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Abstract

In this work access support relations are introduced as a means for optimiz-

ing query processing in object-oriented database systems. The general idea is

to maintain separate structures (disassociated from the object representation) to

store object references that are frequently traversed in database queries. The pro-

posed access support relation technique is no longer restricted to relate an object

(tuple) to an atomic value (attribute value) as in conventional indexing. Rather,

access support relations relate objects with each other and can span over refer-

ence chains which may contain collection-valued components in order to support

queries involving path expressions. We present several alternative extensions of

access support relations for a given path expression, the best of which has to

be determined according to the application-speci�c database usage pro�le. An

analytical performance analysis of access support relations is developed. This an-

alytical cost model is, in particular, used to determine the best access relation

extension and decomposition with respect to speci�c database con�guration and

usage characteristics.
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1 Introduction

Record-oriented database systems, e.g., those based on the pure relational or the CO-

DASYL network model, are widely believed to be inappropriate for engineering applica-

tions. There is a variety of reasons for this assessment: no explicit support of behavior,

data segmentation due to normalization, lacking support of molecular aggregation and

generalization, etc.

Object-oriented database systems constitute a promising approach towards support-

ing technical application domains. Several object-oriented data models have been de-

veloped over the last couple of years. However, these systems are still not adequately

optimized: they still have problems to keep up with the performance achieved by, for ex-

ample, relational DBMSs. Yet it is essential that the object-oriented systems will yield at

least the same performance that relational systems achieve: otherwise their acceptance

in the engineering �eld is jeopardized even though they provide higher functionality

than conventional DBMS by, e.g., incorporation of type extensibility and object-speci�c

behavior within the model. Engineers are generally not willing to trade performance

for extra functionality and expressive power. Therefore, we conjecture that the next

couple of years will show an increased interest in optimization issues in the context of

object-oriented DBMSs. The contribution of this paper can be seen as one important

piece in the mosaic of performance enhancement methods for object-oriented database

applications: the support of object access along reference chains.

In relational database systems one of the most performance-critical operations is the

join of two or more relations. A lot of research e�ort has been spent on expediting the

join, e.g., access structures to support the join, the sort-merge join, and the hash-join

algorithm were developed. Recently, the binary join index structure [11] was designed

as another optimization method for this operation.

In object-oriented database systems with object references the join based on match-

ing attribute values plays a less predominant role. More important are object accesses

along reference chains leading from one object instance to another. Some authors, e.g.,

[1], call this kind of object traversal also functional join.

This work presents an indexing technique, called access support relations, which is

designed to support the functional join along arbitrary long attribute chains where the

chain may even contain collection-valued attributes.

The access support relations described in this paper constitute a generalization of the

binary join indices proposed by Valduriez [11]. Rather than relating only two relations

(or object types) our technique allows to support access paths ranging over many types.

Our indexing technique subsumes and extends several previously proposed strategies

for access optimization in object bases. The index paths in GemStone [6] are restricted

to chains that contain only single-valued attributes and their representation is limited

to binary partitions of the access path. Similarly, the object-oriented access techniques

described for the Orion model [5] are contained as a special case in our framework.

Our technique di�ers in three major aspects from the two aforementioned approaches:

� access support relations allow collection-valued attributes within the attribute
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chain

� access relations may be maintained in four di�erent extensions. The extension de-

termines the amount of (reference) information that is kept in the index structure.

� access support relations may be decomposed into arbitrary partitions. This allows

the database designer to choose the best extension and partition according to the

application characteristics.

Also the (separate) replication of object values as proposed for the Extra object model

[8] and for the PostGres model [10, 7] are subsumed by our technique.

The remainder of this paper is organized as follows. Section 2 introduces the Generic

Object Model (GOM ), which serves as the research vehicle for this work, and some

simpli�ed application examples to highlight the requirements on object-oriented access

support. Then, in section 3 the access support relations are formally de�ned. In sec-

tion 4 we begin the development of an analytical cost model for our indexing technique

by estimating the cardinalities of various representations of access support relations.

Section 5 describes the utilization of access support relations in query evaluation and

estimates the performance enhancement on the basis of secondary page accesses. Sec-

tion 6 addresses the maintenance of access support relations due to object updates. In

each of the sections 4 through 6 we illustrate the analytical model by some comparative

results for characteristic application pro�les. Section 7 concludes this paper.

2 The Object Model

This research is based on an object-oriented model that unites the most salient features of

many recently proposed models in one coherent framework: the Generic Object Model

GOM . The features that GOM provides are relatively generic such that the results

derived for this particular data model can easily be applied to a variety of other object-

oriented models.

GOM provides the following object-oriented concepts:

object identity each object instance has an identity that remains invariant throughout

its lifetime. The object identi�er is invisible for the database user; it is used by

the system to reference objects. This allows for shared subobjects because the

same object may thus be associated with many database components.

values GOM has a built-in collection of elementary (value) types, such as char , string ,

integer , etc. Instances of these types do not possess an identity, rather their

respective value serves as their identity.

type constructors the most basic type constructor is the tuple constructor which

aggregates di�erently typed attributes to one object. In addition, GOM has the

two built-in collection type constructors set, denoted as fg, and list, denoted as

<>.
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subtyping subtyping is based on inheritance. A tuple-structured type t may be de�ned

as the subtype of one (single inheritance) or several (multiple inheritance) other

tuple-structured type(s) t

1

; : : : ; t

n

which means that t inherits all attributes of all

supertypes t

1

; : : : ; t

n

.

strong typing GOM is strongly typed, meaning that all database components, e.g.,

attributes, set elements, etc, are constrained to a particular type. However, the

constrained type constitutes only an upper bound, the actually referenced instance

may be a subtype-instance thereof.

instantiation types can be instantiated to render a new object instance. All internal

components of a newly instantiated tuple object are initially set to NULL, the

unde�ned value. Set- and list-instances are initially set to the empty set or list.

2.1 Type De�nitions

If s

1

; : : : ; s

m

; s 2 T , t 6= ANY are type symbols with outer type constructor [], the

a

1

; : : : ; a

n

are pairwise distinct attribute names, and the t

i

are types then

type t is

supertypes (s

1

; : : : ; s

m

)

[a

1

: t

1

; : : : ; a

n

: t

n

]

type t is fsg

type t is < s >

are type de�nitions.

In the �rst case the s

i

are called supertypes of t, and t is called a (direct) subtype of

s

i

. Since the access support on ordered collection, i.e., lists, is analogous to sets we will

not elaborate on list-structured types in the remainder of this paper.

2.2 (Engineering) Example Applications

Let us �rst sketch an engineering application that heavily utilizes tuple-structured types:

modeling robots. The following schema constitutes an outline of a robot model:

type ROBOT SET is fROBOTg;

type ROBOT is [Name: STRING, Arm: ARM];

type ARM is [Kinematics: . . . , MountedTool: TOOL];

type TOOL is [Function: STRING, ManufacturedBy: MANUFACTURER];

type MANUFACTURER is [Name: STRING, Location: STRING];

var OurRobots: ROBOT SET;
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ROBOT ARM TOOL MANUFACTURER

i

0

Name: \R

2

D

2

"

Arm: i

1

i

1

Kinematics: . . .

MountedTool: i

2

i

2

Function: \welding"

ManufacturedBy: i

3

i

3

Name: \RobClone"

Location: \Utopia"

i

5

Name: \X4D5"

Arm: i

6

i

6

Kinematics: . . .

MountedTool: i

7

i

7

Function: \gripping"

ManufacturedBy: i

3

i

8

Name: \Robi"

Arm: i

9

i

9

Kinematics: . . .

MountedTool: i

7

-

-

-

6

-

- -

6

Figure 1: Database Extension with Linear Paths

As can be deduced from the schema, a ROBOT has a Name and an Arm attribute,

the latter itself referring to a composite object of type ARM . An ARM instance is

described by its Kinematics

1

and a MountedTool , an attribute referring to an instance

of type TOOL. A TOOL is modeled by a string-valued attribute Function and the

attribute ManufacturedBy which associates a MANUFACTURER object, which itself

contains attributes Name and Location, with the TOOL instance.

An extension of such a schema for just three ROBOT instances identi�ed by i

0

; i

5

,

and i

8

is graphically depicted in Figure 1. An object instance is a triple (i; v; t) where

i denotes the object identi�er, v the object value, and t the type of the object. As

indicated in Figure 1 references are uni-directional , i.e., they are maintained in one

direction only. This conforms to (almost) all proposed object models.

A query in such an object-oriented system would retrieve objects on the basis of at-

tribute values of other associated objects along a reference chain, i.e., a path expression.

A typical example is:

Query 1: Find the Robots which use a Tool manufactured in \Utopia".

Or using SQL-like notation:

select r:Name

from r in OurRobots

where r:Arm.MountedTool.ManufacturedBy.Location = \Utopia"

In this example the path expression is r:Arm.MountedTool.ManufacturedBy.Location.

2.3 General Paths (Containing Collection-Valued Attributes)

Note that a linear path contains only attributes referring to a single object. Single-

object-valued attributes are only useful to model 1 : 1, or N : 1 relationships. In order

to represent 1 : M , or general N : M relations one needs to incorporate collection-valued

1

not further elaborated here. For more details see [3]
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Company i

0

fi

1

; i

2

; i

3

; : : :g

Division i

1

Name: \Auto"

Manufactures: i

4

i

2

Name: \Truck"

Manufactures: i

5

i

3

Name: \Space"

Manufactures: NULL

ProdSET i

4

fi

6

; : : :g i

5

fi

6

; i

9

: : :g

Product i

6

Name: \560 SEC"

Composition: i

7

i

9

Name: \MB Trak"

Composition: NULL

i

11

Name: \Sausage"

Composition: i

13

BasePartSET i

7

fi

8

; : : :g i

10

fi

8

; : : :g i

13

fi

14

; : : :g

BasePart i

8

Name: \Door"

Price: 1205:50

i

14

Name: \Pepper"

Price: 0:12

Figure 2: Database Extension With Non-Linear Paths

attributes, i.e., attributes referring to a set or list instance. To illustrate this let us

de�ne a database schema for modeling a Company composed of a set of Divisions. Each

Division Manufactures a set of Products, which themselves are composed of BaseParts.

The schema is outlined below:

type Company is fDivisiong;

type Division is [Name: STRING, Manufactures: ProdSET];

type ProdSET is fProductg;

type Product is [Name: STRING, Composition: BasePartSET];

type BasePartSET is fBasePartg;

type BasePart is [Name: STRING, Price: DECIMAL];

Additionally we assume the existence of a reference to a given company.

var Mercedes: Company;

A sample extension of this schema is presented in Figure 2.

Now let us illustrate some typical queries in an SQL-like syntax which access objects

along references (possibly leading through sets).

Query 2: Which Division uses a BasePart named \Door"?

select d:Name

from d in Mercedes,

b in d:Manufactures:Composition

where b:Name = \Door"
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Query 3: Retrieve all the BasePart Names used by the Division named \Auto".

select d:Manufactures:Composition:Name

from d in Mercedes:Division

whered:Name = \Auto"

3 Access Support Relations

As mentioned earlier access paths are used to support query evaluation. More precisely

access paths allow the fast selection of those members of an object collection which ful�ll

a given selection criterion based on object references along an attribute chain or path

expression. A path expression or attribute chain is de�ned as follows:

De�nition 3.1 Let t

0

; : : : ; t

n

be (not necessarily distinct) types. A path expression on

t

0

is an expression t

0

:A

1

: � � � :A

n

i� for each 1 � i � n one of the following conditions

holds:

� The type t

i�1

is de�ned as type t

i�1

is [: : : ; A

i

: t

i

; : : :].

� The type t

i�1

is de�ned as type t

i�1

is [: : : ; A

i

: t

0

i

; : : :] and the type t

0

i

is de�ned

as type t

0

i

is ft

i

g. In this case we speak of a set occurrence at A

i

in the path

t

0

:A

1

: � � � :A

n

.

The type t

i�1

is called the domain type of A

i

, and t

i

is called the range type of A

i

.

The second part of the de�nition is useful to support access paths through sets

2

. If

it does not apply to a given path the path is called linear .

For simplicity we require each path expression to originate in some type t

0

; alter-

natively we could have chosen a particular collection C of elements of type t

0

as the

anchor of a path (leading to more di�cult de�nitions and cost functions, though).

Since an access path can be seen as a relation we will use relation extensions to rep-

resent access paths. The next de�nition maps a given path expression to the underlying

access support relation declaration.

De�nition 3.2 Let t

0

; : : : ; t

n

types, t

0

:A

1

: � � � :A

n

be a path expression, and k the number

of set occurrences in t

0

:A

1

: � � � :A

n

. Then the access support relation E

t

0

:A

1

:���:A

n

is of arity

n+ k and has the following form:

E

t

0

:A

1

:���:A

n

: [S

0

; : : : ; S

n+k

]

The domain of the attribute S

0

is the set of identi�ers (OIDs) of objects of type t

0

.

For (1 � i � n) let k(i) be the number of set occurrences before A

i

, i.e., set occurrences

at A

j

for j < i. Then the domain of the attribute S

i+k(i)

is the set of OIDs of objects of

type

2

Note, however, that we do not permit powersets

8



� t

i

, if A

i

is a single-valued attribute.

� t

0

i

, if A

i

is a set-valued attribute. In this case the domain of S

i+k(i)+1

is the set of

OIDs of type t

i

.

If the underlying path expression is clear from context we will write E instead of E

t

0

:A

1

:���:A

n

.

Let further m be de�ned as m := n + k.

We distinguish several possibilities for the extension of such relations. To de�ne

them for a path expression t

0

:A

1

: � � � :A

n

we need n auxiliary relations E

1

; : : : ; E

n

.

De�nition 3.3 For each A

j

(1 � j � n) we construct the auxiliary relation E

j�1

.

Depending on the domain of A

j

the relation E

j�1

is:

1. binary, if A

j

is a single-valued attribute

2. ternary, if A

j

is a set-valued attribute

In case (1) the relation E

j�1

contains the tuples (id(o

j�1

); id(o

j

)) for every object

o

j�1

of type t

j�1

and o

j

of type t

j

such that o

j�1

:A

j

= o

j

3

.

In case (2) the relation E

j�1

contains the tuples (id(o

j�1

); id(o

0

j

); id(o

j

)) for every

object o

j�1

of type t

j�1

, o

0

j

of type t

0

j

, and o

j

of type t

j

such that o

j�1

:A

j

= o

0

j

and the

set o

0

j

contains o

j

. In the special case that o

0

j

is an empty set the relation E

j�1

contains

the tuple (id(o

j�1

); id(o

0

j

); NULL).

Example: Recall the Company database extension of Figure 2. For the underlying

schema we could declare the access support relation on the path expression Division:Manufactures :Composition:Name.

This results in 3 auxiliary relations E

0

, E

1

, and E

2

.

E

0

OID

Division

OID

ProdSET

OID

Product

. . . . . . . . .

i

2

i

5

i

9

i

1

i

4

i

6

. . . . . . . . .

E

1

OID

Product

OID

BasePartSET

OID

BasePart

. . . . . . . . .

i

11

i

13

i

14

i

6

i

7

i

8

. . . . . . . . .

E

2

OID

BasePart

V ALUE

Name

. . . . . .

i

14

\Pepper"

i

8

\Door"

. . . . . .

2

3

If t

j

is an atomic type then id(o

j

) corresponds to the value o

j�1

:A

j

.
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Let us now introduce di�erent possible extensions of the access support relation E.

The �rst extension, called the canonical extension, is the obvious one. It contains only

information about complete paths spanning the attribute chain t

0

:A

1

: � � � :A

n

. Let us

illustrate the canonical extension on a linear path. Here for all objects o

0

in t

0

, o

1

in

t

1

, . . . , which ful�ll o

0

:A

1

= o

1

, . . . ,o

0

:A

1

: � � � :A

n

= o

n

the canonical extension, denoted

E

can

, of the access support relation E contains the tuple (id(o

0

); : : : ; id(o

n

)).

Let 1 ( 1 ; 1;1 ) denote the natural (outer, left outer, right outer) join on the last

column of the �rst relation and the �rst column of the second relation.

De�nition 3.4 (Canonical Extension) Let t

0

:A

1

: � � � :A

n

be a path expression. The

canonical extension E

can

is de�ned as

E

can

:= E

0

1 : : : 1 E

n�1

2

The canonical extension contains only complete paths in the sense that every tuple

represents the attribute values for an object o in t

0

for which o:A

1

: � � � :A

n

exists, i.e.,

there is no NULL value somewhere along the path. This is the minimum information

that must be contained within the access relation in order to allow access support for

all queries spanning the whole attribute chain.

Example: For our example auxiliary relations E

0

, E

1

, and E

2

we obtain the following

canonical extension E

can

:

E

can

OID

Division

OID

ProdSET

OID

Product

OID

BasePartSET

OID

BasePart

V ALUE

Name

. . . . . . . . . . . . . . . . . .

i

1

i

4

i

6

i

7

i

8

\Door"

. . . . . . . . . . . . . . . . . .

Note that E

can

contains only complete paths originating in t

0

and leading to t

n

. But

there could also be more information in the extension of an access support relation.

For a path t

0

:A

1

: � � � :A

n

consider the case where all the information concerning the

attribute value of A

1

of every object in t

0

, and the attribute values of A

i

of every object

of type t

i�1

is contained in the access support relations. This is, naturally, the maximum

information concerning the access path. The extension containing all this information

is de�ned next.

De�nition 3.5 (Full Extension) Be t

0

:A

1

: � � � :A

n

a path expression. The full exten-

sion E

full

is de�ned as

E

full

:= E

0

1 : : : 1 E

n�1

2
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Example: For our example application the full extension contains also the incomplete

paths, i.e., those that lead to a NULL (e.g., the �rst tuple in the extension shown be-

low) or those not originating in an object o

0

of type t

0

(the second tuple in E

full

shown

below). Even partial paths not originating in t

0

and leading to a NULL are to be included

E

full

OID

Division

OID

ProdSET

OID

Product

OID

BasePartSET

OID

BasePart

V ALUE

Name

. . . . . . . . . . . . . . . . . .

i

2

i

5

i

9

NULL NULL NULL

NULL NULL i

11

i

13

i

14

\Pepper"

i

1

i

4

i

6

i

7

i

8

\Door"

. . . . . . . . . . . . . . . . . .

Obviously there are many intermediate forms between these two cases. We will restrict

our discussion to left- and right-complete extensions.

De�nition 3.6 (Left-complete Extension) Be t

0

:A

1

: � � � :A

n

a path expression. The

left-complete extension E

left

is de�ned as

E

left

:= (: : : (E

0

1E

1

) 1 : : : 1E

n�1

)

2

Example: The left-complete extension contains all those (partial) paths that originate

in some o

0

of type t

0

(even if the path eventually leads to a NULL as, e.g., in the �rst

tuple below).

E

left

OID

Division

OID

ProdSET

OID

Product

OID

BasePartSET

OID

BasePart

V ALUE

Name

. . . . . . . . . . . . . . . . . .

i

2

i

5

i

9

NULL NULL NULL

i

1

i

4

i

6

i

7

i

8

\Door"

. . . . . . . . . . . . . . . . . .

De�nition 3.7 (Right-complete Extension) Be t

0

:A

1

: � � � :A

n

a path expression. The

right-complete extension E

right

is de�ned as

E

right

:= (E

0

1 (: : :1 (E

n�2

1 E

n�1

) : : :)

2
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Example: The right-complete extension contains all (partial) paths that are at least

de�ned for the attribute A

n

in some object o

n�1

of type t

n�1

. The path, however, need

not necessarily originate in t

0

, as exempli�ed by the �rst tuple in the extension shown

below:

E

right

OID

Division

OID

ProdSET

OID

Product

OID

BasePartSET

OID

BasePart

V ALUE

Name

. . . . . . . . . . . . . . . . . .

NULL NULL i

11

i

13

i

14

\Pepper"

i

1

i

4

i

6

i

7

i

8

\Door"

. . . . . . . . . . . . . . . . . .

Aside from di�erent extensions of the access support relation also several decompo-

sitions are possible, which are discussed now. Since not all of them are meaningful we

de�ne a decomposition as follows (Remember: m = n + k.)

De�nition 3.8 (Decomposition) Let R be an (m + 1)-ary relation with attribute

S

0

; : : : ; S

m

. Then the relations

R

0;i

1

: [S

0

; : : : ; S

i

1

] for 0 < i

1

� m

R

i

1

;i

2

: [S

i

1

; : : : ; S

i

2

] for i

1

< i

2

� m

� � �

R

i

k

;m

: [S

i

k

; : : : ; S

m

] for i

k

< m

are called a decomposition of R. The individual relations R

i

j

;i

j+1

, called partitions, are

materialized by projecting the corresponding attributes of R. If every partition is a

binary relation the decomposition is called binary. The above decomposition is denoted

(0; i

1

; i

2

; : : : ; i

k

; m).

Note that m and n are equal only in the case that there is no set occurrence along the

path. If there is any then m > n. Under the assumption that there is no set sharing, the

set identi�ers may be dropped from the access support relation. This results in m = n.

To simplify the analysis we will do so for the examples considered in the next section.

Note however that the analytical cost model captures the general case if one reads n as

m.

The last question discussed in this section concerns the usefulness of the above

de�ned decompositions.

Theorem 3.9 Every decomposition of an access support relation is lossless.

12



Example: For our example the binary decomposition consisting of �ve relations of

the canonical extension is shown below:

E

0;1

can

OID

Division

OID

ProdSET

i

1

i

4

. . . . . .

E

1;2

can

OID

ProdSET

OID

Product

i

4

i

6

. . . . . .

E

2;3

can

OID

Product

OID

BasePartSET

i

6

i

7

. . . . . .

E

3;4

can

OID

BasePartSET

OID

BasePart

i

7

i

8

. . . . . .

E

4;5

can

OID

BasePart

V ALUE

Name

i

8

\Door"

. . . . . .

4 Analytical Cost Model: Cardinality of Access Re-

lations

In this section we start the development of an analytical cost model to evaluate the access

relation concept. Later on, the cost model is used to derive the best physical database

design, i.e., to �nd the best extension and decomposition of a given path expression

according to the operation mix. First we have to design a model in which the object

base extension, in which we consider a path expression, can be described. Then we

analyze the storage costs for access relations in various extensions and decompositions.

4.1 Preliminaries

Before giving the sizes of the relations we introduce some parameters that model the

characteristics of an application. These are listed in Figure 3.

4.1.1 Some Derived Quantities

The probability P

A

i

that an object o

i

of type t

i

has a de�ned A

i+1

attribute value is

P

A

i

=

d

i

c

i

(1)

The probability P

H

i

that a particular object o

i

of type t

i

is \hit" by a reference

emanating from some object of type t

i�1

is:

P

H

i

=

e

i

c

i

(2)

The probability that, for some object o

i

of type t

i

none of the fan

i

references of the

attribute o

i

:A

i+1

hits a particular object o

i+1

2 t

i+1

, which belongs to the e

i+1

referenced

objects, may be approximated as

 

1�

1

e

i+1

!

fan

i

(3)
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application-speci�c parameters

parameter semantics derivation/default

n length of access path

c

i

total number of objects of type t

i

d

i

the number of objects of type t

i

for which the attribute

A

i+1

is not NULL

f

i

the number of references emanating on the average

from the attribute A

i+1

of an object o

i

of type t

i

shar

i

the average number of objects of type t

i

that reference

the same object in t

i+1

. If no value for shar

i

is deter-

mined by the user, a normal distribution of references

from objects in t

i

to objects in t

i+1

is assumed. In this

case shar

i

is derived as shown on the right.

shar

i

=

d

i

� fan

i

c

i+1

e

i

the number of objects in t

i

which are referenced by an

object in t

i�1

e

i

=

d

i�1

� fan

i�1

shar

i�1

spread

i

the relation between the number of de�ned objects of

type t

i

and the referenced objects of type t

i+1

spread

i

=

d

i

e

i+1

ref

i

the number of references of objects of type t

j

ref

i

= d

i

� fan

i

size

i

average size of objects of type t

i

system-speci�c parameters

PageSize net size of pages PageSize = 4056

OIDsize size of object identi�ers OIDsize = 8

PPsize size of page pointer PPsize = 4

B

+

fan

fan out of the B

+

tree

$

PageSize

PPsize+OIDsize

%

Figure 3: System and Application Parameters

14



However, this formula contains a slight error: it assumes that all fan

i

references are

independent|which is not the case when no two references emanating from the one

object in t

i

can hit the same object in t

i+1

. This error manifests itself for large fan

i

values and correspondingly small e

i+1

values.

Therefore, a better approximation is deduced by using the number of fan

i

-element

subsets of the e

i+1

objects of type t

i+1

. This number is given as the binomial coe�cient

 

e

i+1

fan

i

!

=

e

i+1

!

fan

i

!(e

i+1

� fan

i

)!

Then, the probability that the particular object o

i+1

is not hit is given as:

�

e

i+1

�1

fan

i

�

�

e

i+1

fan

i

�

=

e

i+1

� fan

i

e

i+1

= 1�

fan

i

e

i+1

(4)

The probability that o

i+1

is not hit by any of the references emanating from a subset

fo

1

i

; o

2

i

; : : : ; o

k

i

g of objects of type t

i

, all of whose A

i

attributes are de�ned, is:

 

1�

fan

i

e

i+1

!

k

(5)

For 0 � i < j � n we now de�ne RefBy(i; j) which denotes the number of objects

in t

j

which are referenced by some object in t

i

(via at least one (partial) path):

RefBy(i; j) =

8

>

>

<

>

>

:

e

i+1

j = i+ 1

e

j

�

0

@

1�

 

1�

fan

j�1

e

j

!

RefBy(i;j�1)�P

A

j�1

1

A

else

(6)

Further the probability, denoted P

RefBy

(i; j), that a path between some object in t

i

and a particular object o

j

in t

j

exists for 0 � i < j � n, is derived as:

P

RefBy

(i; j) =

8

>

<

>

:

1 i = j

RefBy(i; j)

c

j

else

(7)

Let Ref (i; j) denote the number of objects of type t

i

which have a path leading to

some object of type t

j

for 0 � i < j � n. This value can be approximated as:

Ref(i; j) =

8

>

>

<

>

>

:

d

i

j = i+ 1

d

i

�

0

@

1�

 

1�

shar

i

d

i

!

Ref (i+1;j)�P

H

i+1

1

A

else

(8)

Let P

Ref

(i; j) be the probability that a given object in t

i

has at least one path leading

to some object in t

j

. Then

P

Ref

(i; j) :=

8

>

<

>

:

1 i = j

Ref(i; j)

c

i

else

(9)
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The number of paths between the objects in t

i

and the objects in t

j

can be estimated

by

path(i; j) = ref

i

�

j�1

Y

l=i+1

(P

A

l

� fan

l

) (10)

4.2 Cardinalities of Access Support Relations

We can now deduce closed formulas for the number of tuples in the access support

relations.

4.2.1 Canonical Extension

No Decomposition In this special case of no decomposition the number of tuples,

#E

can

in the access relation E

can

is given as:

#E

can

= path(0; n)

General Decomposition For a general decomposition (: : : ; i; j; : : :) the indicated

part E

i;j

can

of the decomposition contains the following number of tuples:

#E

i;j

can

= P

RefBy

(0; i) � path(i; j) � P

ref

(j; n)

4.2.2 Full Extension

General Decomposition Let us �rst introduce two more probabilistic values. Let

P

lb

(i; j) denote

4

the probability that a particular object of type t

j

is not \hit" by any

path emanating from some object in t

i

for 0 � i < j � n:

P

lb

(i; j) =

(

1� P

RefBy

(i; j) i < j

1 else

(11)

Analogously, let P

rb

(i; j) denote

5

the probability that a particular object of type t

i

contains no emanating path to some object in t

j

for 0 � i < j � n:

P

rb

(i; j) =

(

1� P

Ref

(i; j) i < j

1 else

(12)

Using these quantities we can then estimate that the relation E

i;j

full

contains the

following number of tuples:

#E

i;j

full

=

j�i

X

k=1

j�k

X

l=i

P

lb

(max(i; l � 1); l) � path(l; l + k) � P

rb

(l + k;min(j; l + k + 1))

4

lb: left-bound

5

rb: right-bound
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4.2.3 Left-complete Extension

The relation E

i;j

left

which holds all the paths from t

i

to t

j

which are left-complete, i.e.,

which originate in t

0

, has the following cardinality:

#E

i;j

left

=

j�i

X

k=1

P

RefBy

(0; i) � path(i; i + k) � P

rb

(i+ k;min(j; i + k + 1))

4.2.4 Right-complete Extension

Finally, the cardinality of the (: : : ; i; j; : : :) partition of the right-complete access support

relation is derived as:

#E

i;j

right

=

j�i

X

k=1

P

lb

(max(i; j � k � 1); j � k) � path(j � k; j) � P

ref

(j; n)

4.3 Storage Costs for Access Relations

Let X denote an extension of the access relation E , i.e., X 2 fcan; full ; left ; rightg.

The size of a tuple in the access relation E

i;j

X

in bytes is:

ats

i;j

= OIDsize � (j � i+ 1) (13)

The number of tuples in access relation E

i;j

X

per page:

atpp

i;j

=

$

PageSize

ats

i;j

%

(14)

The size of the access relation E

i;j

X

in bytes:

as

i;j

X

= #E

i;j

X

� ats

i;j

(15)

The approximate number of pages needed to store the access relation E

i;j

X

:

ap

i;j

X

=

&

#E

i;j

X

atpp

i;j

'

(16)

4.4 Some Sample Results

Subsequently, we graphically demonstrate two results for|in our view|typical engi-

neering application characteristics. However, the reader should bear in mind that the

size comparison of di�erent access relation extensions and decompositions does not per-

mit any conclusions as to the performance of the respective physical design. The two

results are merely included to give the reader some \feeling" about comparative storage

costs.
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4.4.1 Comparison between Extensions and Decompositions

In this experiment we want to compare di�erent extensions and decompositions of the

access relation size for a �xed application characterization, which is listed in the table

below:

application characteristics

n 4

number of objects c

0

c

1

c

2

c

3

c

4

1000 5000 10000 50000 100000

number of objects with d

0

d

1

d

2

d

3

d

4

de�ned A

i+1

attribute 900 4000 8000 20000 |

fan-out f

0

f

1

f

2

f

3

f

4

2 2 3 4 |

The comparison of storage costs (for non-redundant representation) is graphically

plotted in Figure 4

Figure 4: Comparison of Access Relation Sizes

In this example application there are few objects at the \left" side of the path which

causes the canonical and the left-complete extensions to be drastically smaller than the

right-complete and full extension. It can be seen that|for this application|the binary

decomposition reduces storage costs by a factor of 2.
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4.4.2 Varying all d

i

Parameters

In the subsequent experiment we want to demonstrate the e�ect of varying the number

of de�ned attributes, i.e., varying d

i

for (0 � i � 3), while keeping the number of objects

and the fan-out �xed.

application characteristics

n 4

number of objects c

0

c

1

c

2

c

3

c

4

10000 10000 10000 10000 10000

number of objects with d

0

d

1

d

2

d

3

d

4

de�ned A

i+1

attribute 2500 � � � 10

4

2500 � � � 10

4

2500 � � � 10

4

2500 � � � 10

4

|

fan-out f

0

f

1

f

2

f

3

f

4

2 2 2 2 |

The parameters d

0

; d

1

; d

2

; d

3

were simultaneously increased, i.e., the values are kept

identical. The plot in Figure 5 shows the access relation sizes for all di�erent extensions

under no decomposition.

Figure 5: Varying the Number of Not-NULL Attributes

As the d

i

values increase the sizes of the di�erent extensions grow proportionally.

As the d

i

values approach the c

i

values, the storage costs for all di�erent extensions

approach each other|because then (almost) all paths originate in t

0

and lead to t

n

.
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5 Query Processing

In this section we evaluate the usefulness and the costs of the di�erent extensions and

decompositions to query processing.

5.1 Kinds of Queries

To compare the query evaluation costs we consider abstract, representative query ex-

amples of the following two forms:

5.1.1 Backward Queries

In this query expression the objects o 2 C are retrieved, where C is a collection of

t

0

instances, based on the membership of some other object o

n

of type t

n

in the path

expression o:A

1

: � � � :A

n

.

Q

i;j

(bw) := select o

from o in C /* C is some collection of t

i

instances */

where o

j

in o:A

i+1

: � � � :A

j

5.1.2 Forward Queries

Forward queries retrieve objects of type t

j

which can be reached via a path emanating

from some given object o of type t

i

.

Q

i;j

(fw) := select o:A

i+1

: � � � :A

j

from o in C /* C is some collection of t

i

instances */

where . . .

5.2 Storage Representation of Access Support Relations

Following the proposal of Valduriez [11] for join indices an access support relation (par-

tition) E

i;j

X

is stored in two redundant B

+

trees, one being keyed (clustered) on the �rst

attribute, i.e., OIDs of objects of type t

i

, and the second B

+

tree being clustered on

the last attribute, i.e., OIDs of t

j

objects. In this way we can achieve a fast look-up of

all tuples (partial paths) originating in some object o

i

of type t

i

and all (partial) paths

leading to some object o

j

of type t

j

.

5.3 Query Evaluation

Canonical Extension The canonical extension of an access support relation over a

path expression o:A

1

:A

2

: � � � :A

n

is only useful for evaluating full paths of the form:

o:A

1

: � � � :A

n
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where o ranges over a collection of t

0

instances.

The canonical extension cannot be used to evaluate an expression of the form

o:A

1

: � � � :A

j

where j < n or of the form o

0

:A

j

: � � � :A

n

where j > 1 and o

0

ranges over a

collection of t

j�1

instances.

Right-Complete Extension The right-complete extension of the access support re-

lation can be utilized to evaluate path expressions of the form:

t

0

:A

j+1

: � � � :A

n

where 0 � j and o ranges over a collection of t

j

instances.

Left-Complete Extension The left-complete extension is utilized for any path ex-

pression originating in t

0

, i.e.:

o:A

0

: � � � :A

j

for j � n and o ranges over a collection of t

0

instances.

Full Extension Finally, the full extension may be used to evaluate any path of the

form

o:A

i+1

: � � � :A

j

for 0 � i < j � n and o ranging over a collection of t

i

instances.

Before we start developing the cost model, we would like to give an extended remark

on the sharing of access support relations.

5.4 Sharing of Access Support Relations

Consider the following two path expressions:

t

0

:A

1

: � � � :A

i

:A

i+1

: � � � :A

i+j

:A

i+j+1

: � � � :A

n

(1)

t

0

0

:A

0

1

: � � � :A

0

i

0

:A

i+1

: � � � :A

i+j

:A

0

i+j+1

: � � � :A

0

n

0

(2)

If t

0

:A

1

: � � � :A

i

and t

0

0

:A

0

1

: � � � :A

0

i

0

are path expressions both leading to objects of type

t

i

then part of the access support relations may be shared.

This, in general, is only possible when a full extension of the access support relation

is maintained. Let E

full

be the full extension for the path (1), and

�

E

full

the full extension

of the access support relations for path (2). Then the decomposition (0; i; i+ j; n) of E

and (0; i

0

; i

0

+ j; n) of

�

E share a common partition, i.e., E

i;i+j

full

=

�

E

i

0

;i

0

+j

full

.

Thus we obtain the following �ve partitions:

E

0;i

full

: [OID

t

0

; : : : ;OID

t

i

]

�

E

0;i

0

full

: [OID

t

0

0

; : : : ;OID

t

i

]

E

i;i+j

full

=

�

E

i

0

;i

0

+j

full

: [OID

t

i

; : : : ;OID

t

i+j

]

E

i+j;n

full

: [OID

t

i+j

; : : : ;OID

t

n

]

�

E

i

0

+j;n

0

full

: [OID

t

i+j

; : : : ;OID

t

0

n

0

]
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The �ve partitions may then, individually, be further decomposed.

In general, this sharing is only possible for full extensions. Exceptions are:

� if both paths (1) and (2) originate in t

0

<, i.e., i = i

0

= 1 then the sharing is also

possible for left-complete extensions.

� if both paths lead to t

n

, i.e., i + j = i

0

+ j = n = n

0

, then the corresponding

partition of the right-complete extensions may be shared.

This should indicate that there may exist a higher level of organization of access support

relations which constrains the possible extensions or decompositions.

5.5 Preliminaries for the Cost Estimation

In the subsequent work we will frequently use the following variables. Let X denote

the extension of some access relation, i.e., X 2 fcan; full ; left ; rightg. The variables i

and j denote some intermediate types in the path expression t

0

:A

1

: � � � :A

n

such that

0 � i < j � n.

The number of objects of type t

i

per page:

opp

i

=

$

PageSize

size

i

%

(17)

We generally assume that objects are clustered dependent on their type. Thus, the

number of pages needed to store all objects of type t

i

is estimated as:

op

i

=

&

c

i

opp

i

'

(18)

The height of the B

+

tree|not considering the leaves|for the relation E

i;j

X

:

ht

i;j

X

=

l

log

B

+

fan

(ap

i;j

ext

)

m

(19)

The number of pages (without leaves) in the B

+

tree for the relation E

i;j

X

is computed

as:

pg

i;j

X

=

8

>

>

<

>

>

:

ht

i;j

X

ht

i;j

X

� 1

1 +

&

ap

i;j

X

B

+

fan

'

ht

i;j

X

= 2

(20)

The number of leave pages of the B

+

tree per value in the access relation depends clearly

on the extension. They can be estimated as follows:

nlp

i;j

full

=

&

as

i;j

full

PageSize � d

i

'

(21)
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nlp

i;j

right

=

&

as

i;j

right

PageSize � d

i

'

(22)

nlp

i;j

can

=

&

as

i;j

can

PageSize � ref(i; n) � P

RefBy

(0; i)

'

(23)

nlp

i;j

left

=

&

as

i;j

left

PageSize �RefBy(0; i)

'

(24)

For the B

+

tree for the inverse clustered access relation we have:

Rnlp

i;j

full

=

&

as

i;j

full

PageSize � e

i

'

(25)

Rnlp

i;j

left

=

&

as

i;j

right

PageSize � e

i

'

(26)

Rnlp

i;j

can

=

&

as

i;j

can

PageSize � ref(j; n) � P

RefBy

(0; j)

'

(27)

Rnlp

i;j

right

=

&

as

i;j

right

PageSize � Ref (j; n)

'

(28)

5.6 Query Cost: No Access Support Relation

In estimating the query evaluation cost we will neglect the CPU cost and merely compare

the number of page accesses on secondary storage. In the following cost model we will

frequently use a well-known formula. Yao [13] has determined the number of page

accesses for retrieving k out of n objects distributed over m pages, where each page

contains n=m objects. This number, denoted as y(k;m; n), is:

y(k;m; n) =

&

m �

 

1�

k

Y

i=1

n � (1� 1=m)� i+ 1

n� i+ 1

!'

We extend the de�nitions of RefBy and Ref supplied in (6) and (8). For 0 � i <

j � n and 0 � k we de�ne the three argument function RefBy(i; j; k) which denotes

the number of objects in t

j

which lie on at least one (partial) path emanating from a

k-element subset of t

i

:

RefBy(i; j; k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

e

i+1

�

0

@

1�

 

1�

fan

i

e

i+1

!

k

1

A

j = i+ 1

e

j

�

0

@

1�

 

1�

fan

j�1

e

j

!

RefBy(i;j�1;k)�P

A

j�1

1

A

else

(29)
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Analogously, let Ref (i; j; k) denote the number of objects of type t

i

which have a

path leading to some object of a k-element subset of type t

j

for 0 � i < j � n and

0 � k. This value can be derived as:

Ref(i; j; k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

d

i

�

0

@

1�

 

1�

shar

i

d

i

!

k

1

A

j = i+ 1

d

i

�

0

@

1�

 

1�

shar

i

d

i

!

Ref (i+1;j;k)�P

H

i+1

1

A

else

(30)

If the object references are only stored within the object representation the best

possible algorithm without any access support structures has to inspect every page

containing a referenced object at least once.

5.6.1 Forward Query

Qnas

i;j

(fw) = 1 +

j�1

X

l=i+1

y(dRefBy(i; l; 1)e; op

l

; c

l

) (31)

This cost is deduced as one page access to retrieve the object o

i

plus the access to

all objects of type t

l

(i < l < j) that lie on a path originating in o

i

.

5.6.2 Backward Query

Qnas

i;j

(bw) = op

i

+

j�1

X

l=i+1

y(dRefBy(i; l; d

i

)e; op

l

; c

l

) (32)

Basically, the backward query is evaluated by an exhaustive search. All objects of

type t

l

(i < l < j) that are connected with any object of type t

i

have to be inspected,

i.e., RefBy(i; l; d

i

) objects have to be retrieved.

5.7 Query Cost: With Access Support Relation

5.7.1 Forward Query

The cost for a supported forward query can be calculated as follows:

Qsup

i;j

X

(fw; dec) =

X

i

�

;i

�+1

2dec

(i

�

=i<i

�+1
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�

ht

i

�

;i

�+1

X

+ nlp
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�

;i

�+1

X

�

+

X

i

�

;i

�+1
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�
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�+1

)

�

ap

i

�

;i

�+1

X

�

+

X

i

�

;i

�+1

2dec

(i<i

�

<j)

�

1:0 + y(dRefBy(i; i

�

; 1)e; pg

i

�

;i

�+1

X

� 1; (pg

i

�

;i

�+1

X

� 1) �B

+

fan

)

+ y(dRefBy(i; i

�

; 1)e � nlp

i

�

;i

�+1

X

; ap

i

�

;i

�+1

X

;#E

i

�

;i

�+1

X

)

�

(33)
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In this formula we are given a decomposition dec := (0 = i

0

; i

1

; : : : ; i

k

= n). De-

pending on this decomposition the forward query Q

i;j

(fw) is evaluated. We distinguish

two cases:

1. The �rst sum covers the case that i = i

�

for some 0 � � < k. In this case only one

path through the B

+

tree has to be traversed and the leave pages for one value

(nlp

i

�

;i

�+1

X

) are retrieved.

2. The second sum handles the special case that i is not the left border of some

decomposition, i.e., there is no i

�

2 dec such that i

�

= i. All pages of the access

relation partition E

i

�

;i

�+1

X

that covers i have to be inspected. This number equals

ap

i

�

;i

�+1

X

.

Finally, the third sum accounts for accessing the partitions that lead to j. Within each

partition (i

�

; i

�+1

), we have to retrieve

� the root of the B

+

tree

� the intermediate pages of theB

+

tree that contain (the intervals of) the RefBy(i; i

�

; 1)

object identi�ers of type t

i

�

� the data pages of the access relation partitionE

i

�

;i

�+1

X

that contain the RefBy(i; i

�

; 1)

object identi�ers of type t

i

�

5.7.2 Backward Query

The cost for a supported backward query can be calculated as follows:

Qsup

i;j

X
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X
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�
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�
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� 1; (pg
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� 1) �B
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�
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�

(34)

The cost for evaluating a supported backward query is derived analogously to a

forward query. The major distinction is, that now the reverse clustered access relation

is used.
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5.8 General Formula for Query Cost

Given the query costs for a supported query and for a non supported query the costs

for the di�erent cases can be calculated as follows:

Q

i;j

X

(kind; dec) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

Qsup

i;j

X

(kind; dec) i = 0 ^ j = n X = can

Qnas

i;j

(kind) i 6= 0 _ j 6= n X = can

Qsup

i;j

X

(kind; dec) X = full

Qsup

i;j

X

(kind; dec) i = 0 X = left

Qnas

i;j

(kind) i 6= 0 X = left

Qsup

i;j

X

(kind; dec) j = n X = right

Qnas

i;j

(kind) j 6= n X = right

(35)

Again, the parameters have the following meaning: kind 2 ffw; bwg, the parameter

X denotes the chosen extension, i.e., X 2 fcan; full ; left ; rightg. The parameter dec

denotes the (chosen) decomposition of the access relation, and 0 � i < j � n.
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5.9 Sample Results

5.9.1 Query Costs in Comparison

Figure 6 visualizes the cost of a backward query of the form Q

0;4

(bw) for the application-

speci�c parameters shown below:

application characteristics

n 4

number of objects c

0

c

1

c

2

c

3

c

4

100 500 1000 5000 10000

number of objects with d

0

d

1

d
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d

3

d

4

de�ned A

i+1

attribute 90 400 8000 2000 |

fan-out f

0

f

1

f

2

f

3

f

4

2 2 3 4 |

size of objects size

0

size

1

size

2

size

3

size

4

500 400 300 300 100

The access support relations were either decomposed into binary partitions (bi) or

non-decomposed (no dec). As expected, the query costs for non-decomposed access

relations is lower than for binary decomposed relations.

Figure 6: Query Costs for a Backward Query
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5.9.2 Query Costs Depending on Object Size

Figure 7 visualizes the cost of a backward query of the form Q

0;4

(bw) depending on the

size of the stored data, i.e., the parameter size

i

is varied for (0 � i � 4):

application characteristics

n 4

number of objects c

0

c

1

c

2

c

3

c

4

100 500 1000 5000 10000

number of objects with d

0

d

1

d
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d

3

d

4

de�ned A

i+1
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fan-out f
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f
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f
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f

3

f

4

2 2 3 4 |

size of objects size

0

size

1

size

2

size

3

size

4

100 � � � 800 100 � � � 800 100 � � � 800 100 � � � 800 100 � � � 800

The access support relations are decomposed into binary partitions. As can be seen

in Figure 7 the object size does not in
uence the query cost for supported queries (as

expected). Only the cost of non-supported queries grows proportional to the object size.

Note, that in Figure 7 the values for full, left, and right extensions overlap (marked with

�lled squares.

diagquvsb

Figure 7: Query Costs for a Backward Query Under Varying Object Size
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5.9.3 Which Queries are Supported?

As described before, not all queries are supported by certain extensions of the access

relation. Also, the decomposition of the access relations has a major e�ect on the cost

of a query. For demonstration, let us use the following application characteristics:

application characteristics

n 4

number of objects c

0

c

1

c

2

c

3

c

4
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4

10

4

10

4

10
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d

1

d

2

d
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4
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4
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4

10 � � � 10

4
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f

3

f

4

2 2 2 2 |

size of objects size
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size
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size
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size

3

size

4
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The plot in Figure 8 shows the query costs of a backward query of the form: Q

0;3

(bw).

We computed the results for two decompositions: (1) decomposition into binary parti-

tions and (2) non-decomposed representation. From our preceding discussions we know,

that only the left-complete and the full extension of the access support relation can

possibly be used to evaluate the query.

Figure 8: Query Costs for a Backward Query Q

0;3

(bw)

It turns out, that the evaluation utilizing the full/left-complete, non-decomposed

access support relations are costlier than the non-supported evaluation. The reason

being that the rather large access support relations have to be exhaustively searched

under no decomposition, i.e., all pages have to be inspected.

29



5.9.4 An Application Favoring Canonical/Left over Full/Right

The following parameters describe an application that favors canonical and left-complete

extensions over full and right-complete extensions of the access relation.

application characteristics

n 4

number of objects c

0

c

1

c

2

c

3

c

4

400000 400000 400000 400000 400000
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4
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3

size

4
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The query costs for varying fan-out values are plotted in Figure 9.

graph0

Figure 9: Cost of a backward Query Q

0;4

(bw)
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6 Maintenance of Predicate Extensions

For the di�erent extension and decomposition possibilities we now consider the dynamic

aspect of maintenance. Of course, updates in the object base have to be re
ected in the

access relation extensions. The problem of automatic maintenance of the access support

relations is addressed and the cost analyzed.

In order to simplify the subsequent discussion we consider only one special|yet

characteristic|type of update operation: inserting an object into a set-valued attribute.

This operation, denoted as ins

i

, could be phrased in our pseudo-SQL language as follows:

ins

i

:= insert o into o

i

:A

i

We assume that the object o

i

is of type t

i

.

Let us now analyze the e�ect of this insertion on the access support relations for

the path expression t

0

:A

1

: � � � :A

i

: � � � :A

n

. For simplicity, we assume that for 0 � k; i �

n,i 6= k either o

i

is not of type t

k

or A

k

6= A

i

. This simplifying condition prevents an

object insertion to a�ect di�erent positions in a single path expression. It follows that

o has to be of type t

i+1

.

The update costs consist of three parts:

1. the costs for updating the object o

i

2. searching the identi�ers for the paths (� � � ; id(o

i

); id(o); � � �) that have to be up-

dated, and

3. updating the access support relations.

The cost for updating o

i

:A

i

amounts to 3, i.e., one page access to retrieve the object

representation of o

i

and one page access to write the object o

i

back to secondary storage.

6.1 Searching for the New Paths

The update of the access support relations involves the following two auxiliary relations

I

l

:= f(NULL; : : : ; NULL; i

k

; : : : ; id(o

i

)) j k < i

and no object in t

k�1

references i

k

or k = 0g

I

r

:= f(id(o); : : : ; i

s

; NULL; : : : ; NULL) j s > i+ 1

and the A

s

attribute of i

s

is NULL or s = ng;

Let I

0

l

denote the relation de�ned analogously to I

l

except that k = 0, i.e., all paths

originate in t

0

. Analogously, I

n

r

is de�ned under the condition s = n, i.e., considering

only paths that lead to t

n

.

The next step consists of materializing the relations I

l

and I

r

, depending on the

selected extension of the access support relations. Here we only consider the costs

encountered if the search has to be performed in the object representation, i.e., if I

r

and

I

l

cannot be materialized from the access relations.
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If we have a full extension we do not need any search in the data since all necessary

information is contained in the access relations.

If we have a left-complete extension we have to search the paths from object o in

direction t

n

to materialize I

r

. But this is only necessary if o

i

is referenced by some object

in t

0

, and o

j

is not already contained in the access relation, i.e. not yet referenced by

some path originating in an object in t

0

. Otherwise, I

r

is either contained in the access

support relations or not needed.

The cost for searching in the case of a right-complete extension can be approximated

analogously. A search in the data to create I

l

is only needed if o was already present in

the access support relation and if o

i

is absent. Only under this condition one (or more)

new right-complete paths have to be added to the access relations.

In the case of a canonical extension we have to search for a complete path in both

directions. Since a forward search is cheaper than a backward search we start therewith

to set up I

n

r

. The forward search from o to t

n

has only to be performed if there does not

already exist a complete path through o. We start the backward search to materialize

I

0

l

only if we have found a connection from o to t

n

. The backward search itself is only

necessary if there does not already exist a complete path through o

i

. Thus the total

search costs for the di�erent extensions can be estimated by:

search

i

X

=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:
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i+1;n
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NoPath

(i+ 1) +Qsup

i;i+1
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+Qnas

0;i

(bw) � P

Ref

(i+ 1; n) � P

NoPath

(i) +Qsup

i;i+1

(fw; dec) for X = can

min(Qsup

i;i+1

(fw; dec); Qsup

i;i+1

(bw; dec)) for X = full

Qnas

i+1;n

(fw) � (1� P

RefBy

(0; i+ 1)) � P

RefBy

(0; i)

+min(Qsup

i;i+1

(fw; dec); Qsup

i;i+1

(bw; dec)) for X = left

(

P

i

l=0

op

l

) � (1� P

Ref

(i; n)) � P

Ref

(i+ 1; n)

+min(Qsup

i;i+1

(fw; dec); Qsup

i;i+1

(bw; dec)) for X = right

(36)

Here, P

NoPath

(l) denotes the probability that no complete path exists, that leads through

a particular object o

l

of type t

l

. This value is computed as:

P

NoPath

(l) = 1� P

Path

(l) (37)

P

Path

(l) = P

RefBy

(0; l) � P

Ref

(l; n) (38)

For X = left or X = right we have to perform two queries in order to �nd out whether

a search is necessary. Since both queries are within the same access relation we can use

the maximum as the total cost for answering both queries.

6.2 Updating the Access Support Relations

Next we have to consider the cost of updating the access support relation (partitions).

The general formula is given below:

aup

i

X

(dec) =

X

(i

�

;i

�+1

)2dec

�

1 + y(qfw

i

X
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�

; i

�+1

); pg

i

�

;i

�+1

X

� 1; (pg
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�
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�+1

X

� 1) �B

+

fan

)
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Figure 10: Di�erent Partitions of Access Relations w.r.t. ins
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+ y(qbw

i

X
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�

;i
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X

;#E
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�

;i
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X

) � 2

�

In this formula, the �rst summand constitutes the cost for accessing the non-leaf

pages of the forward clustered B

+

tree. The second summand accounts for the cost

of accessing and writing back the leaf pages|therefore, the factor 2. Altogether,

qfw

i

X

(i

�

; i

�+1

) clusters have to be updated, where a cluster is a collection of paths

with identical �rst object. The formulas for qfw

i

X

(i

�

; i

�+1

) are given below. In this cost

estimation we made two simplifying assumptions:

� a cluster �ts on one page

� page over
ows of leaf or non-leaf pages of the B

+

tree do not occur

The third and fourth summand are analogous for the backward clustered B

+

tree.

Here the number of clusters to be dealt with is denoted qbw

i

X

(i

�

; i

�+1

)

Let us now derive the formulas for estimating the number of clusters that have to be

updated within the partition (i

�

; i

�+1

) of the extension X with respect to the operation

ins

i

.

6.2.1 Number of Clusters under Canonical Extension

qfw

i

can

(i

�

; i

�+1

) =

(

Ref (i

�

; i; 1) � P

RefBy

(0; i

�

) � P

Ref

(i + 1; n) i

�

� i

RefBy(i+ 1; i

�

; 1) � P

RefBy

(0; i) � P

Ref

(i

�

; n) i < i

�

qbw

i

can

(i

�

; i

�+1

) =

(

Ref (i

�+1

; i; 1) � P

RefBy

(0; i

�+1

) � P

Ref

(i+ 1; n) i

�+1

� i

RefBy(i+ 1; i

�+1

; 1) � P

RefBy

(0; i) � P

Ref

(i

�+1

; n) i < i

�+1

Let us focus on the formula for qfw

i

can

(i

�

; i

�+1

). We consider two cases, depending

on where the partition (i

�

; i

�+1

) lies relative to i:

1. i

�

� i

These are the cases C

1

and C

3

in Figure 10. There are Ref (i

�

; i; 1) object in t

i

�

that are connected with o

i

. However, these clusters are only relevant if there exists
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a path from i+1 to n because otherwise no update of the canonical access relation

is needed. This probabilistic value is P

Ref

(i+1; n). Furthermore, for a given object

o

i

�

of type t

i

�

an update is only needed if this object lies on some path emanating

from t

0

|which is accounted for by the probability P

RefBy

(0; i

�

).

2. i < i

�

This corresponds to case C

2

in Figure 10. It is handled analogously to case (1),

except that now we have to consider the objects of type t

i

�

that lie on a path

emanating from the object o of type t

i+1

|there are RefBy(i+1; i

�

; 1) such objects.

However, these clusters are only relevant for update if o

i

is connected with t

0

and

if the particular object of type t

i

�

is connected with t

n

.

The formula qbw

i

X

(i

�

; i

�+1

) for the backward clustered B

+

tree is derived analo-

gously.

6.2.2 Number of Clusters under Full Extension

qfw

i

full

(i

�

; i

�+1

) =

(

Ref (i

�

; i; 1) +

P

i

l=i

�

+1

P

lb

(l � 1; l) � Ref (l; i; 1) i

�

� i < i

�+1

0 else

qbw

i

full

(i

�

; i

�+1

) =

8

>

<

>

:

RefBy(i+ 1; i

�+1

; 1)

+

P

i

�+1

�1

l=i+2

P

rb

(l; l + 1) � RefBy(i + 1; l; 1) i

�

� i < i

�+1

0 else

For full extensions we have to consider only the one partition that covers (i; i + 1).

This corresponds to case C

1

in Figure 10. All other partitions need not be updated

and, therefore, their number of clusters is set to 0. Consider the forward clustered case:

there are Ref (i

�

; i; 1) objects of type t

i

�

that have a path leading to o

i

. All of these

have to be updated. Furthermore, we have to insert information concerning objects that

have a path leading to o

i

but are not connected with any object in t

i

�

, like the object

represented by the small circle in Figure 10. The number of such objects is derived in

the sum

P

i

l=i

�

+1

P

lb

(l � 1; l) � Ref (l; i; 1).

The number of clusters for the backward clustered case is derived analogously.

6.2.3 Number of Clusters under Left-Complete Extension

For completeness we show the formulas for left- and right-complete extensions below.

Their derivation is similar to the above explained cases.

qfw

i

left

(i

�

; i

�+1

) =

8

>

<

>

:

0 i

�+1

� i

Ref (i

�

; i; 1) � P

RefBy

(0; i

�

) i

�

� i < i

�+1

P

lb

(0; i

�

) � RefBy(i + 1; i

�

; 1) � P

RefBy

(0; i) i < i

�
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6.3 Sample Results

6.3.1 Update Costs for Fixed Application Characteristics

We compare update costs for di�erent access relation extensions and decompositions on

the basis of the following application pro�le:
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The update costs for an update operation ins

3

are plotted in Figure 11. The access

relations are, alternatively, in binary decomposition or non-decomposed.

diagupd

Figure 11: Update Costs for a Fixed Application Pro�le

Since the update is at the right-hand side of the path expression, the left-complete

extension under binary decomposition is very much superior to the right-complete ex-

tension. For an update ins

0

the right-complete extension would be dratically better,

whereas the canonical extension is problematic under any update because a search in

the data is always necessary.
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6.3.2 Update Costs for Another Fixed Application Characteristics

Let us, for comparison, show a slightly di�erent application pro�le:

application characteristics
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The update costs for an update operation ins

3

are plotted in Figure 12.

diagupd

Figure 12: Update Costs for a Fixed Application Pro�le

Again, the update costs of the left-complete and full extension are almost compara-

ble.
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6.3.3 Update Costs under Varying Object Size

Consider the following application-speci�c parameters within which we will continuously

increase the sizes of objects of all types within the interval 100 : : : 800.

application characteristics
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The plot in Figure 13 visualizes the e�ect of varying object sizes on the update cost

of ins

1

. The access support relations are in binary decomposition.

diagupdvs

Figure 13: Update Costs for Varying Object Sizes

We see that the update costs for canonical and right-complete extension grow as the

object sizes increase. This is due to the high search overhead within the data (object

representation) that has to be performed. Remember, that in the case of canonical and

right-complete extension an exhaustive search may become necessary to establish the

paths that lead from t

0

to the object being updated. For the left-complete extension

only a forward search is needed which is only marginally a�ected by increasing object

sizes.
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6.4 Costs of Typical Operation Mix

6.4.1 Describing an Operation Mix

In our analytical cost model an operation mix M is described as a triple

M = (Q

mix

; U

mix

; P

up

)

Here, Q

mix

is a set of weighted queries of the form:

Q

mix

= f(w

1

; q

1

); : : : ; (w

p

; q

p

)g

where for (1 � i � p) the q

i

are queries and w

i

are weights, i.e., w

i

constitutes the prob-

ability that among the listed queries in Q

mix

q

i

is performed. It follows that

P

p

i=1

w

i

= 1

has to hold.

Analogously, the update mix U

mix

is described. Finally, the value P

up

determines

the update probability, i.e., the probability that a given database operation turns out

to be an update.

6.4.2 Update Mix under Binary Decomposition

The following application pro�le is used:
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The query mix Q

mix

consists of:

Q

mix

= f(1=2; Q

0;4

(bw)); (1=4; Q

0;3

(bw)); (1=4; Q

1;2

(fw))g

The update mix consists of:

U

mix

= f(1=2; ins

2

); (1=2; ins

3

)g

This mean that, when a query is performed, any one of the queries is chosen with equal

probability. The same holds for update operations.

Figure 14 shows the (normalized) costs for di�erent update probabilities P

up

ranging

between 0:1 : : : 0:9.

It can be seen that for an update probability less than 0:3 the left-complete extension

beats the full extension. The break even point between no support and full extension is

at an update probability of 0:998 (not shown in the diagram).
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Figure 14: Operation Mix for Binary Decomposition
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6.4.3 Non-Binary Decompositions of the Access Support Relations

The experiment was run again for the (0; 3; 4) decomposition of the access support

relations. The result is shown in Figure 15

Figure 15: Operation Mix for the Decomposition (0; 3; 4)

6.4.4 Comparison: Left-Complete vs Full Extension
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For this application characterization the normalized costs for a database operation

mix consisting of the following queries and updates was computed:

Q

mix

= f(1=3; Q

0;5

(bw)); (1=3; Q

0;4

(bw)); (1=3; Q

0;5

(fw))g

U

mix

= f(1=3; ins

3

); (1=3; ins

0

; (1=3; ins

4

)g

In Figure 16 the costs for the operation mix under left-complete and full extension of the

access relations are plotted for two di�erent decompositions: (1) binary decomposition

(0; 1; 2; 3; 4; 5) and (2) the decomposition (0; 3; 4; 5).

graph1

Figure 16: Operation Mix for Full and Left-Complete Access Relations

6.4.5 Comparison: Right-Complete vs Full Extension

The following application pro�le is being used:
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application characteristics
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For this application characterization the normalized costs for a database operation

mix consisting of the following queries and updates was computed:

Q

mix

= f(1=2; Q

0;5

(bw)); (1=4; Q

1;5

(bw)); (1=4; Q

2;5

(bw))g

U

mix

= f(1; ins

3

))g

Figure 17 visualizes the costs for the operation mix under the following decompositions

of the right-complete and full extension:

1. the binary decomposition (0; 1; 2; 3; 4; 5)

2. the decomposition (0; 3; 5)

It turns out that the latter decomposition is always superior. For update probabilities

less than 0:005 the right-complete extension is even better than the full extension under

this particular decomposition. This break-even point is shown in the upper plot of

Figure 17.

7 Conclusion and Future Work

In this work we have tackled a major problem in optimizing object-oriented DBMS: the

evaluation of path expressions. We have described the framework for a whole class of

optimization methods, which we call access support relation. The primary idea is to

materialize such path expressions and store them separate from the object (data) repre-

sentation. The access support relation concept subsumes and extends several previously

published proposals for access support in object-oriented database processing.

Access support relations provide the physical database designer with design choices

in two dimensions:

1. one can choose among four extensions of the access support relation (canonical,

full, left-, and right-complete extension)

2. for a �xed extension one can choose among all possible decompositions of an access

support relation
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graph3

Figure 17: Isolating Right-Complete and Full Extension
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It is not possible, to generally determine the best possible design choices: this is

highly application dependent. Therefore, it is essential that a complete analytical cost

model has been developed which takes as input the application-speci�c parameters, such

as number of objects, object size, fan-out, number of not-NULL attributes, etc. Based

on the application characteristics the analytical model can be used to compute for all

(feasible) design choices the expected cost (based on secondary page accesses) of pre-

determined database usage pro�les, i.e., envisaged operation mixes. From this, the best

suited access support relation extension and decomposition can be selected.

From our cost evaluations for a few (sometimes contrived) application pro�les it

follows that an object oriented database system that allows associative access should

provide the full range of options (extensions and decompositions). It is not generally

predictable for a whole application domain which extensions and decompositions will

be optimal|this decision is highly application and operation-mix dependent.

The cost model is fully implemented as a Lisp program. Presently, it is being used

to validate the access support relation concept. So far, we have used the cost model to

determine operation costs for some application characteristics that we deemed typical

as non-standard database applications. However, in a \real" database application one

should periodically verify that the once envisioned usage pro�le actually remains valid

under operation. Therefore, the cost model is intended to be integrated into our object-

oriented DBMS in order to verify a given physical database design, or even to automate

the task of physical database design. Thus, for a recorded database usage pattern the

system could (semi-) automatically adjust the physical database design.
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