cost point using a strategy similar to hill-

climbing. Beginning at the starting point, a random neighbour (i.e., a point that

can be reached by exactly one move) is selected. If the cost associated with

the neighbouring point is lower than the cost of the current point, the move

is carried out and a new neighbour with lower cost is sought. This strategy is

insofar di�erent from genuine hill-climbing, as no attempt is made to determine

the neighbour with lowest cost. The reason for this behaviour is the generally very

high number of neighbours that would have to be checked. The same holds for the

check whether a given point is a local minimum or not. Instead of systematically

enumerating all possible neighbours and checking each one individually, a point

is assumed to be a local minimum if no lower-cost neighbour can be found in a

certain number of tries.

This procedure is repeated until a predetermined number of starting points

are processed or a time limit is exceeded. The lowest local minimum encountered

is the result.

4.2.2 Simulated Annealing

Iterative Improvement su�ers from a major drawback: Because moves are ac-

cepted only if they improve the result obtained so far, it is possible that even

with a high number of starting points the �nal result is still unacceptable. This

17

function IterativeImprovement

outputs minstate \Optimized processing tree"

mincost :=1

do

state := \Random starting point"

cost := Cost(state)

do

newstate := \state after random move"

newcost := Cost(newstate)

if newcost < cost then

state := newstate

cost := newcost

end

while \Local minimum not reached"

if cost < mincost then

minstate := state

mincost := cost

end

while \Time limit not exceeded"

return minstate;

Figure 9: Iterative Improvement

is the case especially when the solution space contains a large number of high-

cost local minima. In this case, the algorithm gets easily \trapped" in one of the

high-cost local minima.

Simulated Annealing (Figure 10) is a re�nement of Iterative Improvement that

removes this restriction [IW87, SG88]. In Simulated Annealing, a move may be

carried out even if the neighbouring point is of higher cost. Therefore, the algo-

rithm does not get trapped in local minima as easily as Iterative Improvement.

As the name \Simulated Annealing" suggests, the algorithm tries to simulate

the annealing process of crystals. In this natural process, the system eventually

reaches a state of minimum energy. The slower the temperature reduction is car-

ried out, the lower the energy of the �nal state (one large crystal is of lower energy

than several smaller ones combined). Figure 11 illustrates this behaviour: Itera-

tive Improvement stops in the �rst local minimum, whereas Simulated Annealing

overcomes the high-cost barrier that separates it from the global minimum, be-

cause the SA algorithm always accepts moves that lead to a lower cost state,

18

function SimulatedAnnealing

inputs state \Random starting point"

outputs minstate \Optimized processing tree"

minstate := state; cost := Cost(state); mincost := cost

temp := \Starting temperature"

do

do

newstate := \state after random move"

newcost := Cost(newstate)

if newcost � cost then

state := newstate

cost := newcost

else \With probability e

newcost�cost

temp

"

state := newstate

cost := newcost

end

if cost < mincost then

minstate := state

mincost := cost

end

while \Equilibrium not reached"

\Reduce Temperature"

while \Not frozen"

return minstate;

Figure 10: Simulated Annealing

whereas moves that increase costs are accepted with a probability that depends

on the temperature and the di�erence between the actual and the new state's

cost.

Of course, the exact behaviour is determined by parameters like starting tem-

perature, temperature reduction and stopping condition. Several variants have

been proposed in the literature|we shall present the detailed parameters in the

next section where we analyse and compare those SA variants.

4.2.3 Two-Phase Optimization

The basic idea for this variant is the combination of Iterative Improvement and

Simulated Annealing in order to combine the advantages of both [IK90]. Iterative

19

Cost

Starting State

Stop of II

Minimum
Stop of SA

Figure 11: Iterative Improvement vs. Simulated Annealing

Improvement, if applied repeatedly, is capable of covering a large part of the

solution space and descends rapidly into a local minimum, whereas Simulated

Annealing is very well suited for thoroughly covering the neighbourhood of a given

point in the solution space. Thus, Two-Phase Optimization works as follows:

1. for a number of randomly selected starting points, local minima are sought

by way of Iterative Improvement (Figure 9), and

2. from the lowest of these local minima, the Simulated Annealing algorithm

(Figure 10) is started in order to search the neighbourhood for better solu-

tions.

Because only the close proximity of the local minimum needs to be covered, the

initial temperature for the Simulated Annealing pass is set lower than it would

be for the Simulated Annealing algorithm run by itself.

4.2.4 Toured Simulated Annealing

An approach similar to Two-Phase Optimization has been proposed in [LVZ93]

in the context of a distributed computing environment. In Toured Simulated

Annealing, several Simulated Annealing \tours" with di�erent starting points are

performed. Each starting point is derived from a deterministic algorithm that

greedily builds processing trees using some augmentation heuristic. For instance,

the Minimum Selectivity heuristic discussed in Section 4.1.2 could be used to

provide these starting points.

20

The main bene�t of Toured Simulated Annealing is, similar to Two-Phase

Optimization, the reduced running time. The starting temperature for the di�er-

ent tours is set much lower (0:1 times the initial plan's cost) than for Simulated

Annealing with a random starting point, so the annealing process does not spend

much time accepting moves that do not improve the current solution.

4.2.5 Random Sampling

In [GLPK94], a radically di�erent idea is pursued. All randomized algorithms

discussed so far are based on transformations that attempt to reduce a given

solution's evaluation cost according to a set of rules until no further improvement

can be achieved. However, an analysis of the cost distribution in the solution

space reveals that a signi�cant fraction of solutions is rather close to the optimum.

An algorithm that draws a truly random sample of solutions should therefore

contain the same fraction of good solutions as the entire space; however, designing

such an algorithm that selects each processing tree with equal probability is not

trivial. In the above mentioned work, such an algorithm (designed for acyclic

join graphs) is presented; its application is most appropriate, when a reasonably

good (evaluation cost of less than two times the minimum cost) evaluation plan

has to identi�ed quickly, as the experimental results in [GLPK94] indicate.

4.3 Genetic Algorithms

Genetic algorithms are designed to simulate the natural evolution process. As in

nature, where the �ttest members of a population are most likely to survive and

inherit their features to their o�spring, genetic algorithms propagate solutions

for a given problem from generation to generation, combining them to achieve

further improvement. We provide a brief overview of the terminology and the

working principles of genetic algorithms. For a comprehensive introduction, the

reader is referred to, e.g., [Gol89].

4.3.1 Terminology

Because genetic algorithms are designed to simulate biological evolution, much

of the terminology used to describe them is borrowed from biology. One of the

most important characteristics of genetic algorithms is that they do not work on

a single solution, but on a set of solutions, the population. A single solution is

sometimes called phenotype. Solutions are always represented as strings (chro-

mosomes), composed of characters (genes) that can take one of several di�erent

values (alleles). The locus of a gene corresponds to the position of a character in

a string. Each problem that is to be solved by genetic algorithms, must have its

solutions represented as character strings by an appropriate encoding.

21

The \�tness" of a solution is measured according to an objective function

that has to be maximized or minimized. Generally, in a well-designed genetic

algorithm both the average �tness and the �tness of the best solution increases

with every new generation.

4.3.2 Basic Algorithm

The working principle of the genetic algorithm that we use to optimize join ex-

pressions is the same as the generic algorithm described below.

First, a population of random character strings is generated. This is the \zero"

generation of solutions. Then, each next generation is determined as follows:

� A certain fraction of the �ttest members of the population is propagated

into the next generation (Selection).

� A certain fraction of the �ttest members of the population is combined

yielding o�spring (Crossover).

� And a certain fraction of the population (not necessarily the �ttest) is

altered randomly (Mutation).

This loop is iterated until the best solution in the population has reached the de-

sired quality, a certain, predetermined number of generations has been produced

or no improvement could be achieved for a certain number of generations. In the

next section, we shall examine how this generic algorithm can be adapted to the

problem of optimizing join expressions.

4.3.3 Genetic Algorithm for Optimizing Join Expressions

Because genetic algorithms were not nearly studied as intensively for join or-

der optimization as other randomized algorithms, we shall discuss the questions

associated with the employment of genetic algorithms for optimizing join expres-

sions in more detail. In particular, will not merely provide the techniques that

we �nally implemented, but some of the alternatives we considered (and tested)

as well. Even if the basic algorithm remains unmodi�ed, many variations for

solution encoding, selection, crossover and mutation may be contemplated.

Encoding Before a genetic algorithm can be applied to solve a problem, an

appropriate encoding for the solution and an objective function has to be chosen.

For join optimization, the solutions are processing trees, either left-deep or bushy,

and the objective function is the evaluation cost of the processing tree that is to be

minimized. For encoding processing trees, we considered two di�erent schemes:

1. Ordered list

22

R

2

i

1

�

�

�

R

1

i

2

R

3

R

4

i

4

R

5

�

�

�

i

3

1

1

R

3

�

� T

T

1

R

1

�

� T

T

R

2

,

, l

l

1

R

4

�

� T

T

R

5

1243

(a) (b) (c)

Join Graph Processing Tree Encoded Tree

Figure 12: Encoding of Bushy Processing Trees

(a) Left-deep trees:

Solutions are represented as an ordered list of leaves. For instance,

the processing tree ((((R

1

1 R

4

) 1 R

3

) 1 R

2

) 1 R

5

) is encoded as

\14325".

(b) Bushy trees:

Bushy trees without cartesian products are encoded as an ordered list

of join graph edges. This scheme has been proposed in [BFI91]. As

an example of this encoding scheme, we represent the processing tree

depicted in Figure 12b as a character string. In a preliminary step,

every edge of the join graph is labelled by an arbitrary number, such

as in Figure 12a. Then, the processing tree is encoded bottom-up and

left-to-right, just the way as it would be evaluated. So, the �rst join

of the tree joins relations R

1

and R

2

, that is edge 1 of the join graph.

In the next steps, R

12

and R

3

are joined, then R

4

and R

5

, and �nally

R

123

and R

45

, contributing edges 2, 4 and 3, respectively. Thus, the

�nal encoding for our sample processing tree is \1243" (Figure 12c).

2. Ordinal number encoding

(a) Left-deep trees:

A chromosome consists of a sequence of ordinal numbers of the pro-

cessing tree's list of leaves. For instance, the processing tree ((((R

1

1

R

4

) 1 R

3

) 1 R

2

) 1 R

5

) is encoded as follows:

� An ordered list L of all participating relations is made (for in-

stance, based on their indices), such as L = [R

1

; R

2

; R

3

; R

4

; R

5

].

� The �rst relation in the processing tree, R

1

, is also the �rst relation

in our list L, so its index \1" is the �rst gene of the chromosome.

R

1

is then removed from the list L, so L := [R

2

; R

3

; R

4

; R

5

].

23

� The second relation in the processing tree, R

4

, is the third relation

in the list L, so \3" becomes the second gene of the chromosome.

After removal of R

4

, L becomes [R

2

; R

3

; R

5

].

� This process is repeated until the list L is exhausted. In our

example, the �nal encoding for the processing tree is \13211".

(b) Bushy trees:

For bushy trees, the ordinal numbers in the chromosome denote join

nodes similar to the ordered list of join edges described above. But

instead of specifying the join node by the corresponding join graph

edge, the join's operands are used for that purpose. For instance, the

processing tree in Figure 12b is encoded as follows:

� An ordered list of all participating relations is made exactly as for

left-deep tree encoding: L := [R

1

; R

2

; R

3

; R

4

; R

5

].

� The �rst join node in the processing tree is R

1

1 R

2

, which in-

volves R

1

and R

2

with index \1" and \2", respectively, so \12"

becomes the �rst gene of the chromosome. R

1

and R

2

are replaced

by R

12

, so L := [R

12

; R

3

; R

4

; R

5

].

� The next node in the processing tree joins relation R

3

with the

result R

1

1 R

2

(index 2 and 1), yielding gene \21" and L :=

[R

123

; R

4

; R

5

].

� Repeating this process �nally leads to the complete chromosome

\12 21 23 12".

In the actual implementation, the chromosome's genes carry additional infor-

mation, namely operand order (encoding (1b)) and join algorithm (all encoding

schemes).

Selection The selection operator is used to separate good and bad solutions

in the population. The motivation is to remove bad solutions and to increase

the share of good solutions. Mimicking nature, selection is realized as shown

in Figure 13. The sample population consists of four solutions, the objective

function, cost, has to be minimized. The cost value for each of the solutions

is listed in the table in Figure 13. Each solution is assigned a sector of size

inverse proportional to its cost value on a biased roulette wheel. Four spins of

the wheel might yield the result in the second table, where Solution 4 has not

been selected|it \became extinct due to lack of adaptation."

This selection scheme is based on the �tness ratio of the members of the

population: The better a member satis�es the objective function, the more it

dominates the wheel, so one (relative) \super" population member may cause

the premature convergence to a mediocre solution, because of the disappearance

of other members' features. Those features may be valuable, even if the solution

as a whole is not of high quality. To avoid this, we use ranking based selection.

24

Population

Nr. String Cost Fraction of the Wheel

1 31542 31784 31.1%

2 45321 46924 30.1%

3 51234 174937 21.2%

4 14325 227776 17.6%

Sum 100.0%

17.6%

31.1%

30.1%

21.2%

Spinning

the

Wheel

=)

New Generation

Nr. String

1 31542

1 31542

2 45321

3 51234

Figure 13: Selection

That means that not the value of the objective function itself but only its rank

is used for biasing the selection wheel. In Figure 13, for instance, not the cost

values would determine the fraction of the wheel a solution is assigned to, but

just its rank value, i.e., 4 for Solution 1, 3 for Solution 2, 2 for Solution 3 and 1

for Solution 4.

General experience shows that ranking based selection usually makes the evo-

lution process advance more slowly, but the risk of untimely losing important

information contained in weaker solutions is much lower.

Another variant is to keep the best solution in any case. This strategy (some-

times referred to as \elitist") helps speeding up the convergence to the (near)

optimal solution, because the risk of losing an already very good solution is elim-

inated.

Crossover The crossover operator is a means of combining partially good solu-

tions in order to obtain a superior result. The realization of a crossover operator

depends heavily on the chosen encoding. For instance, the crossover operator

has to make sure that the characteristics of the particular encoding is not vi-

olated. Such a characteristic is the uniqueness of each character in the string

for the Ordered List Encoding scheme. The crossover operator and the encod-

25

3 154 2 3 451 2

�

�

�

�*H

H

H

Hj

4 532 1 4 352 1

\Parents" \O�spring"

Figure 14: Crossover 1 { Subsequence Exchange for Ordered List Encoding

ing scheme are tightly coupled, because often the implementation of a particular

crossover operator is facilitated (or even made possible at all) if a particular en-

coding scheme is used. Basically, we considered two di�erent crossover operators,

namely Subsequence Exchange and Subset Exchange. They work as follows:

1. Subsequence Exchange (Ordered List Encoding)

An example of the application of this operator is shown in Figure 14. It

assumes the \ordered list" encoding scheme. For each of the two parents,

a random subsequence is selected. The selected sequence is removed and

the gap is �lled with the characters of the other parent in the order of their

appearance. For instance, in Figure 14, the subsequence \532" is selected

from the string \45321". The �rst gene of its o�spring remains the same

as in the parent (4). The second gene is taken from the �rst gene of the

other parent (3). The second gene of the other parent (1) cannot be used,

because it is already present, so the third gene of the o�spring is taken

from the third gene of the other parent. Continuing this process yields at

last the o�spring chromosome \43521". Determining the second o�spring

is carried out similarly.

2. Subsequence Exchange (Ordinal Number Encoding)

This operator is a slight variation of the above. It is intended for use in

conjunction with the Ordinal Number Encoding. In contrast to the �rst

version of the sequence exchange operator, the two subsequences that are

selected in the two parents must be of equal length. These subsequences

are then simply swapped. This is only feasible with the Ordinal Number

Encoding, because we do not have to worry about duplicated characters.

Figure 15 shows a sample application of this operator.

3. Subset Exchange (Ordered List Encoding)

The basic idea for this operator is to avoid any potential problems with du-

plicated characters by simply selecting two random subsequences with equal

length in both parents that consist of the same set of characters. These two

sequences are then simply swapped between the two parents in order to

26

1 32 11 1 43 11

�

�

�

�*H

H

H

Hj

4 43 21 4 32 21

\Parents" \O�spring"

Figure 15: Crossover 2 { Subsequence Exchange for Ordinal Number Encoding

31542 21543

�

�

�

�*H

H

H

Hj

45 321 45 231

\Parents" \O�spring"

Figure 16: Crossover 3 { Subset Exchange

create two o�spring. Figure 16 depicts an example of the application of

this crossover operator.

Mutation The mutation operator is needed for introducing features that are

not present in any member of the population. Mutation is carried out by random

alteration of a randomly selected chromosome. If the operator must not introduce

duplicate characters, as in ordered list chromosomes, two random genes are simply

swapped in order to carry out the mutation; with Ordinal Number Encoding, a

random gene of the chromosome is assigned a new, random value.

Due to the character of mutation as the \spice" of the evolution process, it

must not be applied too liberally lest the process may be severely disrupted.

Usually, only a few mutations are performed in one generation.

If the \elitist" variant of the selection operator is used, one might also consider

to except the best solution in the population from being mutated. The reasons

for doing so are explained in the paragraph above describing the selection oper-

ator.

5 Quantitative Analysis

Preliminaries The generation of queries for the benchmarks permits indepen-

dent setting of the following parameters:

� Class of the join graph

27

(a) (b)

Chain Star

(c) (d)

Cycle Grid

Figure 17: Join Graphs

Class Relation Cardinality Percentage

S 10{100 15%

M 100{1000 30%

L 1000{10000 35%

XL 10000{100000 20%

100%

Class Domain Size Percentage

S 2{10 5%

M 10{100 50%

L 100{500 30%

XL 500{1000 15%

100%

(a) (b)

Relation Cardinalities Domain Sizes

Table 2: Relation Cardinalities and Domain Sizes

� Distribution of relation cardinalities

� Attribute domains

The shape of the join graph can be chosen from the following four classes: chain,

star, cycle and grid (cf. Figure 17a{d, respectively).

Relation cardinalities and domain sizes fall into four categories: S, M, L, XL

as speci�ed in Table 2; for instance, 35% of all relations comprise between 1000

and 10;000 tuples. These �gures were chosen such that join results and cost

values are neither too small (because of the error that would be introduced due

to the page granularity of the cost model) nor too large (loss of accuracy due to

limited oating point arithmetic resolution).

The query itself is speci�ed such that all relations from a particular join

graph are to be joined; the selectivities that are associated with the graph's edges

are computed according to the estimate used in System-R [SAC

+

79], i.e., � =

1=min(dom(attribute

1

); dom(attribute

2

)). Index structures (either hash tables or

B

+

-trees) facilitate read access on twenty percent of all relation attributes. While

constructing a join graph, relation cardinalities and attribute domain sizes are

drawn independently; however, various \sanity checks" ensure that, for instance,

a relation's cardinality cannot exceed the product of its attribute domain sizes.

28

Each point in the following diagrams represents the average of at least thirty

optimized queries, which proved to be a good compromise between the conicting

goals \avoidance of spurious results" (due to atypical behaviour of single runs)

and \running time," as preliminary tests showed.

From the optimization strategies discussed in Section 4, we implemented the

following algorithms: Minimum Selectivity, Top-Down and KBZ Heuristic from

the class of deterministic optimizers, and Simulated Annealing, Iterative Improve-

ment and Genetic (in several variants) from the class of randomized/genetic op-

timizers. All deterministic algorithms yield solutions in the subspace of left-deep

processing trees, whereas some of the randomized/genetic algorithms operate in

the entire solution space (bushy trees).

All cost �gures are scaled with respect to the best solution available. For

instance, a solution with a scaled cost of two is twice as expensive to evaluate as

the best plan computed by any algorithm for that particular query. However, a

curve for the algorithm that actually did compute the best solution is not nec-

essarily shown in every plot. In other words, the set of algorithms that compete

for the best solution is always the same, regardless of the subset that is depicted

in a particular plot.

Solution Spaces Before presenting the benchmark results, we will take a closer

look at the two solution spaces. The left-deep tree space is a subset of the bushy

tree space, so we can expect lower running times of optimizers that operate in the

left-deep space. On the other hand, there is the danger of missing good solutions

that are not left-deep trees.

In order to get some insight into the advantages of using one solution space

instead of the other, we determined both the \left-deep optimal" and \bushy op-

timal" solutions for one hundred randomly selected queries with six participating

relations. The histograms for the �ve di�erent join graph types in Figure 18a{e

show the percentage of cases where the left-deep tree optimum and bushy tree

optimum is of equal cost (i.e., the optimal solution is in fact a left-deep tree;

labelled \L=B"). Following from left to right: the percentages of cases where the

bushy tree optimum is less than two percent, between two and �ve percent, etc.,

cheaper to evaluate than the left-deep tree optimum.

Considering those histograms, it becomes apparent that the shape of the join

graph makes a big di�erence: for chain and cycle, we can �nd in half of all

cases a better solution in the bushy tree solution space; for cycle, about one �fth

even more than 50% cheaper than the best left-deep tree solution. Consequently,

the investment in searching the bushy tree solution space should be pro�table.

On the other hand, for star join graphs in most of the cases the optima are

left-deep trees anyway, because other tree shapes necessarily comprise cartesian

products. Finally, for the grid join graph, the situation is not as clear as for the

other three: 80% of the optima are left-deep trees, but a non-neglectable fraction

29

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

(a) (b)

Chain Star

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

0

20

40

60

80

100

L=B < 2% < 5% < 10% < 25% < 50% > 50%

P
er

ce
nt

 S
ol

ut
io

ns

(c) (d)

Cycle Grid

Figure 18: Left-Deep vs. Bushy Processing Tress

of the bushy tree optima are far cheaper than their left-deep counterparts. A

choice in favour of the bushy tree solution space would depend heavily on the

optimization algorithms' capability to locate these solutions (cf. [IK91]). In the

remainder of this section, we will investigate whether the bushy tree optimizers

can exploit the potential of good solutions in the bushy tree solution space.

Benchmark Results for Deterministic Algorithms In the �rst series of

benchmarks, we shall examine deterministic algorithms. Figures 19 to 22 show

the results for the Minimum Selectivity Heuristic (Section 4.1.2), Top-Down

Heuristic (Section 4.1.3) and the KBZ algorithm (Section 4.1.4). Because none

of the cost formulae in Section 2.2 ful�ls the KBZ algorithm's requirement, we

used a simple approximation that counts the processed tuples for a nested-loop

join (without considering index structures).

On each of the diagrams, the scaled cost (cost of the optimized evaluation plan

divided by the cost of the best plan derived by any of the optimization algorithms

discussed in this section) is plotted against the number of relations participating

30

1

10

100

1000

10000

100000

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

MinSel
TopDown

KBZ

Figure 19: Deterministic Algorithms; Chain Join Graph

1

1.2

1.4

1.6

1.8

2

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

MinSel
TopDown

KBZ
RDC

Figure 20: Deterministic Algorithms; Star Join Graph

31

1

10

100

1000

10000

100000

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

MinSel
TopDown

KBZ

Figure 21: Deterministic Algorithms; Cycle Join Graph

in the query; the join graph type is noted in the respective caption. Please note

the smaller scale in the y-axis for the star join graph. All deterministic algorithms

yield left-deep processing trees; in addition, the best join method is determined

locally for each join node.

Despite the simple cost approximation for the KBZ algorithm, this optimizer

turns out to be the best of the three deterministic optimizers for the chain,

star and cycle join graphs. Especially the solutions for the star join graph can

hardly be improved by any of the other algorithms we tested|be it deterministic,

randomized or genetic. For cycle and grid, the results are not quite as competitive,

because these join graphs are cyclic and a spanning tree must be selected prior

to the application of the KBZ algorithm. This e�ect becomes especially apparent

for the grid join graph, where the Minimum Selectivity Heuristic performs best.

The worst of the three heuristics is clearly the Top-Down heuristic, indepen-

dent of the join graph type. In almost all cases, it ends up on the last place.

For star join graphs, it computes extremely bad results (therefore, its curve does

not appear in Figure 20), because the last join's cost is minimized, leading to

plans that carry out cartesian products for all but the last join, where the cen-

tre of the star is �nally introduced. Another drawback is due to the way the

Top-Down heuristic builds the processing tree: the join method optimization has

no access to sort order information, making this search less e�ective than for,

e.g., Minimum Selectivity, where the join method optimization can be carried

out bottom-up. To summarize the results for heuristics optimizers, we can note

the following points: �rst, all three of the discussed optimizers have a very short

32

1

10

100

1000

10000

100000

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

MinSel
TopDown

KBZ

Figure 22: Deterministic Algorithms; Grid Join Graph

running time|the KBZ algorithm managed to compute the results for the thirty-

relation star queries in less than two CPU-seconds each, the Minimum Selectivity

Heuristic in less than a tenth of a second for each one of the same queries. Sec-

ond, the performance in terms of quality is|except for star join graphs|only

for small queries competitive, where KBZ performs best for the join graphs with

low connectivity and Minimum Selectivity for the grid join graph.

Benchmark Results for Randomized and Genetic Algorithms The next

set of benchmarks is carried out with randomized algorithms (cf. Section 4.2) and

genetic algorithms (cf. Section 4.3). We will compare three variants of Iterative

Improvement (called IIJ, IIH [SG88], IIIO [IK90]), and Simulated Annealing

(called SAJ, SAH [SG88], SAIO [IK90]) and two variants of genetic algorithms

(Genetic, BushyGenetic). The parameters for each algorithm are derived from

the cited references (II, SA) or they were determined in preliminary tests (Ge-

netic, BushyGenetic). In addition, for all algorithms generating left-deep trees,

a local search is performed for all trial solutions in order to determine the most

appropriate join method on each join node. Exactly as in the �rst set of bench-

marks with the heuristic algorithms, the scaled cost is plotted against the number

of relations participating in the join|please note the di�erent scale in Figure 24.

The parameters of the algorithms mentioned above are as follows:

1. SAJ

33

� A move is either a \Swap" or a \3Cycle," i.e., only left-deep processing

trees are considered.

� The starting temperature is chosen such that at least 40% of all moves

are accepted.

� The number of iterations of the inner loop is the same as the number

of joins in the query.

� After every iteration of the inner loop, the temperature is reduced to

97.5% of its old value.

� The system is considered frozen when the best solution encountered so

far could not be improved in �ve subsequent outer loop iterations (i.e.,

temperature reductions) and less than two percent of the generated

moves were accepted.

2. SAH

� A move is either a \Swap" or a \3Cycle," i.e., only left-deep processing

trees are considered.

� The starting temperature is determined as follows: the standard de-

viation � for the cost is estimated from a set of sample solutions and

multiplied by a constant value (20).

� The inner loop is performed until the cost distribution of the generated

solutions is su�ciently stable (for details cf. [SG88]).

� After every iteration of the inner loop, the temperature is multiplied

by max(0:5; e

�

�t

�

) (� = 0:7, � see above).

� The system is considered frozen when the di�erence between the min-

imum and maximum costs among the accepted states at the current

temperature equals the maximum change in cost in any accepted move

at the current temperature.

3. SAIO

� Moves are chosen from \Join Method Change," \Commutativity,"

\Associativity," \Left Join Exchange" and \Right Join Exchange."

The entire solution space (bushy processing trees) is considered.

� The starting temperature is twice the cost of the (randomly selected)

starting state.

� The number of iterations of the inner loop is sixteen times the number

of joins in the query.

� After every iteration of the inner loop, the temperature is reduced to

95% of its old value.

34

� The system is considered frozen when the best solution encountered

so far could not be improved in four subsequent outer loop iterations

(i.e., temperature reductions) and the temperature has fallen below

one.

4. Iterative Improvement (IIH, IIJ, IIIO)

� All starting points are chosen randomly.

� For an algorithm IIx , moves are chosen from the same set as the cor-

responding SAx algorithm.

� Local minima are determined according to [SG88] (IIH, IIJ) and [IK90]

(IIIO), i.e., a solution is considered a local minimum if k randomly

selected neighbours fail to improve the result. k is the number of join

graph edges for IIH and IIJ; for IIIO, k is the number of neighbouring

states.

� In order to perform a \fair" comparison between Iterative Improve-

ment and Simulated Annealing, the total number of solutions consid-

ered is approximately the same for both the corresponding IIx and SAx

algorithms.

5. Two-Phase Optimization (IIIO+SAIO)

� Ten random starting points for the II phase.

� SA phase starts with the minimum from the II phase and the starting

temperature is 0:1 times its cost.

6. Genetic Algorithms (Genetic/BushyGenetic)

� Solution space: Left-deep processing trees/

Bushy processing trees

� Encoding: Ordered list of leaves/

Ordinal Number Encoding

� Ranking-based selection operator

� Sequence exchange crossover operator

� Population: 128

� Crossover rate 65% (65% of all members of the population participate

in crossover)

� Mutation rate 5% (5% of all solutions are subject to random mutation)

� Termination condition: 30 generations without improvement/

50 generations without improvement

35

1

10

100

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

IIH
SAJ

IIJ

Figure 23: Randomized Algorithms, Left-Deep Tree Solution Space;

Chain Join Graph

1

1.02

1.04

1.06

1.08

1.1

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

IIH
SAJ

IIJ

Figure 24: Randomized Algorithms, Left-Deep Tree Solution Space;

Star Join Graph

36

1

10

100

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

IIH
SAJ

IIJ

Figure 25: Randomized Algorithms, Left-Deep Tree Solution Space;

Cycle Join Graph

In Figures 23 to 26, the results for the left-deep tree optimizers are depicted.

Although the parameter setting for SAH/SAJ and IIH/IIJ is similar, we note

that the \J" variants perform poorly for all but one of the join graph types. SAH

and IIH perform much better, where, in turn, SAH is superior to IIH. In all

cases, SAH and the genetic algorithm computed the best evaluation plans among

the left-deep tree optimizers, with a slight superiority of the genetic algorithm.

Apparently, the sophisticated equilibrium/freezing condition for SAH is the main

reason for its good results. A closer look at the benchmark data revealed that

indeed SAJ visited much less solution alternatives than SAH. The Iterative

Improvement variants that were designed to consider about as many di�erent

solutions as the respective Simulated Annealing algorithms reect this fact: IIH

achieves better results than IIJ. Apart from the quality of the derived results,

another important criterion for selecting an optimizers is its running time, which

we will investigate later. In the meantime, we will look at the performance of

those optimizers that operate in the bushy tree solution space.

These optimizers, namely SAIO, IIIO, 2PO and a genetic algorithm (Bushy-

Genetic) are being compared in Figures 27 and 28. In addition, the best two

left-deep optimizers' curves (SAH and Genetic) are included as well in order to

facilitate direct comparison. It turns out that, in terms of quality, none of the

implemented algorithms performed better than the Two-Phase Optimization al-

gorithm (2PO)|regardless of the join graph type, although the gap between Sim-

ulated Annealing, Iterative Improvement and Two-Phase Optimization is quite

37

1

10

100

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

IIH
SAJ

IIJ

Figure 26: Randomized Algorithms, Left-Deep Tree Solution Space;

Grid Join Graph

narrow. In contrast to the left-deep case, where the genetic algorithm showed

a slight superiority over the Simulated Annealing results, this is not the case in

the bushy tree solution space. Although the genetic algorithm does not perform

particularly poor, it cannot quite equal the quality of Simulated Annealing or

Two-Phase Optimization.

Only for star queries, all algorithms exhibit a very similar behaviour (diver-

gence just about one percent), so the algorithms' running time would be the

decisive factor in this case. For all other join graphs, every bushy tree optimizer

easily outperforms even the best implemented left-deep tree optimizer, which con-

�rms that these algorithms are indeed capable of locating the superior solutions

of the bushy tree solution space.

Let us now look at the running times for the di�erent optimizers. Although the

quality of the generated solutions is a very important characteristic, the running

time of an algorithm has a considerable impact on the �nal choice. The intended

application area determines how much time can be spent on the optimization:

queries that are stated interactively and run only once do not warrant the same

amount of optimization than compiled queries that are repeated hundreds or

thousands of times. In Figure 31, average running times for SAH, Genetic, SAIO

and BushyGenetic are plotted against the number of relations participating in

the queries (\chain" join graph). The running times for the various algorithms

were determined on a SPARCstation 20/612MP and denote CPU time.

38

1

1.2

1.4

1.6

1.8

2

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

BushyGenetic
SAIO

IIIO
2PO

Figure 27: Randomized Algorithms, Bushy Tree Solution Space;

Chain Join Graph

1

1.02

1.04

1.06

1.08

1.1

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

BushyGenetic
SAIO

IIIO
2PO

Figure 28: Randomized Algorithms, Bushy Tree Solution Space;

Star Join Graph

39

1

1.2

1.4

1.6

1.8

2

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

BushyGenetic
SAIO

IIIO
2PO

Figure 29: Randomized Algorithms, Bushy Tree Solution Space;

Cycle Join Graph

1

1.2

1.4

1.6

1.8

2

5 10 15 20 25 30

S
ca

le
d

C
os

t

Number of Relations

Genetic
SAH

BushyGenetic
SAIO

IIIO
2PO

Figure 30: Randomized Algorithms, Bushy Tree Solution Space;

Grid Join Graph

40

0

500

1000

1500

2000

2500

3000

5 10 15 20 25 30

T
ot

al
 R

un
ni

ng
 T

im
e

[s
ec

]

Number of Relations

Genetic
SAH

BushyGenetic
SAIO

IIIO
2PO

Figure 31: Total running times

From these six algorithms, SAIO has the longest running times with up to 2800

CPU-seconds for thirty relation queries. Although the Two-Phase Optimization

algorithm (2PO) yields slightly better solutions, it requires with a running time

of about 1300 CPU seconds only half of SAIO's time. As expected, left-deep tree

optimizers (SAH, Genetic) run faster than bushy tree optimizers, but the gain of

speed must be paid by loss of quality. Surprisingly, the BushyGenetic algorithm

runs even faster than both the left-deep optimizers, even though it yields solutions

that are at least as good as theirs: it can handle the thirty relation queries on

the average in just about 500 seconds.

In Figure 32, for the same six algorithms the approach to their respective

�nal solutions is shown. Each time the currently best solution is improved, the

gain in absolute cost units is noted (y-axis) together with the time of its occur-

rence (x-axis). Because only a single optimization run for a twenty relation query

(chain join graph) is plotted, we cannot draw any far reaching conclusions, but

nevertheless the curves reect the algorithms' typical behaviour quite well. Both

Simulated Annealing algorithms, SAIO as well as SAH, spend a good deal of the

total running time investigating high-cost processing trees; SAIO required more

than 150 seconds to reach a cost level of less than ten times the cost of the �nal

solution. SAH ran faster, but it still took a very long time for the approach to its

�nal solution. On the other hand, both Two-Phase Optimization (2PO) as well

as Iterative Improvement (IIIO) achieved a very good result within less than one

resp. three seconds running time. For the genetic algorithms, especially Bushy-

Genetic can reach acceptable solutions very quickly. Even the initial population

41

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

0.1 1 10 100 1000

C
os

t [
un

its
]

Running Time [sec]

Genetic

SAH

BushyGenetic

SAIOIIIO

2PO

Figure 32: Approach to the �nal solution

consisted of at least one member with an evaluation cost that is as low as SAIO's

after running more than a hundred times as long. Although the drawing of the

initial population is not guaranteed to be unbiased in our implementation, we

can note that genetic algorithms nicely supplement the approach in [GLPK94]

(Section 4.2.5): in a �rst step, a random sample could be drawn using the algo-

rithm presented in [GLPK94], which can be used in a second step as the initial

population for the genetic algorithm.

Result Comparing the performance of the various optimization algorithms, we

can draw the following conclusions:

Algorithms that perform an exhaustive or near exhaustive enumeration of the

solution space, such as dynamic programming, can compute the optimal result,

but the extremely high running time makes their application only feasible for

queries that are not too complex (i.e., less than about ten to �fteen relations for

left-deep processing trees). For the same reason, searching the bushy tree solution

space can be carried out only for very simple queries, (in our experiments, about

six to seven relations), so the advantages of this solution space can hardly be

exploited.

Heuristic optimizers avoid the high time complexity of exhaustive enumera-

tion, but the results are, especially for complex queries with many participating

relations, rarely acceptable. The KBZ algorithm, although yielding the optimal

left-deep solution under certain circumstances, is di�cult to apply in practice:

the need for cost model approximations and problems concerning join method

42

assignment limits its usefulness. We found that only for star queries the KBZ al-

gorithm is competitive; its short running time compared to alternative algorithms

(especially randomized/genetic) makes it the solution of choice.

Finally, randomized and genetic algorithms operating in the bushy tree so-

lution space are the most appropriate optimizers in the general case provided

the problems are too complex to be tackled by exhaustive enumeration. Which

one of the discussed algorithms is the most adequate depends on the particu-

lar application area, namely whether short running time or best optimization

performance is the primary goal. If good solutions are of highest importance,

Two-Phase Optimization, the algorithm that performed best in our experiments,

is a very good choice; other Simulated Annealing variants, for instance Toured

Simulated Annealing (TSA, [LVZ93]), that we did not implement, are likely to

achieve quite similar results. The \pure" Simulated Annealing algorithm has a

much higher running time without yielding signi�cantly better solutions. If short

running time is more important, Iterative Improvement (IIIO), the genetic algo-

rithm (BushyGenetic), and, to a lesser extent, Two-Phase Optimization (2PO)

are feasible alternatives. Especially the �rst two degrade gracefully if they are

preempted: in the example run in Figure 32, they achieved acceptable results

in less than a second. Moreover, as mentioned above, genetic algorithms can be

combined very well with the transformationless approach in [GLPK94].

6 Conclusion

We have studied several algorithms for the optimization of join expressions. Due

to new database applications, the complexity of the optimization task has in-

creased; more relations participate in join expressions than in traditional rela-

tional database queries. Enumeration of all possible evaluation plans is no longer

feasible. Algorithms that compute approximative solutions, namely heuristic,

randomized and genetic algorithms, show di�erent capabilities for solving the

optimization task. Heuristic algorithms compute solutions very quickly, but the

evaluation plans are in many cases far from the optimum. Randomized and ge-

netic algorithms are much better suited for join optimizations; although they

require a longer running time, the results are far better.

For the question of the adequate solution space, we have found that, with

the exception of the star join graph, the bushy tree solution space is preferable

in spite of the fact that \pipelining" (avoiding to write intermediate results to

secondary memory) can be carried out mainly by left-deep processing trees.

Another consideration is the extensibility of randomized and genetic algo-

rithms: both can be designed to optimize not merely pure join expressions, but

complete relational queries. In addition, some of them (namely Iterative Im-

provement and genetic algorithms) can be easily modi�ed to make use of parallel

computer architectures.

43

Acknowledgements We should like to thank the referees for their valuable

comments and suggestions on an earlier draft of this paper, and our colleagues

for countless CPU-hours on their workstations. This work was partially supported

by grant DFG Ke401/6-1 and SFB 346.

References

[BFI91] K. Bennet, M. C. Ferris, and Y. E. Ioannidis. A genetic algorithm for

database query optimization. In Proc. of the Fourth Intl. Conf. on

Genetic Algorithms, pages 400{407, San Diego, USA, 1991.

[EN94] E. Elmasri and S. Navathe. Fundamentals of Database Systems. Ben-

jamin/Cummings, Redwood City, second edition, 1994.

[GLPK94] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fast, randomized

join-order selection|why use transformations? In Proc. of the Conf.

on Very Large Data Bases (VLDB), pages 85{95, Santiago, Chile,

September 1994.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization & Ma-

chine Learning. Addison-Wesley Pub., Reading, MA, USA, 1989.

[IK84] T. Ibaraki and T. Kameda. Optimal nesting for computing N -

relational joins. ACM Trans. on Database Systems, 9(3):482{502,

1984.

[IK90] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for opti-

mizing large join queries. In Proc. of the ACM SIGMOD Conf. on

Management of Data, pages 312{321, Atlantic City, USA, April 1990.

[IK91] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis

of strategy spaces and its implications for query optimization. In Proc.

of the ACM SIGMOD Conf. on Management of Data, pages 168{177,

Denver, USA, May 1991.

[IW87] Y. E. Ioannidis and E. Wong. Query optimization by simulated an-

nealing. In Proc. of the ACM SIGMOD Conf. on Management of

Data, pages 9{22, San Francisco, USA, May 1987.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of non-

recursive queries. In Proc. of the Conf. on Very Large Data Bases

(VLDB), pages 128{137, Kyoto, Japan, 1986.

[KM92] A. Kemper and G. Moerkotte. Access Support Relations: an indexing

method for object bases. Information Systems, 17(2):117{146, 1992.

44

[KM94] A. Kemper and G. Moerkotte. Object-Oriented Database Manage-

ment: Applications in Engineering and Computer Science. Prentice

Hall, Englewood Cli�s, NJ, USA, 1994.

[Kru56] J. B. Kruskal. On the shortest spanning subtree of a graph and the

travelling salesman problem. Proc. of the Amer. Math. Soc., 7:48{50,

1956.

[Law78] E. Lawler. Sequencing jobs to minimize total weighted completion

time subject to precedence constraints. Ann. Discrete Math., 2:75{

90, 1978.

[LVZ93] R. Lanzelotte, P. Valduriez, and M. Za��t. On the e�ectiveness of

optimization search strategies for parallel execution spaces. In Proc. of

the Conf. on Very Large Data Bases (VLDB), pages 493{504, Dublin,

Ireland, 1993.

[ME92] P. Mishra and M. H. Eich. Join processing in relational databases.

ACM Computing Surveys, 24(1):63{113, March 1992.

[MS79] C. Monma and J. Sidney. Sequencing with series-parallel precedence

constraints. Math. Oper. Res., 4:215{224, 1979.

[OL90] K. Ono and G. M. Lohman. Measuring the complexity of join enu-

meration in query optimization. In Proc. of the Conf. on Very Large

Data Bases (VLDB), pages 314{325, Brisbane, Australia, 1990.

[SAC

+

79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and

T. G. Price. Access path selection in a relational database manage-

ment system. In Proc. of the ACM SIGMOD Conf. on Management

of Data, pages 23{34, Boston, USA, May 1979.

[SG88] A. Swami and A. Gupta. Optimization of large join queries. In Proc.

of the ACM SIGMOD Conf. on Management of Data, pages 8{17,

Chicago, IL, USA, May 1988.

[Sha86] L. D. Shapiro. Join processing in database systems with large main

memories. ACM Trans. on Database Systems, 11(9):239{264, Septem-

ber 1986.

[SI93] A. Swami and B. Iyer. A polynomial time algorithm for optimizing

join queries. In Proc. IEEE Conf. on Data Engineering, pages 345{

354, Vienna, Austria, April 1993.

[Swa89] A. Swami. Optimization of large join queries: Combining heuristics

and combinational techniques. In Proc. of the ACM SIGMOD Conf.

45

on Management of Data, pages 367{376, Portland, OR, USA, May

1989.

[WY76] E. Wong and K. Yousse�. Decomposition|A strategy for query pro-

cessing. ACM Trans. on Database Systems, 1(3):223{241, 1976.

[YW79] K. Yousse� and E. Wong. Query processing in a relational database

management system. In Proc. of the Conf. on Very Large Data Bases

(VLDB), pages 409{417, Rio de Janeiro, Brasil, 1979.

46

