
Optimization of Conjunctive Predicates for Main Memory
Column Stores

Fisnik Kastrati
University of Mannheim

Germany

kastrati@informatik.uni-mannheim.de

Guido Moerkotte
University of Mannheim

Germany

moerkotte@informatik.uni-mannheim.de

ABSTRACT
Optimization of queries with conjunctive predicates for main
memory databases remains a challenging task. The tradi-
tional way of optimizing this class of queries relies on pred-
icate ordering based on selectivities or ranks. However, the
optimization of queries with conjunctive predicates is a much
more challenging task, requiring a holistic approach in view
of (1) an accurate cost model that is aware of CPU archi-
tectural characteristics such as branch (mis)prediction, (2) a
storage layer, allowing for a streamlined query execution, (3)
a common subexpression elimination technique, minimizing
column access costs, and (4) an optimization algorithm able
to pick the optimal plan even in presence of a small (bound-
ed) estimation error. In this work, we embrace the holistic
approach, and show its superiority experimentally.

Current approaches typically base their optimization algo-
rithms on at least one of two assumptions: (1) the predicate
selectivities are assumed to be independent, (2) the predi-
cate costs are assumed to be constant. Our approach is not
based on these assumptions, as they in general do not hold.

1. INTRODUCTION
With the increase of main memory sizes as well as CPU

cores per chip, and the decrease of their prices, main mem-
ory database systems are playing an ever increasing role in
enterprise settings. Following this trend, a number of com-
mercial main memory database systems have surfaced [8,
13, 30, 32, 36], in addition to a number of research-oriented
prototypes [10, 15, 19].

By moving the database storage layer from disks to main
memory, the performance improves drastically for data in-
tensive applications. This move poses new challenges be-
cause details such as branch misprediction, which could eas-
ily be ignored in the context of disk-based systems, now
rise to become prominent cost factors that can no longer be
ignored.

It is not uncommon in data warehouses that decision sup-
port queries involve a larger number of conjunctive selection

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

predicates. Data warehouses are increasingly storing tables
in denormalized form [14] and in main memory, with the
goal of achieving better query response times. In such set-
tings, joins and I/O operations are not considered any longer
the main cost [14], the evaluation of selection predicates has
now taken the dominating role [14].

In this paper, we focus on optimizing the class of conjunc-
tive selection predicates of the form

p1 ∧ p2 ∧ . . . ∧ pn

in the context of main-memory column stores. The goal
is to give an optimization algorithm that determines the
optimal evaluation order of selection predicates. As turns
out, this task is not as easy as it seems, due to the details
now becoming prominent.

Currently, two main approaches to optimize conjunctive
queries can be found in (commercial) DBMSs. The first,
rather simplistic approach orders the predicates by increas-
ing selectivity and ignores the predicate costs [34, 37]. The
second approach [11] orders predicates by increasing rank,
where the rank of a predicate takes into account selectivities
as well as costs and is defined as follows [12]:

rank =
s− 1

c
(1)

where s denotes the predicate’s selectivity and c its per-tuple
cost. Under this optimization scheme, predicates with low
costs and selectivities are given priority. The optimality of
this approach can be proven for cost functions that exhibit
the adjacent sequence interchange (ASI) property [12]. The
ASI-property itself requires that the independence assump-
tion (IA) holds. That is, there are no correlations between
any two selection predicates, and the combined selectivity
of any subset of predicates can be calculated by multiplying
the single selectivities of the predicates contained therein.

It is well-known that this assumption in general does not
hold [4]. To see this, consider the beautiful example of Markl
et al. [23]: make = ’HONDA’ and model = ’ACCORD’, where
we observe the following. If we evaluate make = ’HONDA’

first, its selectivity equals the market share of HONDA in our
car database. If we evaluate model = ’ACCORD’ first and
then evaluate make = ’HONDA’, its selectivity will go up to
1.0, as there are no other car manufactures producing a mod-
el named ’ACCORD’. This demonstrates that selectivities are
not independent. To make things worse, changing selectiv-
ities have an impact on costs. Branch misprediction costs
are maximal around a selectivity of 0.5 (see Fig. 4) and drop
significantly if selectivities approach either 0 or 1. Since for

1125



inexpensive predicates like comparisons the branch mispre-
diction costs are much higher than the predicate evalua-
tion costs, neglecting branch misprediction costs results in
very high error margins. Summarizing, predicate selectiv-
ities cannot be assumed to be independent, nor predicate
costs to be constant. On the other hand, all previous ap-
proaches (see Sec. 2) rely on the assumption of constant
predicate costs (CC) or IA.

In case of p1 ≡ 0.49 ≤ A and p2 ≡ A ≤ 0.51, the at-
tribute access costs exceed the predicate evaluation costs by
far. Since after the evaluation of p1 the attribute A has al-
ready been accessed, there is no need to access it again for
p2 [1]. Thus, the costs of evaluating p2 drop significantly,
showing the importance of common subexpression elimina-
tion (CSE). Most approaches do not take CSE into account
(see Sec. 2).

A conjunction p1 ∧ p2 of predicates can be evaluated by
expressions either of the form p1&& p2 or of the form p1& p2.
The evaluation of & is performed by first evaluating both its
arguments. Then, the logical and (∧) is calculated by a bit-
wise and operation. The expression p1&& p2 is evaluated by
first evaluating p1. If p1 evaluates to false, this is the result.
If p1 evaluates to true, then and only then p2 is evaluated.
The result of this evaluation is the result of the whole expres-
sion. Thus, the evaluation of the expression p1&& p2 includes
a conditional branch and, hence, a possibility for branch mis-
prediction. The evaluation of the expression p1& p2 does not
include a conditional branch, although after its evaluation
there might be one.

Ross [31] has considered in detail the effect of conditional
branches on plan quality, and offered an algorithm which
optimizes the branch misprediction penalty by cleverly con-
necting conjuncts with branching-and &&, and logical-and &.
However, his algorithm does not consider CSE, and further,
it relies on the IA. This leaves a large optimization potential
unharvested and calls for a new optimization algorithm that
abandons both IA, CC and supports CSE. Further, the al-
gorithm in [31] has a time complexity of O(4n). In contrast,
the algorithm presented in this work has a much lower time
complexity of O(n2n), while it does not rely on the IA or
CC, and, in addition, it supports CSE.

Traditionally, query processing is performed in two sep-
arate phases: query optimization and query execution. In
this approach, the query optimizer (QO) takes the input
query and produces a query execution plan (QEP). Then,
the query execution engine (QEE) evaluates the QEP to pro-
duce the query’s result. The important link between the QO
and the QEE is the cost model. The cost model consists of a
set of cost functions, which model the resource consumption
of the QEE for a given QEP.

As most QEEs are based on a physical algebra, the total
costs of a QEP can be calculated by the sum of the costs of
the physical operators contained therein, and the cost model
needs to provide cost functions for all physical operators
supported by the QEE.

On the other hand, the QO takes the cost model to evalu-
ate different QEPs and to select the cheapest one among all
those considered. To this end, it is important that the cost
functions are as precise as possible. But what is the precise
meaning of precise? What is needed is an error metrics that
measures the deviation of the cost functions from the real
costs measured by executing plans in the QEE. As there are
plenty of metrics to be found in the literature, the ques-

tion is which one is to be chosen for the purpose of query
processing? We answer this question in Sec. 4 by providing
a theorem that directly links cost function errors to plan
quality.

Since cost estimation errors have a profound negative in-
fluence on plan quality, it is important that the QEE allows
for smooth and precise cost functions. On the other hand,
if for the QEE assumptions such as IA and CC do not hold,
the QO must take that into account. Thus, the QO and the
QEE very much depend on each other.

Summarizing, our contributions are as follows:

1. the first optimization algorithm neither relying on the
IA (independence assumption) nor the CC (constant
predicate costs assumption) and taking CSE (common
subexpression elimination) into account, while sup-
porting both branching-and(&&), and logical-and(&),

2. an error metrics together with a new theorem showing
a direct link between cost estimation errors and plan
quality,

3. precise cost functions exploiting recent advances in ap-
proximation theory, and

4. a sampling based method to compute the required se-
lectivities in order to abandon IA.

The rest of the paper is organized as follows. Sec. 2
presents the related work. In Sec. 3 we present the pre-
liminaries for this paper. Sec. 4 presents our error metrics
as well as a theorem and a corollary linking cost estimation
errors to plan quality. Sec. 5 introduces our cost model and
Sec. 6 presents the optimization algorithm. Sec. 7 shows
experimental results followed by Sec. 8, which concludes the
paper. Appendix A presents the iterator model implemented
in System Tx. Appendix B gives a very efficient technique
to compute predicate selectivities based on sampling.

2. RELATED WORK
A number of commercial systems order predicates by in-

creasing selectivity without consideration of their costs. A
good example is Vectorwise [34, 37], a well-known column
store geared for analytical workloads.

A more serious approach is presented by Hellerstein et al.
[11]. They propose a scheme for ordering expensive predi-
cates in an optimal way. Predicates can include non-trivial
user defined functions (UDFs), that are expensive to evalu-
ate. To this end, predicates are ranked in ascending order
of the rank metric shown in the Eq. (1) in the introduc-
tion. This ranking metric originates from join-ordering [12,
20]. Hellerstein et al. [11] conclude that sorting of expensive
predicates according to the above ranking metric produces
the optimal plan. However, this is true only under the IA.
We have already seen that this assumption does not hold.
In their work, CSE is not considered, and in addition, pred-
icate costs are assumed to be constant, i.e., they rely on the
CC assumption, too.

Kemper et al. [18] consider optimizing boolean expres-
sions in object databases by means of heuristics. However,
their optimization scheme assumes both CC and IA. More-
over, CSE is not considered.

As mentioned in the introduction, Ross [31] considers the
optimization of conjunction of simple selections over arrays

1126



residing in main-memory, with the goal of optimizing the
branch misprediction costs. In contrast to our work, the
work in [31] does not provide error bounds and assumes
that conjunctions are evaluated by a single operator over
a complete materialization. His evaluation technique does
not support CSE. Our algorithm in turn allows for pipelined
query execution, where selection operators can be broken in-
to a tree of operators. Furthermore, the algorithm in [31]
relies on the IA and has a time complexity of O(4n). The
time complexity of our algorithm is lower – O(n 2n), while
doing more: it considers CSE, and it does not rely on the
IA.

The work by Munagala et al. [27] considers ordering of
selection predicates by adopting approximation algorithms
such as the set cover problem algorithm, coined pipelined
set cover. The authors of [27] provide two approximation
algorithms, an algorithm which is based on a greedy, and
another based on a local-search heuristics. Their cost func-
tion simply counts the number of elements that each set
covers, where, in turn, each set is mapped to an operator
evaluating a selection predicate. Considering only the num-
ber of elements processed does not provide an accurate cost
function. Furthermore, this work relies on both constant
predicate costs and the IA.

Neumann et al. [29] consider the optimization of selec-
tions depending on expensive UDF calls. Their work is
based on both constant predicate costs and the IA.

Table 1 presents a clear view on related work, the as-
sumptions they make, the support of CSE, and the support
of branching(&&) vs. non-branching (&) code.

Work in
Assumes Supports
IA CC CSE (&&),(&)

Kemper et al.[18] Yes Yes No No
Hellerstein et al.[11] Yes Yes No No
Ross [31] Yes No No Yes
Munagala et al.[27] Yes Yes No No
Neumann et al.[29] Yes Yes Yes No
here No No Yes Yes

Table 1: Overview of related work

3. PRELIMINARIES
In this section, we present the algebraic operators used in

this paper.
Sequential scan operator: scan(R)
This operator scans an input relation R by means of a tuple
t. The tuple t contains an attribute named RID, which rep-
resents the row identifier (RID), and pointers to columns of
R; these pointers are offsets to the respective column values.
The number of pointers in tuple t is query dependent, that
is, for each attribute required in a query, there is a pointer
to the values of that attribute (i.e., column).

The scan operator iterates over all “tuples” by increment-
ing the pointers in t and the RID variable. The tuple t
is pushed iteratively to the consumer operator via the con-
sumer’s step method call (see Appendix A).
Map operator: χA1:e

′
1,...,Ak:e

′
k
(e) and χ∗(A1,A2,...,Ak)(e)

The map operator [2, 17] is of fundamental importance. It
can extend a tuple produced by the input (partial) plan e, by

a new attribute A whose value is calculated via an arbitrary
expression e′:

χA:e′(e) := {t ◦ [A : v] | t ∈ e, v = e′(t)}

We generalize the map operator for many attributes as fol-
lows:

χA1:e
′
1,...,Ak:e

′
k
(e) := χAk:e

′
k
(. . . χA1:e

′
1
(e) . . .)

If we are interested not in the new attribute names, but only
on the dereference (column access) operation, we denote the
map operator by χ∗(A1,A2,...,Ak)(e), where A1, A2, . . . , Ak
stand for the attributes (i.e., columns) that this operator
dereferences. The map operator in System Tx is used for
dereferencing column values by means of either RIDs or col-
umn pointers (see Appendix A).
Selection operator: σp(e) is the usual selection operator.

4. THE LINK BETWEEN Q-ERROR AND
PLAN QUALITY

One can not expect that cost functions give exactly the
same results as the measured costs, especially since the mea-
sured costs are typically non-deterministic. It follows that
an error metric is required in order to measure the deviation
of the estimated from the measured costs.

The error metrics we use is the q-error. Let x > 0 be a
value and x̂ > 0 be an estimate for it. Then, the q-error of
the estimate x̂ is defined as

q-error(x̂) := ‖x̂/x‖Q ,

where

‖y‖Q := max{y, 1/y}.

Thus, the q-error measures the factor by which the estimate
x̂ deviates from the true value x. The q-error itself is well
known [3, 7, 9, 16, 26], but so far has only been applied
to measure cardinality estimation errors. We apply it to
measure the error of cost functions and show that there is a
direct link between the q-error and plan quality.

Let C(e) denote the result of some cost function applied
to some algebraic expression e, and let M(e) denote the
true measured costs (e.g., runtime). Then, according to our
definition, the q-error of the cost function C(e) is

q-error(C(e)) = ‖M(e)/C(e)‖Q .

Choosing the q-error as the error metrics of choice is well
justified by the following theorem and its corollary, for which
we need some preparation. Let E = {e1, . . . , ek} denote a
set of plans. This set could be, for example, a set of plans
equivalent to a given query and generated/explored by the
plan generator. However, E can be an arbitrary set of plans,
making the theorem and its corollary very general. Fur-
ther, let eopt be the optimal plan for a query Q, minimizing
M(e), and ebest the best plan, minimizing C(e). We are now
interested in the factor by which the true costs of ebest are
larger than the true costs of the optimal plan eopt. An upper
bound for this factor is given in the following theorem.

Theorem 4.1. If for all ei ∈ E

‖C(ei)/M(ei)‖Q ≤ q

for some q, then

‖M(ebest)/M(eopt)‖Q ≤ q
2

1127



Consider the case where E contains all the plans for a given
query. Then, Theorem 4.1 tells us that if our cost function
is precise up to a factor of q, then the plan picked under
this (erroneous) cost function is at most a factor of q2 away
from the optimal plan. Since q2 grows fast, this gives us
some incentive to minimize q.

In terms of the cardinality estimation error, it was shown
in [26] that the theoretical upper bound for the plan qual-
ity is higher, a factor of q4, given that the q-errors of the
cardinality estimates are bounded by q. In line with these
two theoretical findings are the experimental results of Leis
et al. [21]. They observe that cardinality estimation errors
have a much higher impact on plan quality than cost model
errors.

An important corollary to the theorem is:

Corollary 4.2. If for all ei ∈ E

‖C(ei)/M(ei)‖Q ≤ q

for some q and for all ei 6= eopt

q <
√
‖M(ei)/M(eopt)‖Q,

then

M(ebest) =M(eopt).

Thus, if the q-error of C is small enough (here ≤ q), then
the best plan chosen has the same cost as the optimal plan.
Hence, the plan generator will still pick the optimal plan
despite of the error in the cost function. This corollary thus
gives us an additional incentive to keep the q-error of our
cost functions as small as possible. We now present the
proofs.

Proof of Theorem 4.1 Since under the cost function C
the plan ebest is minimal, we must have

C(ebest) ≤ C(eopt),

and since under M the plan eopt is minimal, we have

M(eopt) ≤M(ebest).

Since for all plans e we have ‖M(e)/C(e)‖Q ≤ q, we can

conclude that1

M(ebest) ≤ qC(ebest)
M(eopt) ≥ (1/q)C(eopt).

Using all these inequalities, we can derive

‖M(ebest)/M(eopt)‖Q ≤ M(ebest)

M(eopt)

≤ qC(ebest)
(1/q)C(eopt)

≤ qC(eopt)
(1/q)C(eopt)

≤ q2

2

Proof of Cor. 4.2 Assume M(ebest) 6=M(eopt). Then,
by Theorem 4.1 we have the following contradiction:

M(ebest)

M(eopt)
≤ q2 < M(ebest)

M(eopt)

2

1∀x > 0 ‖x‖Q ≤ q =⇒ 1/q ≤ x ≤ q

5. THE COST MODEL

Notation Description
R relation
A(i), B(i), . . . attributes, with and without index
A set of attributes
χ∗(A) map operator accessing A
aχ, bχ constants for map operator
deref(d) costs of dereferencing d columns
p(i) predicates
s(i), sel(p(i)) selectivities for predicates
P set of predicates, interpreted conjunctively
sel(P ) selectivity of a set of predicates
e some algebraic expression (plan)
as, bs constants for scan operator
ain, aout constants for processing input/output tuples
B(s) branch misprediction cost for selectivity s
C(e) cost function applied to e, estimated runtime
M(e) measured (true) cost, e.g., runtime for e

Table 2: Notation

C(scan(R)) = |R| ∗ as + bs

C(χ∗(A)(e)) = |e| ∗ (deref(1, n) + aχ) + bχ

C(p1&p2) = C(p1) + C(p2) + C(&)

C(p1&&p2) = C(p1) + B(s1) + s1C(p2)

C(σp(e)) = |e| ∗ (C(p) + B(sel(p)) + ain + sel(p) ∗ aout)

Table 3: Cost functions

This section contains our cost model as well as its vali-
dation. It is organized as follows. First, we state the basic
cost functions for the physical operators scan, selection (σ),
and map (χ) (see Sec. 3). Additionally, we provide cost
functions for the evaluation of conjunctions p1 ∧ p2 of predi-
cates by expressions either of the form p1& p2 or of the form
p1&& p2. Afterwards, we present the cost functions for mem-
ory accesses and branch misprediction. Last, we evaluate
the precision of our cost model.

As we will see, our cost functions are mostly linear combi-
nations of linear components. Some of them contain branch
misprediction costs as a non-linear component. In any case,
the cost functions contain parameters that must be filled
in. This process is called calibration, and it depends on the
hardware. In our system, the calibration process is auto-
mated. Three plans are executed on different relations of
varying sizes: (1) simple scans, (2) scans followed by a map
operator with memory accesses, and (3) scans followed by a
map operator and then by a selection operator. These plans
correspond to plans a-c in Fig. 5. The selection operator
in System Tx depends on the values generated by the map
operator, hence there is always a map operator preceding a
selection operator. Since these plans are incrementally more
complex, it is easy to extract the costs of a single operator
from the measurements. For each operator, the extracted
measurements are then approximated, using the cost func-
tions.

Since we are interested in minimizing the q-error, we do
not use standard approximation techniques like linear re-
gression, as they minimize the l2 error, which is not really

1128



useful in the context of query processing. Instead, we apply
the approximation techniques presented in [33], since they
allow approximations that directly minimize the q-error.

5.1 Cost Functions
For convenience, all notational details are summarized in

Table 2, and all cost functions are presented in Table 3. Let
us now briefly discuss the cost functions.

The scan and map operator both exhibit linear costs, and
their cost functions are thus rather simple (see Table 3).
These cost equations can be derived by looking at the im-
plementation details of each operator (such details for Sys-
tem Tx are shown in Appendix A). For example, the scan
operator depends on the relation size |R| as well as con-
stants, e.g., cost of incrementing iterator, tuple pipelining.

In similar fashion, the map operator depends on the num-
ber of input tuples |e| and the dereferenciation costs (deref)
in addition to its constants (processing input/output tu-
ples). In general, the dereferenciation costs can be replaced
by general expression evaluation costs, especially if expen-
sive function calls occur.

As noted before, a conjunction p1 ∧ p2 of predicates can
be evaluated by expressions either of the form p1& p2 or of
the form p1&& p2. This explains the cost functions given in
Table 3 for both of these expressions.

Last comes the selection operator. Its cost function is
a linear combination of linear and non-linear components.
The non-linear component (B) accounts for branch mispre-
diction costs. For older database systems that still use an
algebra that by tuple passing have an overhead, the scan
together with the map and the selection operator can be
merged into one operator; the cost of this new operator is
then the sum of the cost of the scan, the map and the selec-
tion operator.

5.2 Memory Access Costs
Measuring memory access costs amounts to measuring

the costs of our map operator χ∗(A1,A2,...,Ak), for some at-
tributes (i.e., columns) A1, A2, . . . , Ak.

The costs of the map operator clearly depend on the col-
umn access/dereferenciation costs. We measure the costs of
the dereference operator by measuring the costs for plans
shown in Fig. 1. By subtracting the cost of the scan opera-

χ∗(A1)

scan

χ∗(A1,A2)

scan

χ∗(A1,...,Ak)

scan

Figure 1: Plan types for measuring the costs of the
dereference operator

tor, we precisely capture the cost of the dereference operator.
After we have isolated the costs for the dereference operator,
we approximate them by taking the q-middle2:

q-middle =
√

max(x) min(x)

where x denotes the dereference costs. That is, we use a
single constant for each number of simultaneously accessed
columns.

The run-times for a number of plans dereferencing up to
9 different columns are shown in Fig. 2. The q-errors for all

2Also known as the geometric mean

 0

 1

 2

 3

 4

 5

 6

 12  14  16  18  20  22  24  26  28

ti
m

e
-p

e
r-

tu
p
le

 [
n
s]

relation size [log]

1
2
3
4
5
6
7
8
9

Figure 2: System Tx: column access costs

the plans and database sizes depicted in Fig. 2 are shown in
Fig. 3. Note that we report the max q-error for all database
sizes ([212, 228]), for up to 9 column dereferences at the time.
The max q-error is very small for all the plans. In the worst

1 2 3 4 5 6 7 8 9

# Columns dereferenced

1

1.1

1.2

1.3

1.4

1.5

q
-e

rr
o
r

Figure 3: Q-Error of dereferenciation

case, for a plan dereferencing 2 columns at the same time, it
can be off from the true costs by a maximum factor of 1.4.
When the number of column accesses is greater than 2, the
q-error drops below 1.1. The reason for this is the hardware
prefetcher.

5.3 Branch Misprediction Costs

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1

execution time [s]/selectivity

Figure 4: Execution time of a selection operator

Fig. 4 shows the execution time of a simple scan over a
column A, with a cardinality 224 and with a selection pred-
icate A < θ for varying θ and thus selectivities. The main
reason for this hill shape is the branch misprediction penalty.
Modern CPUs are very good at predicting branches when
they are taken nearly always or never. The worst perfor-
mance occurs at the selectivity of 0.5. At such selectivity,

1129



each branch outcome is taken with a probability of 0.5, thus
making it hard for the CPU to predict it.

In order to extract the branch misprediction cost from the
execution time of a selection, we proceed as follows. Recall
the cost formula for the selection defined in Section 5.1:

C(σp(e)) = |e| ∗ (C(p) + B(sel(p)) + ain + sel(p) ∗ aout).

For a selection over an attribute A belonging to some rela-
tion R, we have:

C(σp(A)) = n ∗ (ain + C(p)) + n ∗ s ∗ aout + n ∗ B(s), (2)

where n denotes the input cardinality (i.e., n = |e|), and
s = sel(p). Let us denote the measured cost for a given
selectivity s by M(s). Then, Eq. (2) becomes

M(s) = n ∗ (ain + C(p)) + n ∗ s ∗ aout + n ∗ B(s). (3)

For selectivity 0,

M(0) = n ∗ (ain + C(p)),

and for selectivity 1,

M(1) =M(0) + n ∗ aout ,

and thus

aout =
M(1)−M(0)

n

Using these equations, we derive from Eq. (3)

M(s) =M(0) + s ∗ (M(1)−M(0)) + n ∗ B(s), (4)

and thus the branch misprediction cost for a given selectivity
s is:

B(s) = (M(s)−M(0)− s ∗ (M(1)−M(0)))/n. (5)

The branch misprediction can be very well approximated
under the q-error [26] by a polynomial of degree 4, yielding
a very low q-error: 1.08. The branch misprediction can also
be well approximated by a cheaper piecewise approximation
function:

B(s) :=

 6.264 ∗ s+ 0.0031 s < 0.4
−27.17 ∗ s2 + 26.88 ∗ s− 3.96 0.4 ≤ s ≤ 0.6
−6.065 ∗ s+ 6.065 0.6 < s

which yields a q-error of only 1.03. Note that the selectiv-
ity boundaries can be automatically derived using binary
search.

5.4 Cost Model Validation
In order to validate our cost model, we compared the mea-

sured execution times of several plans (see Fig. 5) with the
execution times predicted by our cost model. These plan
types were chosen as they cover most of the cases, and all
other plan types build on top of them. Every plan was ex-
ecuted for different relation sizes and plan parameters, i.e.,
constants occurring within the predicates. The q-error we
report is the maximum over all these measurements. Ta-
ble 4 shows the maximum q-error we observed for each of
the plans in Fig. 5.

Table 4 confirms that our cost functions are very accurate,
yielding a maximum q-error of 1.3. That is, in the worst
case, the upper bound on deviation of our approximated
cost functions from the true costs can be a factor of 1.3.
Thus, we conclude that our cost model is precise enough to
serve the QO’s objective.

Plan type q-error
(a) 1.09
(b) 1.1
(c) 1.08
(d) 1.34
(e) 1.09
(f) 1.14
(g) 1.27

Table 4: True vs. estimated costs

6. THE OPTIMIZATION ALGORITHM
In this section, we present our optimization algorithm

coined DPSel. DPSel is responsible for producing query
plans for evaluating conjunctions of selection predicates. It
is based on dynamic programming. Fig. 7 shows its pseu-
docode.

DP algorithms generate solutions in a bottom-up fashion
by combining solutions of smaller problems [6]. DPSel ac-
cepts as input an expression with an arbitrary number of
selection predicates connected conjunctively. Further, selec-
tivities must be provided for each subset of the predicates
occurring in the conjunction. These can be calculated be-
forehand, using the method of entropy maximation [22], or
via sampling as shown in Appendix B. In addition, our de-
vised cost model is utilized by DPsel to calculate actual
costs. The output of DPsel is the best query evaluation
plan, i.e., a plan with the lowest estimated execution cost.
Thereby, DPsel requires neither the IA nor the CC assump-
tion. Moreover, it supports CSE, branching-and(&&) and
logical-and(&).

The algorithm starts by initializing an empty DP table
and storing a plan consisting of only the scan operator (cf.
lines 1-2 in Fig. 7). Operators evaluating selection predicates
are built on top of this operator. The loop in line 3 iterates
over all subsets P ′ of predicates P .

The loop in line 5 iterates over the predicates in P which
are not in P ′. These are the new predicates that are not yet
included in the existing partial plans stored in the DP table.
Adding the new predicates to the existing (partial) plans is
the responsibility of the BuildPlans procedure, shown in
Fig. 6. This method takes as an input a predicate and an
existing partial plan.

A selection predicate depends on a certain set of map
operators, thus forming the notion of the dependency graph
[29]. For each operator that relies on values generated by
some map operator, we draw an edge between that operator
and the map operator on which it depends. For illustration
purposes, consider the evaluation of the following query:

A > 10∧A ≤ 100∧5 ≥ wordcount(B)∧wordcount(B) ≤ 15

over some relation R(A:int, B:text). Its dependency graph
is shown in Fig. 9. The UDF wordcount returns the word
count of its input parameter, and it expects that the input
parameter contains text. To this end, we are interested to
find all those tuples which have for the attribute A their
values in range of (10, 100], and have a word count between
5 and 15 for the attribute values of B.

Selections involving attribute values of A depend on the
map operator which generates the attribute values of A,
whereas the selections involving values of the wordcount de-
pend on the map operator which generates the values of the

1130



scan

(a)

χ∗(A1,...,An)

scan

(b)

σp

χ∗(A1,...,An)

scan

(c)

σp1&&p2

χ∗(A1,...,An)

scan

(d)

σp1&p2

χ∗(A1,...,An)

scan

(e)

σp2

σp1

χ∗(A1,...,An)

scan

(f)

σp2

χ∗(Am+1,...,An)

σp1

χ∗(A1,...,Am)

scan

(g)

Figure 5: Plan types

BuildPlans(p, e)

Input: a selection predicate p
an expression e (partial plan)

Output: plan container B
1 Xe = ∪pi∈eXpi
2 Xp|e = Xp \Xe // outstanding maps
3 B = {σp(Xp|e(e))}
4 if e == σp′(Xp|e(e

′))
5 B+=σp′&p(Xp|e(e

′))
6 B+=σp′&&p(Xp|e(e

′))
7 return B

Figure 6: Pseudocode for BuildPlans

DPSel

Input: a set P = {p0, . . , pn−1} of predicates
Output: an optimal plan

1 DP = an empty DP table, size → 2n

2 DP [∅] = scan(R)
3 for each 0 ≤ i < 2n − 1 ascending
4 P ′ = {pk ∈ P | (

⌊
i/2k

⌋
mod 2) = 1}

5 for each pj ∈ P \ P ′
6 for each ej ∈ BuildPlans(pj , DP [P ′])
7 StoreSolution(ej , P

′ ∪ {pj}, DP )
8 return DP [P ]

Figure 7: Pseudocode for DPSel

wordcount. The wordcount itself depends on the map op-
erator generating attribute values of B, respectively. The
attribute values of A in the above predicate are needed in
two places, that is, there is a common subexpression. How-
ever, we can use only a single map operator generating the

StoreSolution(e, P,DP )

Input: an expression e
a set of predicate(s) P
a DP table

Output: none, affects DP
1 if DP [P ] == NULL ∨ C(DP [P ]) > C(e)
2 DP [P ] = e

Figure 8: Pseudocode for StoreSolution

values of A, instead of two, this way eliminating the common
subexpression. The same applies for the UDF function call
wordcount. UDF function calls can be much more expensive
to evaluate than column dereference operations, therefore
considering CSE is of crucial importance when searching for
the optimal plan.

χa:∗(A)

σa>10 σa≤100

χb:∗(B)

χw:wordcount

σw≥5 σw≤15

Figure 9: Dependency graph for the example query

In the procedure BuildPlans, the set of dependencies
that each input predicate p depends on, as well as CSE, are
taken care of in lines 1,2. For the sequence of selections in
the partial plan e, their already executed map dependencies
are denoted by

Xe = ∪pi∈eXpi ,

whereas the map dependencies of the input predicate p,
which are still to be executed, are denoted by

Xp|e = Xp \Xe.

After the map operators and CSE are taken care of, three
different (logically equivalent) plans are created: 1) the in-
put predicate is evaluated by a standalone selection operator
added on top of the input plan, 2) the predicate is connected
by the logical-and (‘&’) connection to the predicate(s) evalu-
ated by the top selection operator in the input plan, and 3)
the predicate is connected in a similar fashion as in 2), but
by using the branching-and (‘&&’) connection instead of the
logical-and. Plans of type (2) and (3) only make sense when
the top operator of the existing partial plan e is a selec-
tion operator. This check is made in line 4 of the procedure
BuildPlans. The newly constructed plans are returned to
the main method. The main method (line 7) passes these
plans to the StoreSolution procedure (see Fig. 8), which
in turn stores the dominating plan (the plan with the lowest
cost) in the DP table, and other plans are pruned. Finally,
the algorithm returns the best plan with the optimal cost
for evaluating the given set P of selection predicates. To
this end, the time complexity of DPSel is O(n 2n).

Subset enumeration (cf. lines 3 - 4 in Fig. 7) can be very
efficiently computed by means of bitvectors. In bitvector
representation, the numbers from 0 to 2n − 1, incremented

1131



by 1 represent all subsets of P . Such increments by 1 are in
line with the DP strategy: for each subset P ′, all subsets of
P ′ are generated before P ′ itself.

Map dependencies in System Tx are also stored in bitvec-
tor, thus the computation of Xe and Xp|e can be done very
efficiently by means of bitwise operators (e.g., OR, XOR).

7. EXPERIMENTAL RESULTS
The evaluation of predicates in data warehouses has be-

come the major bottleneck for decision support queries [14].
We show in this section that there is a huge optimization po-
tential not harvested by other optimization algorithms. For
the experimental evaluation of our optimization algorithm
DPSel, we compared it against two widely used algorithms.

In some commercial systems, predicates are ordered sim-
ply by ascending selectivity. One example of such a system is
Vectorwise [34, 37]. We term the algorithm that orders pred-
icates in ascending order of their selectivity as Sel. Other
systems order predicates in ascending order of their rank (cf.
Eq. (1)). We call this algorithm Rank.

In this section, we are interested in answering three ques-
tions. (1) What is the loss of plan quality if we apply Sel or
Rank compared to DPSel. (2) What is the cost of apply-
ing DPSel instead of Sel or Rank. (3) What is the loss on
plan quality in the presence of cardinality estimation errors.

For testing qualities of plans produced by DPSel vs. the
other two algorithms, we have performed two sets of exper-
iments. For the first set of experiments, we used predicates
with varying costs (general case), whereas for the second set
of experiments, we used inexpensive predicates with equal
costs (special case). We enriched the experimental evalu-
ation by running additional experiments using the TPC-H
and the forest [5] dataset.

In order to set up the selectivities needed if we abandon
the IA, we generated a pool consisting of 100 different predi-
cates joint selectivities, for conjunctions containing up to 10
predicates. That is, for each combination of predicates and
their subsets, 100 different joint selectivities were available.

Selectivities for single predicates Pi and pairs (Pi∧Pj)∀i, j
were generated randomly, uniformly distributed in [0, 1].
Their consistency was ensured by means of PDHGMp [25].
For the rest of predicates ∧i∈IPi, I ⊆ {1, . . . , n}, their joint
selectivities were generated by the principle of maximum en-
tropy (ME) [22]. Appendix B shows how to compute predi-
cate selectivities efficiently on fly, by means of sampling.

We conclude the Experiments section with a comparison
of the running times of the three algorithms. The exper-
iments were run single-threaded, on a machine with Intel
Xeon E5-2690 v2 3.00GHz processor. The machine had
120 GB of main memory, running a 64-bit linux operating
system.

7.1 General case
In this section we show the results of the performance of

DPSel vs. the other two algorithms in terms of plan quality
by using predicates with varying costs. Selection operators
make only comparisons (=, 6=, <,≤, >,≥) over the values of
subexpressions which they depend on, therefore, their cost
was set to 1. The costs of the subexpressions that selection
predicates depended on were generated randomly, uniformly
distributed in [1,1000].

We ran three different experiments, each time starting
with 3 and up to 10 predicates, and a pool containing in total

3 subexpressions. For each number of predicates, we ran the
algorithms 100 times. For each run, a different predicates
joint selectivity was picked from the pool of joint selectivi-
ties. For the first experiment, for each predicate we created
a dependency graph containing a single subexpression. We
assigned 1000 different random cost values to the subexpres-
sions. We generated 100 different dependency graphs.

Since we were interested to find the maximum optimiza-
tion potential of DPSel vs. the other two algorithms, we
recorded the plans with the maximum cost difference from
all the runs. We repeated the same experiment, where
we varied the number of subexpressions on the dependency
graphs. That is, we performed two more experiments, where
the dependency graph for each predicate contained two and
three subexpressions, respectively.

The results of this experiment are shown in Table 5. As
the plan costs varied greatly, the plan costs of Sel and Rank
are given relative to DPSel. Thus, this table contains the
factors by which the plans produced by Sel and Rank are
worse than the plans produced by DPSel.

For all the experiments, plans generated by DPSel out-
performed by a large margin both heuristics based algo-
rithms. Starting with 3 predicates, DPSel outperformed
Rank and Sel by a factor greater than 2, for all sizes of
dependency graphs. With the increase in the number of
predicates, the gap on plan qualities increased such that for
10 predicates DPSel beats Sel by a whopping factor of 110,
and Rank by a factor of 7.

7.2 Special case
In this section we list our experimental findings of com-

paring the qualities of plans generated by DPSel and the
other two algorithms (Rank, Sel) for inexpensive predi-
cates with costs equal to 1. That is, we have limited the
cost of the subexpressions to 1. As in the previous section,
the cost of selection predicates was set to 1, as they per-
form only comparison operations (=, 6=, <,≤, >,≥) over the
values generated by their respective subexpressions.

We have tested the algorithms starting with three and
up to ten predicates, incrementally. For each number of
predicates, we ran the algorithms 100 times. For each run,
a different predicates joint selectivity was picked from the
pool of joint selectivities.

For the first evaluation experiment, all the predicates were
assigned dependency graphs containing a single subexpres-
sion. The results of this experimental evaluation are shown
in Fig. 10. The y-axes show the per-tuple cost in nanosec-
onds (ns), whereas the x-axes show the number of predicates.
The algorithms Sel and Rank produced the same results,
due to the fact that all predicate costs are equal and, thus,
can be safely neglected. For all the numbers of predicates,
DPSel is the clear winner. Since all the predicates depend-
ed on one subexpression, DPSel applies CSE. In addition to
CSE, DPSel also minimizes the branch misprediction costs.
Whereas in the case of Rank and Sel, the subexpression is
evaluated for each selection, as CSE is not considered there.
In addition, the two heuristics do not minimize branch mis-
prediction costs.

Starting with three predicates, DPSel produced plans
that are a bit over 20% cheaper than those produced by
Rank and Sel. With the increase in the number of pred-
icates, the difference on plan quality produced by DPSel
and the other two algorithms increased as well. For 10 pred-

1132



Nr. of predicates
3 4 5 6 7 8 9 10

Nr. subexpr. Rank Sel Rank Sel Rank Sel Rank Sel Rank Sel Rank Sel Rank Sel Rank Sel
1 2.6 2.7 3.1 4.1 3.5 10.3 4.3 35.1 5.1 38.4 5.8 64.3 6.4 80.5 6.9 110
2 2.6 2.6 3.1 3.9 3.5 8.3 4.2 15.9 5 21.3 5.7 29.6 6.3 35.2 7.2 42.7
3 2.6 2.6 3.1 3.1 3.4 3.4 3.8 3.8 4.3 4.3 4.8 4.8 5.3 5.3 5.7 5.7

Table 5: Relative optimization potential (in factors!) of DPSel vs. Rank and Sel

 10

 15

 20

 25

 30

 35

 40

 45

 50

3 4 5 6 7 8 9 10

T
im

e
-p

e
r-

tu
p
le

 [
n
s]

# Predicates

DPSel
Rank

Sel

Figure 10: Plan costs for inexpensive predicates
sharing a single subexpression

icates, the difference on plan qualities was as large as 40%
in favor of DPSel. This is a large optimization potential,
considering that we have evaluated inexpensive predicates.

We repeated the same experiment, but this time each
selection depended on values of one unique subexpression.
That is, there were no shared subexpressions among selec-
tions. This way, we have eliminated the optimization poten-
tial that DPSel harvests by employing CSE. The results of
this experiment are shown in Fig. 11. We observe that the

 10

 15

 20

 25

 30

 35

 40

 45

 50

3 4 5 6 7 8 9 10

T
im

e
-p

e
r-

tu
p
le

 [
n
s]

# Predicates

DPSel
Rank

Sel

Figure 11: Plan costs for inexpensive predicates, no
shared subexpression

costs of plans produced by DPSel are nevertheless lower
than those of Rank and Sel. This time, though, DPSel
produced better plans solely due to minimizing the branch
misprediction penalty.

We conducted yet another experiment. This time, we gen-
erated a pool of 10 different subexpressions. Each selection
predicate formed a dependency graph containing 3 different
subexpressions chosen randomly from the pool of subexpres-
sions. As in Sec. 7.1, 100 different dependency graphs were
generated. As before, the algorithms were tested using 100
different predicates joint selectivities. There results of this

experiment are shown in Fig. 12. We observe similar results

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

3 4 5 6 7 8 9 10

T
im

e
-p

e
r-

tu
p
le

 [
n
s]

# Predicates

DPSel
Rank

Sel

Figure 12: Plan costs for inexpensive predicates de-
pending on 3 different subexpressions

to the case when a single subexpression was shared among
all selections (see Fig. 10). Despite the fact that we have on-
ly evaluated cheap predicates with fixed costs, DPSel pro-
duced plans that are over 40 % cheaper than the heuristics
based algorithms. For all the number of predicates, DPSel
consistently beats Rank and Sel.

7.2.1 TPC-H dataset
For the TPC-H dataset, we have used a query with three

predicates over the lineitem table:

SELECT * FROM lineitem

WHERE orderkey <= 5889891 AND partkey <= 153588

AND suppkey <= 9960;

The lineitem table was generated using scaling factor (SF)
1, yielding a total of slightly over 6 million tuples.

Algorithm Est. plan cost [ns] Evaluation cost [ns]
DPSel 8.49 8.99
Rank/Sel 12.09 12.59

Table 6: DPSel vs. Rank and Sel over TPC-H
dataset

The results of this experiment are shown in Table 6. The
second column of the table shows the estimated plan costs in
time-per-tuple for each algorithm, whereas the third column
shows the actual measured plan costs, by running the plans
in System Tx.

The loss in plan quality of heuristics based algorithms
relative to DPSel is a factor 1.4 or 40%. This is a huge gap
considering that the predicates were cheap to evaluate, there
were no common subexpressions, and the query contained
only three predicates!

In addition to the gap on plan qualities, this experiment
confirms that our cost model is extremely precise: the esti-
mated plan costs differ from the true measured costs only
after the decimal point.

1133



7.2.2 Forest dataset
In this section, we present the experimental evaluation of

DPSel vs. Rank and Sel by using the forest [5] dataset.
The materialized relation of the forest dataset contains

54 attributes, and 581.012 tuples. This rather wide relation
validates the importance of optimizing conjunctive queries.

For the forest dataset, we used 4 cheap range predicates
over different attributes of the forest relation. That is, all
predicates had equal costs. The predicates were of the type
c1 ≤ attri ≤ c2, where c1, c2 denote integer constants.

We generated randomly 1 million queries over random at-
tributes of the forest relation, with random predicate con-
stants (i.e., c1, c2). The results of this experiment are shown
in Table 7. DPSel beats the other two heuristics algorithms

Algorithm Equal costs Varying costs
Rank/Sel 2.01 21.42

Table 7: Relative optimization potential of DPSel
vs. Rank and Sel over the forest dataset

by a factor of 2. An optimization potential of factor 2 is
quite large, considering that predicates were cheap to eval-
uate, and the query contained only 4 predicates.

We have repeated the same experiment, but this time
we assigned to subexpressions random costs uniformly dis-
tributed in the range [1,100]. As expected, DPSel beats the
other two algorithms, this time by a large factor of 21 (cf.
Table 7, third column).

7.3 Plan quality loss in presence of cardinality
estimation errors

We cannot expect that a database system has detailed and
more importantly correct knowledge about the joint frequen-
cy distribution of attribute values for a relation of interest.
In this section, we experimentally investigate the influence
of estimation errors on the plan quality for conjunctive pred-
icates.

In order to introduce a defined error, we have deliberately
multiplied the true predicate selectivities with an error fac-
tor (f). The goal was to find the maximum deviation factor
on the plan quality between eopt and ebest, where eopt de-
notes the optimal plan and ebest denotes the best plan picked
under an erroneous cost function, i.e., a cost function which
has to work with erroneous predicate selectivities.

For this experiment we have used the forest [5] dataset, a
set of eight predicates, and a pool containing 10k different
predicate joint selectivities. All the predicate joint selec-
tivities were multiplied by the error factor f . There were
1k different values picked randomly from the set {f, 1/f},
for all f := {2, 3, 4, 5}. For predicates with varying costs,
100 different values for subexpression costs were chosen,
uniformly randomly distributed in the range [1, 100]. For
predicates with equal costs, all subexpressions were assigned
equal costs.

The maximum deviation ratio (M(ebest)/M(eopt)) over
all runs was recorded. Recall that M(e) denotes the true
measured costs for some plan e. The results of this ex-
periment have been shown in Table 8. In the light of the-
orem 4.1, the maximum deviation on plan costs between
ebest and eopt is surprisingly low. That is, the maximum
deviation factor on the plan quality between eopt and ebest
remains well bellow q2 for all values of f .

f Equal costs Varying costs
2 2.27 3.03
3 2.66 5.03
4 3.14 6.97
5 3.3 8.64

Table 8: The max q-error between ebest and eopt for
different f values

7.4 Runtime
In this section, we show the performance of DPSel against

Rank and Sel in terms of their running times.
We measured the runtime performance of the three algo-

rithms, starting with two and up to 10 predicates in total.
The results of these measurements are shown in Fig. 13.
The y-axis denotes the runtime in milliseconds (ms), where-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2  3  4  5  6  7  8  9  10

[m
s]

# Predicates

DPSel
Rank

Sel

Figure 13: The evaluation results of runtime perfor-
mance

as the x-axis denotes the number of predicates that were fed
to the algorithms.

Although DPSel has O(n 2n) complexity, its runtime for
up to 10 predicates is very low, under 0.6 milliseconds. Con-
sidering its optimization potential of factor 7 against Rank,
and factor of 110 against Sel, the optimization time under
0.6 ms is certainly worth the effort.

8. CONCLUSIONS AND FUTURE WORK
We presented the first optimization algorithm for conjunc-

tive queries that does not rely on assumptions like IA and
CC. Furthermore, it takes CSE into account, while support-
ing logical-and(&) and branching-and(&&) for evaluating con-
junctions. Experimentally, we showed that the loss in plan
quality if relying in IA and CC can be as high as a factor of
100, compared to the optimal plan.

Since cost models are the fundament of query optimiza-
tion, we spent some pages not only to present a cost model,
but also to argue that the q-error is the preferred metrics to
measure the deviation of actual from estimated plan costs.
This is due to a new theorem presented that directly links
the q-error of a cost model to plan quality. To the best of
our knowledge, this is the first time such a link has been
proven for any error metric.

9. REFERENCES
[1] D. Abadi, D. S. Myers, D. J. DeWitt, and S. R.

Madden. Materialization strategies in a

1134



column-oriented DBMS. In ICDE 2007, pages
466–475, 2007.

[2] J. A. Blakeley, W. J. McKenna, and G. Graefe.
Experiences building the open oodb query optimizer.
In SIGMOD, volume 22, pages 287–296, 1993.

[3] M. Charikar, S. Chaudhuri, R. Motwani, and
V. Narasayya. Towards estimation error guarantees for
distinct values. In PODS, pages 268–279, 2000.

[4] S. Christodoulakis. Implications of certain
assumptions in database performance evauation.
TODS, pages 163–186, 1984.

[5] College of Natural Resources Colorado State
University. Forest dataset. http://kdd.ics.uci.edu/
databases/covertype/covertype.data.html.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,
et al. Introduction to algorithms. MIT press
Cambridge, 2001.

[7] G. Cormode, M. Garofalakis, P. Haas, and
C. Jermaine. Synopses for Massive Data: Samples,
Histograms, Wavelets, Sketches. NOW Press, 2012.

[8] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL server’s memory-optimized OLTP
engine. In SIGMOD, pages 1243–1254, 2013.

[9] P. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports.
In VLDB, pages 541–550, 2001.

[10] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. HYRISE: a main
memory hybrid storage engine. PVLDB, pages
105–116, 2010.

[11] J. M. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates, volume 22. ACM, 1993.

[12] T. Ibaraki and T. Kameda. On the optimal nesting
order for computing n-relational joins. TODS, pages
482–502, 1984.

[13] IBM. Soliddb.
http://www.ibm.com/software/data/soliddb.

[14] R. Johnson, V. Raman, R. Sidle, and G. Swart.
Row-wise parallel predicate evaluation. VLDB, pages
622–634, 2008.

[15] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. Zdonik, E. P. Jones, S. Madden,
M. Stonebraker, Y. Zhang, et al. H-store: a
high-performance, distributed main memory
transaction processing system. PVLDB, pages
1496–1499, 2008.

[16] C.-C. Kanne and G. Moerkotte. Histograms reloaded:
The merits of bucket diversity. In SIGMOD, pages
663–674, 2010.

[17] A. Kemper and G. Moerkotte. Advanced query
processing in object bases using access support
relations. In VLDB, pages 290–301, 1990.

[18] A. Kemper, G. Moerkotte, and M. Steinbrunn.
Optimizing boolean expressions in object bases. In
VLDB, pages 79–90, 1992.

[19] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, pages
195–206, 2011.

[20] R. Krishnamurthy, H. Boral, and C. Zaniolo.
Optimization of nonrecursive queries. In VLDB, pages
128–137, 1986.

[21] V. Leis, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? VLDB, pages 204–215, 2015.

[22] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo,
U. Srivastava, and T. M. Tran. Consistent selectivity
estimation via maximum entropy. The VLDB journal,
16(1):55–76, 2007.

[23] V. Markl, G. Lohman, and V. Raman. LEO: An
autonomic query optimizer for DB2. IBM Systems
Journal, 42(1):98–106, 2003.

[24] G. Moerkotte. Building Query Compiler. 2014.
pi3.informatik.uni-
mannheim.de/˜moer/querycompiler.pdf.

[25] G. Moerkotte, M. Montag, A. Repetti, and G. Steidl.
Proximal operator of quotient functions with
application to a feasibility problem in query
optimization. Journal of Computational and Applied
Mathematics, 285:243–255, 2015.

[26] G. Moerkotte, T. Neumann, and G. Steidl. Preventing
bad plans by bounding the impact of cardinality
estimation errors. VLDB, pages 982–993, 2009.

[27] K. Munagala, S. Babu, R. Motwani, and J. Widom.
The pipelined set cover problem. In Database
Theory-ICDT 2005, pages 83–98. Springer, 2005.

[28] T. Neumann. Efficiently compiling efficient query
plans for modern hardware. PVLDB, pages 539–550,
2011.

[29] T. Neumann, S. Helmer, and G. Moerkotte. On the
optimal ordering of maps and selections under
factorization. In ICDE, pages 490–501, 2005.

[30] Oracle. TimesTen In-Memory Database.
http://www.oracle.com/technetwork/database/

database-technologies/timesten/overview/index.

html.

[31] K. A. Ross. Conjunctive selection conditions in main
memory. In SIGMOD, pages 109–120, 2002.

[32] SAP. In-Memory Computing (SAP HANA). http://
www.sap.com/pc/tech/in-memory-computing-hana/

software/overview/index.html.

[33] S. Setzer, G. Steidl, T. Teuber, and G. Moerkotte.
Approximation related to quotient functionals.
Journal of Approximation Theory, pages 545–558,
2010.

[34] J. Sompolski, M. Zukowski, and P. Boncz.
Vectorization vs. compilation in query execution. In
Proceedings of the Seventh International Workshop on
Data Management on New Hardware, pages 33–40,
2011.

[35] K. Tzoumas, A. Deshpande, and C. Jensen. Efficiently
adapting graphical models for selectivity estimation.
VLDB Journal, 22:3–27, 2013.

[36] VoltDB. In-memory database.
http://www.voltdb.com.

[37] M. Zukowski, M. Van de Wiel, and P. Boncz.
Vectorwise: A vectorized analytical dbms. In ICDE,
pages 1349–1350, 2012.

1135



APPENDIX
A. System Tx

Although System Tx is a main memory column store, we
use rows/tuples as a representation of intermediate results.
This allows for better cache locality during the evaluation of
expressions. Second, we implemented the push-based model,
as it allows for better code and exhibits better data locality
[28]. In a push-based model, each algebraic operator im-
plements an interface with init, step, and close functions.
The step function is the most important. It accepts an input
tuple, processes it, and passes it to the consumer operator
up the tree via calling the step function of the consumer.

TX_Scan::run() {

for(i=0; i<|R|; ++i) {

t.rid=i; t.ap++; t.bp++; ...

consumer.step(t);}

}

The RID variable and the column pointers in tuple t are
maintained by the scan operator (as depicted in the pseudo
code above). This way, they point to the correct column
values, and upon request, such column values can be fetched
by means of the map operator, as shown in the code snippets
bellow.

In System Tx, there exist two ways of dereferencing (ac-
cessing) column values. The first method accesses column
values based on row identifiers (RIDs). In pseudocode, this
reads as

Tx_MAP::step(t) {

t.A = R.A[t.rid];

t.B = R.B[t.rid];

...

consumer.step(t);

}

The second method accesses column values based on column
pointers

Tx_MAP::step(t) {

t.A = *(t.ap);

t.B = *(t.bp);

...

consumer.step(t);

}

The column values are also stored in the tuple t, which is
then passed to the next operator (consumer) in the operator
tree.

Tx_Select::step(t) { if(p(t)) consumer.step(t); }

The selection operator simply pipelines the qualifying tuples
to its consumer operator.

B. SAMPLING SELECTIVITIES
Our algorithm requires selectivity estimates for subsets of

predicates. Selectivity estimates for subsets of predicates
can be derived in several ways, e.g., by entropy maximiza-
tion [22] or graphical models [35]. Both require some imple-
mentation effort and runtime. Next, we present a new, easy
to implement, and very efficient alternative. The main idea
is to extend the usual sampling procedure to gather more
than the usual information.

Let P = {p1, . . . , pz} denote a set of z predicates. For a
subset of predicates P ′ ⊆ P , we denote by β(P ′) the formula

β(P ′) =
∧

pi∈P ′

pi,

and by γ(P ′) the formula

γ(P ′) =
∧

pi∈P ′

pi ∧
∧

pi 6∈P ′

¬pi.

The selectivities of these predicates are denoted by sβ(P ′)

and sγ(P ′). For our algorithm, we need the vector sβ , which
gathers the sβ(P ′) for all P ′. The procedure getGamma pre-
sented below will give us sγ . Hence, we need a method to
convert sγ to sβ .

As a technicality needed below, note that every subset
P ′ ⊆ P can be expressed as bitvector bv(P ′) of length |P |.
Also, bv(P ′) can be interpreted as a positive integer whose
representation it is. Subsequently, we will identify these two
different interpretations of the same bitpattern.

Define the complete design matrix A (see also [22]) as

A(i, j) =

{
1 if j ⊇ i
0 else

where j ⊇ i denotes the fact that every bit set to one in i
is also set in j, i.e., i = i&j and i, j range from 0 to 2z − 1.
Note that A is binary, non-singular, and persymmetric.

The complete design matrix A allows us to go from sγ to
sβ by

Asγ = sβ .

Since the positions of the ones in row i can be enumerated
efficiently by enumerating supersets of the bitvector i (see
[24, p66] for details), multiplications of A with a vector x
can be implemented very efficiently using only a few bit
manipulating instructions and additions.

Let us now discuss how to efficiently derive the values for
sγ via sampling. During the evaluation of a set of predicates
{p1, . . . , pz}, besides determining the number of sample tu-
ples qualifying for all pi, we can also count the 2z combi-
nations of predicates evaluating to true or false. A simple
piece of code (close to C++) shows how to do this:

getGamma(p , z , S )
// p i s vec to r o f p r ed i ca t e s ,
// z i t s length ,
// S i s the sample
int n = (1 << z ) ;
// array o f counter s i n i t i a l i z e d to zero
int c gamma [ n ] = {0} ;
// f o r a l l sample tup l e s in S
for ( s : S )

int k = 0 ;
for ( int i = 0 ; i < z ; ++i )

// p [ i ] ( s ) : eva luate p i on sample tup l e s
k |= (p [ i ] ( s ) << i ) ;

++c gamma [ k ] ;
return c gamma/ |S | ; // componentwise d i v i s i o n

Here, for every sample tuple s ∈ S, all predicates pi are
evaluated (p[i](s)). The result is either 0 or 1. Shifting this
result by i and bitwise or-ing it with k, stores this result in
the i-th bit of k. Thus, after the inner loop, k contains a
bitpattern representing the outcome of all predicates. Then,
k is used as an index into an array of counters and the
according counter is increased. To get the selectivities sγ , we
must only divide these counters by the size of the sample.

1136


