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Abstract

There exists a current trend in database technology to make databases more extensible

and 
exible, or even to generate databases for speci�c customer needs. So far, schema

management and especially schema evolution have been excluded from this trend. In this

paper, we propose a new approach to schema management and topics centered around it,

like schema consistency and schema evolution. This approach allows easy tailoring of schema

management, high-level speci�cation of schema consistency and development of advanced

tools supporting the user during schema evolution.

We exemplify the approach by designing a simple schema manager. In order to demon-

strate the achieved 
exibility, this simple schema manager is then enhanced by complex

schema evolution concepts and versioning mechanisms. It turns out, that the resulting ne-

cessary modi�cations to be carried out on the previously designed simple schema manager

can be held at a minimum.
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1 Introduction

Object-oriented database systems are emerging as the next generation of database systems for

so called non-standard applications. Up to now, there has been little experience with these

systems in real applications. Nevertheless, it seems that di�erent applications pose di�erent

requirements on these systems. This may be one reason for a current trend emphasizing the


exibility, extensibility and easy customizability of database systems (e.g. Exodus [11, 6], Genesis

[3, 4], Postgres [23], Probe [9, 14], Starburst [13, 17]).

Although the requirements of the di�erent applications may also di�er for schema manage-

ment and especially schema evolution, 
exibility has been included so far only into the runtime

system of databases. Thus, the schema management and its schema evolution concept for object-

oriented database systems have been excluded from changes. That is, all approaches rely on a

�xed data model, assuming a �xed set of evolution operations, a �xed notion of schema con-

sistency, and a �xed set of inconsistency cures like masking or conversion. From the following

indications we infer that more 
exible schema management is needed:

Bocionek pointed out that there exists �ve di�erent semantics for a simple schema evolution

operation like type deletion [5]. Since the lack of experience with real applications, it seems

impossible to decide for the best semantics during system development. Thus, the customization

or even the de�nition of new schema evolution operations by the database user should be possible.

Skarra and Zdonik [22] introduce the schema evolution concept as applied in ENCORE. They

propose to use only pre and post exception handler to mask certain kinds of inconsistencies since

conversion is too expensive to be performed. Thinking of applications with large amounts of data

and no time for reorganization this is convincing. Nevertheless, for the O

2

system [12], Zicari

proposes to cure inconsistencies by immediate conversion [25]. Thus, it might be worthwhile to

have both cures built into the system, and provide the possibility to choose among these and

even more, to introduce new (not yet discovered) cures. The necessary changes to be performed

by the database developer should thereby be held at a minimum.

Banerjee, Kim, Kim, and Korth introduce the schema evolution concept of Orion [2]. Kim

and Chou enhance this concept with a schema versioning mechanism [16]. In our opinion, it

should be easy for the database developer to introduce the newly proposed mechanism. Further,

if for an application it is discovered that the proposed versioning mechanism is not the best one,

it should be easy to change and expand.

These �ndings convinced us that | at the moment and maybe also in the future | it might

be impossible to de�ne the schema manager with an associated schema evolution mechanism

that suits all applications best. Consequently, this paper proposes a new approach to schema

management in object bases. This approach will allow the design of schema managers which pro-

vide 
exibility and support for both, the database developer | to ease the implementation and

modi�cation of the schema manager | and the database user | to ease the schema managers

adaption to his/her speci�c needs.

There still exists another problem with schema evolution concepts as employed in current

object-oriented database systems: there exists no formal de�nition of the applied notion of

schema consistency. The lack of a formal model manifests itself in the observation that |

opposed to the relational model where the di�erent relations are independent from a typing

point of view | the components of an object-oriented schema are highly interdependent. This

need for a formal basis was also seen by other researchers like Abiteboul, Kanellakis, and Waller

who de�ned a minimal formal model which allows to reason about formal properties of schemas

and schema updates [1, 24]. Nevertheless, our intention in formalizing the notion of schema

consistency is somewhat di�erent. Since their notion of schema consistency based on a rewrite

approach is quite general, it allows to state undecidable notions of consistency. Although also

looking for some possibility to formally specify schema consistency, we had for pragmatic reasons

2



to prefer a formalism which only allows to state decidable notions of consistency.

In order to support the ease of modi�cations of schema consistency, another requirement is

posed upon the formal basis: it should allow the declarative de�nition of schema consistency.

Furthermore, if the user is able to de�ne new complex schema evolution operations, the formal

basis must enable the design of tools which automatically check schema consistency and | in

case of a detected inconsistency | analyze the situation and generate possible repairs whose

execution regains consistency. One proposal in this direction was given by Delcourt and Zicari

[10]. They also give a formal framework for treating structural consistency. A tool called ICC

is presented which allows the automatic detection of inconsistencies. In case of an inconsistency

the update is rejected and the user receives a noti�cation denoting the type of inconsistency

together with a location (e.g. class) where the inconsistency was detected. Since they rely on a

�xed set of possible update operations and a �xed notion of schema consistency this approach

is not applicable to our problem.

As turned out the logical framework for deductive databases ful�lled all our requirements:

it su�ces to de�ne schema consistency declaratively, there exist e�cient consistency checks, e.g.

[18, 20], and mechanisms to automatically generate repairs for detected inconsistencies have also

been designed and implemented [19].

The outline of the rest of the paper is as follows. Section 2 summarizes our goals concerning


exibility and support for database users and database developers. It then gives a high-level

overview of our approach including the proposed system architecture. In Section 3 the core of

our database programming language GOM [15] is modeled and the applied notion of consistency

is de�ned. The result is a simple schema manager for the core of GOM. Section 4 sounds out the


exibility and support induced by our approach. It hypothetically assumes an existing schema

manager (the one of section 3) and then exploits the impacts of adding inconsistency cures and

complex schema evolution operations. Section 5 concludes the paper. The appendix gives the

notion of schema as supplied by GOM.

2 The General Idea

2.1 The Goals

As already mentioned in the introduction, we want to design more 
exible schema managers.

Flexibility should be supported for both, the database user and the database developer. Especi-

ally the latter should be supported in his highly di�cult task to design and implement a schema

manager. Within this subsection, we brie
y summarize the goals we pursue with our approach.

User-De�ned Complex Schema Evolution Operations: Existing approaches to schema

evolution provide only a �xed set of evolution operations. Instead, the possibility should exist

to compose complex schema evolution operations from a set of primitive operations which allow

any schema modi�cation. If these operations are to be used only once, they should be designable

on-line in schema evolution sessions. If they are likely to be used more often, the possibility

should exist to de�ne schema evolution operations within some programming or macro language.

Note that there exists a severe problem. In general, it cannot be assured that neither the

necessary primitives nor the complex operations transform a consistent schema into another

consistent one. Even worse, allowing only schema evolution operations which guarantee in all

situations the consistency of the resulting modi�ed schema results in an unacceptable restriction

of possible schema evolution operations. Take the addition of an argument to an operation as

an example. This operation would be impossible since it only results in a consistent schema

if all calls of this operation are modi�ed at the time. Thus, only the execution of a whole set

of primitive evolution operations may result in a consistent schema. Even worse, the necessary
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modi�cations and their number are dependent on the current situation and, hence, no such

schema evolution operation (for adding an argument to an existing and used operation) which

preserves consistency in all cases can be de�ned. Consequently, decoupling schema evolution

operations from schema consistency is a necessity, and as such one of our main goals. One

consequence of this approach is that consistency checking is deferred until the end of a schema

evolution session or the execution of a schema evolution operator. Further, this decoupling

immediately leads us to our next goal.

Advanced User Support for Consistency Control: In order to control schema consistency

e�cient tools must exist which automatically check schema consistency after an evolution session.

Since schema consistency and schema evolution operations may become arbitrary complex, it is

unacceptable for the user if the tool would simply accept or reject the proposed modi�cations

in a stupid \yes/no" manner. Instead, the system must at least give a detailed description of

the inconsistencies. But even this is not enough support in case of very complex errors. Thus,

we aim at the best support we can think of. That is, the tool should be able to automatically

generate all (useful) repairs for a detected inconsistency.

Changing the De�nition of Consistency: This goal concerns both, the user and the de-

veloper. Both might wish to change the current de�nition of schema consistency. For example,

due to the conceptual mass multiple inheritance can lead to, some project leader might want

to restrain inheritance to single inheritance. This modi�cation should be possible and easy to

perform.

Another situation necessitating modi�cations of the system's notion of consistency occurs if

the system's capabilities are to be extended. Adding non-existent cures or changes to the data

model like allowing overloading are typical examples. These changes are best supported if there

exists a formalism in which schema consistency can be speci�ed declaratively. This declarative

statement of schema consistency should then automatically lead to a consistency checker and

its associated inconsistency repair mechanism. In case of extensions, changing the de�nition of

schema consistency often is not the only necessary adaption to be performed by the developer

but as we will see the other changes can also be held at a minimum (see section 4).

2.2 The Solution

A well-de�ned structure and modularization of the schema management with clear responsibi-

lities of the di�erent modules does not only support the developer in implementing the system,

rather it is a necessary prerequisite to reach the overall goal of 
exibility. More speci�cally, for

a given system adoption, all involved modules of the implementation must be easy and und-

oubtedly localizable, and the necessary changes to each module must be limited and clearly

distinguishable. Thus, we start with the proposal of a generic architecture of an object-oriented

database system. Since the realization of object management and access is not our main topic,

we do not discuss in detail aspects of the runtime system. Being only interested in its relation to

schema management and its dependencies with consistency, we will go into more detail only for

those parts of the runtime system that have an impact on the de�nition of schema consistency.

Figure 2.2 gives an overview of the proposed architecture. The modules Analyzer and

Runtime System as well as the Database Model are centered around the Consistency Control .

The Object Base contains the actual physical representation of all instantiated objects. This

physical representation has to be modeled since there might exist inconsistencies between the

physical representation of an object of some type and certain attributes associated with it. The

model of the Object Base then consists of a set of assertions the runtime system ensures on the

physical representation of the objects. It is contained in the Object Base Model that is part of
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Figure 1: The Generic System Architecture

the Database Model . The other half of the Database Model is the Schema Base that contains

the current schema de�nitions, i.e., abstract representations of the sources. In case the code of

the operations is compiled, there exists a consistency problem between the original source code

and the compiled code. Since we will not be concerned with these issues within the current

paper, we assume that the source code is interpreted by the runtime system. (Note, that this is

not an inherent restriction of our approach).

The Analyzer constitutes the front end to perform the user initiated schema updates: the

interface of this module is identical to the update operations visible to the user, e.g., a regular

introduction of a new type or the addition of a new attribute to some type

1

. Each call of an

update operation will be mapped to corresponding modi�cations of the schema base located

in the Database Model . These modi�cations have to take place via the Consistency Control .

Thus, we assume that the Analyzer can change the Schema Base only via calling the modify

operation of the Consistency Control . Possible instantiations for the Analyzer are interactive

schema editors or compiler front ends that parse the textual update speci�cation. The latter

should for 
exibility reasons be implemented using standard compiler generator tools like Lex

and Yacc.

The Runtime System can be thought of as any runtime system of an object-oriented database

system. Its main task is object management and its main responsibility is the physical object

representation. Thus, it is also responsible for performing cures like conversion. As already

mentioned above, we assume that the Runtime System interprets the schema, especially the

method's source code. Further, the Runtime System has to correctly report changes in the

object's representation via the modify operation.

The Consistency Control component is responsible for executing the reported modi�cations

received from the Analyzer and the Runtime System. All changes have to be enclosed between

a BES (begin of evolution session) and an EES (end of evolution session). At EES time

the Consistency Control starts checking consistency. Here, we can identify two parts of the

consistency de�nition:

1. schema consistency, and

1

Of course, the user interface will o�er operations to retrieve the current state of the schema, too.
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2. schema/object consistency

The former captures the conditions necessary for a schema to be consistent. It thus deals with

requirements such as the domain of all attributes must be de�ned and all invoked operations

must be present. The latter deals with those conditions that specify the consistency between

the schema and the object base. A typical condition here is that for each attribute in a type

de�nition, there must exist a physical representation of it for every object being an instance of

this type. The precise de�nition of both parts of consistency can be found in the next section.

If an inconsistency in any of these parts has been detected, the user is informed. On request,

the Consistency Control generates possible repairs for the inconsistency. The user may then

decide for one possible repair to be executed or to rollback the evolution session. The exact

protocol and an example for the generation of repairs are given at the end of next section.

It is important to note that factoring out the notion of consistency, and the above separation

of consistency into two disjoint parts results in a major reduction of the schema manager's

complexity.

To abstractly assess this architecture with respect to 
exibility we want to identify those parts

of the architecture that are involved in speci�c changes. Instead of giving a complete taxonomy

of possible (and mostly trivial) changes, we concentrate on the most interesting changes:

� de�ning new evolution operators: In this case, only the analyzer has to be expanded using

the interface of the Database Model . The already existing parts of the analyzer do not

have to be modi�ed. In case the Analyzer has been build using some standard compiler

generator tools this is routine.

� expanding the data model: If the underlying data model is expanded or changed, all com-

ponents have to be expanded or changed, resp. Again, for the analyzer this is routine.

The necessary changes to the runtime system are directly dependent on the extensions or

changes to the data model. Nevertheless, it is most likely that in case of an extension

the existing part of the runtime system does not have to be touched. Additionally, the

consistency de�nition has to be changed, too.

� changes in consistency de�nition: This seems to be the most problematic case. We �rst

note, that there is no need to change any module interface since the Consistency Control

hides the consistency de�nition behind its interface. Nevertheless, up to now, it might be

that the Consistency Control itself has to be reimplemented due to the high degree of in-

terdependencies present among the components of a schema for object-oriented databases.

As can be seen from the above the most di�cult task is to adopt changes in the consistency

de�nition. If asked to specify schema consistency procedurally, most users are likely bound to

fail. Even for the database developer, designing and implementing the Consistency Control is

likely to be the most di�cult part realizing the schema manager.

The remedy to make changes in the implementation of Consistency Control feasible is to

specify schema consistency (and thus the implementation of the Consistency Control) in a

declarative way|as a set of constraints. Each constraint de�nition exactly corresponds to a

speci�c consistency assumption within the database model. More speci�cally, we use a deductive

database for the Consistency Control . Besides constraint de�nitions (CDB) it contains rules

(IDB) to de�ne auxiliary intentional predicates. We applied [20] for e�cient consistency checking

and [19] for the automatic generation of repairs. The interface to the Database Model then

consists of the operations | add (+) and delete (-) | for modifying the extensions of the base

predicates.
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3 A Simple Schema Manager for the Core of GOM

The last section motivated the use of a deductive database as the underlying component of the

schema manager. Before a deductive database can be used, its (meta) schema has to be speci�ed

by modeling the schema information of the underlying object model. Since a deductive database

consists of facts giving the extensions for base predicates, rules de�ning derived predicates and

constraints restricting the number of \legal" extensions, these three components have to be

speci�ed.

Obviously, the speci�cation of all these components depends on the chosen object model. As

an example object model we have chosen GOM ([15]) which will shortly be introduced by means

of an example. In order to keep the schema model short and simple, several restrictions have

been applied. Especially, some fancy features available in GOM

2

are not treated. Nevertheless

both, structural and behavioral, aspects (in the sense of [25]) as well as multiple inheritance will

be modeled. Hence, the core of (almost) every object-oriented data model is captured.

We will then use this example to extract the necessary entities and relationships which will

be modeled by base predicates whose extensions will be contained in the Schema Base. A simple

and quite restricted notion of schema consistency will then be de�ned via a set of constraints.

Last, this section models the Object Base and gives the de�nition of schema/object consistency.

3.1 Example

The running example is based on the leaded/unleaded cars-example of [22]. It consists of a

schema called CarSchema containing the de�nitions for the tuple-structured types Person, Lo-

cation, City , and Car . Each type de�nition consists of a body specifying the attributes of the

type. Available operations model the behavior. Operations are speci�ed in two parts: declara-

tion and implementation. The former contains the signature of the operation while the latter

gives a piece of code for the operation. The (almost) complete type de�nitions in GOM are:

schema CarSchema is

type Person is

[ name : string;

age : int;]

end type Person;

type Location is

[ longi : 
oat;

lati : 
oat;]

operations

distance : jj Location ��
!


oat;

implementation

� � � !! uses longi and lati.

end type Location;

type City supertype Location is

[ name : string;

noOfInhabitants : int;]

re�ne

distance : jj Location ��
!


oat;

2

like overloading, parametric polymorphism, generic types, virtual types, subschemas, value receiving operati-

ons, and information hiding through the public clause
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implementation

� � � !! uses longi and lati as well as city name.

end type City;

type Car is

[ owner: Person;

maxspeed:
oat;

milage: 
oat;

location: City; ]

operations

changeLocation : jj Person, City ��
!


oat;

implementation

changeLocation(driver,newLocation) is

begin

if (self.owner == driver)

begin

self.milage := self.milage + self.location.distance(newLocation);

self.location := newLocation;

return self.milage;

end

else return -1.0;

end changeLocation;

end type Car;

end CarSchema;

3.2 Base Predicates

Taking a look at the example the needed entity-types are easily recognized: schema, type,

attribute, operator declaration, argument declarations and operator implementation. These can

directly be modeled by the following base predicates

1. Schema(SchemaId, UserName)

2. Type(TypeId, TypeName, SchemaId)

3. Attr(TypeId, AttrName, TypeId)

4. Decl(DeclId, TypeId, OpName, TypeId)

5. ArgDecl(DeclId, ArgNo, TypeId)

6. Code(CodeId,Code,DeclId)

where keys are underlined. The base predicates have the following attributes. Schemas and

types have two attributes, an identi�er and the user given name. To express the n:1 relationship

occurs between types and schemas, Type has a third attribute containing schema identi�ers. For

attributes, we do not specify an identi�er since they are uniquely determined by the �rst two

attributes of the base predicate Attr containing the type in which they occur and their name.

Further, by that, the n:1 relationship occurs between attributes and types is covered already.

The third attribute of Attr contains the attributes' domain type. Operation declarations have

again an identi�er, the receiver type, the user given operation name, and its result type. Since

the receiver type is identical with the type in which the declaration occurred, this relationship

8



has been covered already. The argument declarations for an operator declaration are modeled by

a separate base predicate ArgDecl with the declarations identi�er, the number of the argument

(numbering from left to right), and the declared argument type. A piece of code is modeled

by an identi�er, the actual text fragment and the declaration it implements. By the latter, we

cover the 1:1 relationship implements.

3

Possible extensions of the base predicates have to be derived from a given schema de�nition

by the Analyzer component. For the example, the Analyzer would derive the extensions shown

in Figure 2 where the existence of types for the built-in sorts | like integer, 
oat, string and so

on | is implicitly assumed.

Schema sid

1

CarSchema

Type tid

1

Person sid

1

tid

2

Location sid

1

tid

3

City sid

1

tid

4

Car sid

1

Attr tid

1

name tid

string

tid

1

age tid

int

tid

2

longi tid

float

tid

2

lati tid

float

tid

3

name tid

string

tid

3

noOfInhabitants tid

int

tid

4

owner tid

1

tid

4

maxspeed tid

float

tid

4

milage tid

float

tid

4

location tid

3

Decl did

1

distance tid

2

tid

float

did

2

distance tid

3

tid

float

did

3

changeLocation tid

4

tid

float

ArgDecl did

1

1 tid

2

did

2

1 tid

2

did

3

1 tid

1

did

3

2 tid

3

Code cid

1

� � � did

1

cid

2

� � � did

2

cid

3

� � � did

3

Figure 2: Extensions for the Example

Having modeled all entities and some 1:n relationships there still exist other relationships

not yet covered. These fall into two groups. The �rst group covers the subtype and re�nement

relationship:

SubTypRel(TypeId, TypeId)

DeclRe�nement(DeclId,DeclId)

SubTypRel(X,Y) states that X is a subtype of Y and DeclRe�nement(X,Y) states that X is a

re�nement of Y .

3

Of course, one has to model the parameters of the code. Since this can be done in a fashion similar to

modeling the arguments in the operator declarations, we will skip this straightforward part of the model.
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While the Consistency Control should not inspect the code implementing operations,

4

it

needs some information about the code: the operations called and the attributes accessed by it.

These relationships are covered by the second group of base predicates:

CodeReqDecl(CodeId, DeclId)

CodeReqAttr(CodeId, TypeId, AttrName)

Again, the extensions of the relations must be derived by an Analyzer . For the example, we

have the following extensions:

SubTypRel tid

3

tid

2

DeclRe�nement did

2

did

1

CodeReqDecl cid

2

did

1

CodeReqAttr cid

1

tid

2

longi

cid

1

tid

2

lati

cid

2

tid

2

longi

cid

2

tid

2

lati

cid

2

tid

3

name

cid

3

tid

4

owner

cid

3

tid

4

milage

cid

3

tid

4

location

3.3 Schema Consistency

Of course, not all extensions of the above predicates are valid for a given data model. Several

constraints have to be introduced in order to restrict the instances to the legal ones. Di�erent

classes of constraints are distinguished. Uniqueness constraints require that something must be

unique, e.g., an attribute name within a given type. Keys also belong to this category. Existence

constraints require that something must exist, e.g., for an operator declaration there must exist

some code. Referential integrity constraints are a subset of the existence constraints. Beside

these easy to state constraints there existmultiple inheritance constraints and typing constraints .

Keys and other Uniqueness Constraints Beside key constraints which we do not state

explicitly due to their simplicity, there exists only one further uniqueness constraint for our

schema model stating that every type name can be used at most once within one schema:

5

8 X

1

, X

2

, Y

1

, Y

2

, Z

Type(X

1

,Y

1

,Z) ^ Type(X

2

,Y

2

,Z) =) (Y

1

=Y

2

=) X

1

=X

2

)

Referential integrity and other existence constraints There exists a whole bunch of

typical referential integrity constraints like any schema identi�er in the Type extension must

occur in the Schema extension etc. We do not give the formulas for these simple constraints

which always have the same pattern and can easily be stated. For our simple example schema

model there exists only one constraint not following this pattern. It requires that for any

declaration a piece of code implementing it has to be present:

8 D, T

c

, O, T

t

9 C

1

, C

2

Decl(D,T

c

,O,T

t

) =) Code(C

1

,C

2

,D)

4

We only have to model those parts of the data model that contain dependencies to other modeled entities.

5

We use ordinary FOL syntax for expressing constraints. Variables start with a capital letter. Constraints

have to be closed range-restricted formulas.
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Simple Constraints for SubTypRel and DeclRe�nement Before stating the constraints

for SubTypRel, we need its transitive closure which is easily de�ned by the following two rules

which follow \Prolog syntax":

SubTypRel

t

(X,Y) :- SubTypRel(X,Y).

SubTypRel

t

(X,Z) :- SubTypRel(X,Y), SubTypRel

t

(Y,Z).

The subtype relationship has to be acyclic. Additionally, in GOM, there must exist a unique

root called ANY. This is expressed by the following two constraints, resp.:

8 X, Y, Z : SubTypRel

t

(X,X)

8 X, Y, Z Type(X,Y,Z) =) (X = ANY _ SubTypRel

t

(X,ANY))

The transitive closure of the re�nement relationship is also needed. We de�ne:

DeclRe�nement

t

(X,Y) :- DeclRe�nement(X,Y).

DeclRe�nement

t

(X,Z) :- DeclRe�nement(X,Y), DeclRe�nement

t

(Y,Z).

We require the re�nement relationship to be acyclic:

8 X :DeclRe�nement

t

(X,X)

Multiple Inheritance Constraints For our simple schema manager where we do not model

any resolution strategies for con
icts arising from multiple inheritance, we require any two

inherited attributes with the same name to have the same codomain. For any two inherited

operations we require that there exists a re�nement, if they have the same name and di�erent

origins. Thus, the following constraints are needed:

8 T, A, D

1

, D

2

Attr

i

(T,A,D

1

) ^ Attr

i

(T,A,D

2

) =) D

1

= D

2

8 T, T

1

, T

2

, O, T

t1

, T

t2

, D

1

, D

2

9 D

SubTypRel(T,T

1

) ^ SubTypRel(T,T

2

) ^

Decl

i

(D

1

,T

1

,O,T

t1

) ^ Decl

i

(D

2

,T

2

,O,T

t2

)

=)

DeclRe�nement(D,D

1

) ^ DeclRe�nement(D,D

2

)

where the intentional predicate Attr

i

de�ned by

Attr

i

(T,A,D) :- Attr(T,A,D).

Attr

i

(T

1

,A,D) :- SubTypRel

t

(T

1

,T

2

), Attr(T

2

,A,D).

and Decl

i

is similar but we have to respect that some of the supertypes' operations have been

re�ned already:

Decl

i

(X, Y

1;1

, Z, Y

1;2

) :- Decl(X, Y

1;1

, Z, Y

1;2

).

Decl

i

(X, Y

1;1

, Z, Y

1;2

) :- SubTypRel

t

(Y

1;1

, Y

2;1

), Decl(X, Y

2;1

, Z, Y

1;2

),

: Re�ned(X, Y

1;1

).

where Re�ned(X, Y) is another intentional predicate which holds, if there is a re�nement of

declaration X associated to type Y or one of its supertypes:

Re�ned(X

1

, Y

2;1

) :- Decl(X

1

, Y

1;1

, Z

1

, Y

1;2

), DeclRe�nement

t

(X

2

, X

1

),

Decl(X

2

, Y

2;1

, Z

2

, Y

2;2

).

Re�ned(X

1

, Y) :- Decl(X

1

, Y

1;1

, Z

1

, Y

1;2

), DeclRe�nement

t

(X

2

, X

1

),

Decl(X

2

, Y

2;1

, Z

2

, Y

2;2

), SubTypRel

t

(Y, Y

2;1

).
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Re�nement Constraints In GOM we adhere to contravariance to ensure strong typing (see

[15] for more details). Contravariance states that for any two declarations D

1

and D

2

where D

2

is a re�nement of D

1

that

1. for each parameter of D

2

, its type must be a supertype of (or the same as) the type of the

corresponding parameter of D

1

, and

2. the result type of D

2

must be a subtype of (or the same as) the result type of D

1

.

Further, the names must be the same, the type in which D

2

occurs must be a subtype of the

type where D

1

occurs, and the number of arguments speci�ed for D

1

must be the same as for

D

2

. Thus we specify:

8 D

1

; D

2

; T

c

1

; T

c

2

; O

1

; O

2

; T

t

1

; T

t

2

DeclRe�nement(D

2

; D

1

) ^ Decl(D

1

; T

c

1

; O

1

; T

t

1

) ^ Decl(D

2

; T

c

2

; O

2

; T

t

2

)

=) (O

1

= O

2

^ (T

t

1

= T

t

2

_ SubTypRel

t

(T

t

2

; T

t

1

))

^ (8 N; TA

1

; TA

2

ArgDecl(D

1

; N; TA

1

) ^ ArgDecl(D

2

; N; TA

2

)

=)

(TA

1

= TA

2

_ SubTypRel

t

(TA

1

; TA

2

)))

^ (8 N; TA

1

9TA

2

ArgDecl(D

1

; N; TA

1

) =) ArgDecl(D

2

; N; TA

2

))

^ (8 N; TA

2

9TA

1

ArgDecl(D

2

; N; TA

2

) =) ArgDecl(D

1

; N; TA

1

)))

3.4 Schema/Object Consistency

So far, we have only been concerned with schema consistency. In this subsection, we will touch

the topic of schema/object consistency. Assume that for each type there exists exactly one

physical representation for all objects of this type, the following base predicate is introduced to

model physical representations:

PhRep(PhRepId,TypeId)

with PhRepId being the key and TypeId denoting the identi�er of the unique type whose objects

have this representation. We require that a fact is present in the extension of PhRepId if and

only if there exists at least one object of the type equal to the second argument of this fact.

We assume the implicit existence of physical representations of built-in sorts like integer, 
oat,

string and so on.

In order not to confuse the logical and the physical level, we introduce the notion of slots

for attributes at the physical level: a slot is meant to be a piece of memory where the value of

a logical attribute as de�ned in the type de�nition is stored. The physical representation of an

object then corresponds to a number of slots. Slots are modeled by a base predicate named Slot:

Slot(PhRepId,AttrName,PhRepId)

A slot can be identi�ed uniquely giving PhRepId and AttrName. The third argument PhRepId

denotes the physical representation of the value of the slot.

Opposed to the other base predicates, it is the Runtime System's responsibility to keep the

data for the PhRep and Slot up to date. Beside key and referential integrity constraints, three

other constraints are needed in order to guarantee the consistency between the physical and

the logical part. The �rst two constraints are uniqueness constraints whereas the third is an

existential constraint. We require that there exists only one physical representation for each

type:
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8 C

1

, T, C

2

PhRep(C

1

,T) ^ PhRep(C

2

,T) =) C

1

= C

2

The second uniqueness constraint states that the slots for each attribute for a given type must

be unique:

8 C

1;1

, A, C

1;2

C

2;1

, C

2;2

Slot(C

1;1

, A, C

1;2

) ^ Slot(C

2;1

, A, C

2;2

)

=) C

1;1

= C

2;1

^ C

1;2

= C

2;2

The last constraint (subsequently referred to as (*)) states that for every type there must exist

a corresponding slot for every associated attribute including the inherited ones:

8 T, A, T

A

, C 9 C

A

Attr

i

(T,A,T

A

) ^ PhRep(C,T)

=) Slot(C,A,C

A

) ^ PhRep(C

A

,T

A

)

We continue our example and give consistent extensions (not containing the de�nitions for

base types) of the newly de�ned base predicates:

PhRep clid

1

tid

1

clid

2

tid

2

clid

3

tid

3

clid

4

tid

4

Slot clid

1

name clid

string

clid

1

age clid

int

clid

2

longi clid

float

clid

2

lati clid

float

clid

3

name clid

string

clid

3

noOfInhabitants clid

int

clid

4

owner clid

1

clid

4

maxspeed clid

float

clid

4

milage clid

float

clid

4

location clid

3

3.5 Incorporating conversion

If the last constraint is violated by some schema modi�cations there exist two brute force me-

thods for repairing the constraint. The �rst is to provide more schema modi�cations, which

results in deleting attributes for which there exists no appropriate slot. The second is to delete

all instances. Both of these two methods are not very satisfactory. Thus, object conversion and

masking have been introduced (see e.g. [22, 25]) as more subtle methods to regain the consist-

ency between the schema and the object base. Since the incorporation of masking into a given

schema management is used as an example to demonstrate the 
exibility of our approach, and

as such is deferred to the next section, we will indicate solely how conversion is incorporated

into our simple schema manager.

The implementation of the conversion routines must be present in the Runtime System.

These conversion routines must be able to, e.g., add or delete slots. Since these changes can be

re
ected already in our model, the only remaining problem is to detect the need of executing

them. This can be either left to the user or supported by the system. The latter approach

relies on the repair mechanism of the Consistency Control . Let us illustrate this approach

with our example. Since now, all cars drove on leaded fuel. This changes and the �rst cars

using unleaded fuel appear. In order to capture this change the attribute fuelType of type

string (with occurring values \leaded" and \unleaded") could be added to the type Car by

+Attr(tid

4

,fuelType,tid

string

). Clearly, constraint (*) is violated since
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Attr

i

(tid

4

,fuelType,tid

string

) ^ PhRep(clid

4

,tid

4

) =) Slot(clid

4

,fuelType,clid

string

)

does not hold. This implication can be made true by either invalidating the premise or by

validating the conclusion. Thus, the resulting repairs are:

1. -Attr

i

(tid

4

,fuelType,tid

string

),

2. -PhRep(clid

4

,tid

4

), and

3. +Slot(clid

4

,fuelType,clid

string

).

The �rst possibility is to undo just the proposed change to the schema. Since the tuple

PhRep(clid

4

,tid

4

) is present in the Object Base Model if and only if there exist instances of

Car , its deletion results in deleting all cars. Now comes the crucial point for conversion: the

third change can be achieved by executing the conversion routines, or | the other way round |

with the repair we have detected the possibility to remedy the inconsistency by the execution of

the conversion routine which adds a slot to every object of a type. The conversion routine itself

must be supplied with information on the values to write into the new slots. This can be done

by providing a default value, by asking the user for every instance, or by providing an operation

that|called on the old instances|provides a value for the new slot. In our example, the last

possibility would be chosen: an operation is provided that selects the fuel types depending on

the car model and its production date.

There still exists a minor problem concerning the readability of repairs. If presented to the

user as changes to the extensions of the base predicates the repairs might not necessarily be

easy to interpret by the user. This can be remedied, too. Since the Consistency Control is

not aware of the actual changes in the Object Base necessary to derive the proposed changes in

the Database Model , we assume that for each change to a base predicates' extension either the

Analyzer or the Runtime System can explain the changes to be performed. These explanations

can be ordered by the Consistency Control to add more information to the generated repairs.

All together, we are now prepared to state the general protocol of a schema evolution session

for our schema manager:

1. The user starts a schema evolution session.

2. Then, the user proposes (a) change(s) to the schema and suggests to end the session.

3. The Analyzer extracts the necessary changes to the extensions of the base predicates.

4. The Consistency Control performs a consistency check.

5. If no consistency violation was detected, the schema evolution session can end successfully.

6. If an inconsistency was detected, the Consistency Control derives | upon user request |

repairs for the detected inconsistency. These repairs are stated in the form of changes to

the base predicate extensions.

7. In order to make the user aware of the consequences of these changes, the Consistency

Control asks the Analyzer and the Runtime System for the necessary actions which have

to performed in order to gain the necessary changes for the base predicate extensions.

8. The Consistency Control then prepares this information, presents it to the user, and asks

him/her to make a choice | undoing the evolution session is always among the repairs.

9. The Consistency Control initiates the execution of the chosen repair by the Analyzer

and/or Runtime System and ends the schema evolution session successfully.

The repairs are computed by building a derivation tree for each consistency violation and sub-

sequent combination of its leaves into a repair ([19]).
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4 Sounding out Flexibility

As the abstract assessment of the 
exibility of our approach has already been presented in

section 2, the topic of this section is to sound out the 
exibility by means of concrete examples.

Since our goal is to provide 
exibility to both, developers and users of a database system, there

exist two corresponding subsections.

4.1 Developer's Flexibility

Assume that the above very simple and restricted schema model has been developed by some

company. They released this system as a prototype version GOM-V0.1 to some selected com-

panies. Of course, this prototype cannot at all satisfy the customers' needs. One de�ciency is

the limited facility to repair schema-object consistency by conversion of all instances. This is

too rigid for practical use, additional adoption mechanisms|like masking of objects|should be

available. Another shortcoming was the lack of schema versioning. Despite the fact that the de-

velopment team expected an enormous expense needed to improve their prototype, they dared

to tackle implementing both versioning of schemas and masking of objects. In the following

section, we want to accompany their design of the intended release GOM-V1.0 and subsequently

summarize the actual implementational e�orts to be undertaken.

Design In [7, 8] a schema versioningmechanism has been proposed which we like to incorporate

into our schema manager. Therefore, we simply have to extend our schema model by two new

base predicates capturing the evolution of schemas and types:

1. evolves to S(SchemaId, SchemaId)

2. evolves to T(TypeId, TypeId)

We skip the constraints needed to express the referential integrity of types and schemas occur-

ring in the extensions, since they are in the same fashion as the integrity constraints of section 3.

Beside this, we want to constrain the version graph, spanned by evolves to S, respectively evol-

ves to T :

1. The version graph of types and schemas must be acyclic (forming a DAG).

2. We require some kind of digestibility of evolution of types and schemas: Types may evolve

from each other only if the corresponding schemas do also evolve from each other.

To formalize this, we need the de�nition of the transitive closures evolves to S

t

and evolves to T

t

of the schema and the type evolution relation, which can be de�ned analogously to the de�nition

of SubTypRel

t

(see section 3). Now, the constraints to capture the DAG restriction are

8 X : evolves to S

t

(X,X) and

8 X : evolves to T

t

(X,X)

The second requirement can also easily be stated:

8 X

1

, X

2

, Y

1

, Y

2

, Z

1

, Z

2

Type(X

1

,Y

1

,Z

1

) ^ Type(X

2

,Y

2

,Z

2

) ^ evolves to T

t

(X

1

,X

2

) =)

evolves to S

t

(Z

1

,Z

2

)

Since the old schema version is available still, we cannot get into schema-object inconsistencies

as long as we do not change the old schema, but simply add new schema versions. Schema

evolution problems didn't go up in smoke, of course. They just appear in another light:
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Still, we have to care for the objects. If there exists no possibility to access objects which are

instantiated in another schema version, we have to start from scratch each time we have added a

new schema version. Thus, we have to extend visibility of objects to other schema versions. This

can easily be done, if the corresponding type has not been changed. Problems arise, if the new

type version is incompatible to the old one. Such a compatibility check cannot be performed

automatically since it requires to reason about the semantics of the operations associated to

this type. There also exists a test which could be done automatically|testing the re�nement

condition|but this condition captures only a syntactical prerequisite for compatibility.

Instead, we want the schema designer to manifest explicitly the semantic compatibility of

types: he/she has to de�ne explicitly which objects instantiated of another type version shall

be substitutable for objects instantiated from the current

6

type (and schema) version. In other

words, the schema designer explicitly has to extend the substitutability of types. Obviously, the

re�nement condition has to be satis�ed. Since it is too restrictive to allow access to objects of

types which ful�ll the re�nement condition with the corresponding type, we introduce masking.

For this, a syntactical means is the fashion construct [21] which perfectly �ts the purposes of

schema evolution.

With fashion one can imitate the behavior of a given type in terms of the signature of

another type allowing the instances of the second type to be substitutable for instances of

the �rst type. This is exactly what we need to bridge the gap between two versions of the

same type. Take an evolution of type Person from the CarSchema introduced in section 3 as an

example: We want to replace the age-attribute of Person@CarSchema

7

by an attribute birthday:

date within the new version Person@NewCarSchema of this type. The resulting de�nition of

Person@NewCarSchema will be as follows:

type Person is

[ name : string;

birthday : date;]

end type Person;

If we want the instances of Person@CarSchema to be substitutable for instances ofPerson@NewCarSchema,

the following fashion-declaration will be appropriate:

fashion Person@CarSchema as Person@NewCarSchema

where

birthday : ! date is /* derive birthday from age */

birthday :  date is /* derive age from birthday */

name : string is self.name;

end fashion;

By means of this declaration, the Runtime System is told that each time a Person@CarSchema

appears within an attribute or a variable of type Person@NewCarSchema, read and write ac-

cesses to the (not existing) birthday attribute

8

are redirected to the speci�ed code to derive the

birthday from age (and vice versa). Similar to this, accesses to name will be \redirected" to the

corresponding name attribute of Person@CarSchema.

6

i.e. the corresponding type version of the schema version which is used by an application

7

We use the at -notation "`<TypeName>@<UsersSchemaName>" as a syntactical means to identify the type

version. This is possible due to the uniqueness of <TypeName> within a given schema and due to the uniqueness

of <UsersSchemaName> as stated in section 3.

8

the signature of the read-access is birthday : ! date,

the signature of the write-access is birthday :  date
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Modeling fashion is similar to modeling subtyping and re�nement which we already did in

section 3. Analogous to SubTypRel , we have one base predicate FashionType which materializes

how substitutability will be a�ected:

FashionType(TypeId, TypeId)

FashionType(X, Y) states that instances of type X shall be substitutable for the instances of

type Y , i.e., wherever an object of type Y is expected, an object of type X su�ces. Opposed to

[21], we want to restrict the use of fashion for our schema manager solely to schema evolution

purposes. This can easily be expressed by the following constraint:

8 X, Y FashionType(X, Y) =) evolves to T(X, Y) _ evolves to T(Y, X)

But this is not the only condition related to fashion which has to be asserted by Consistency

Control . As mentioned above, the relation of two types connected via FashionType is similar

to the relation of two types connected via SubTypRel . But there are two di�erences between

fashion and subtyping. First, there is no inheritance between Y and X . Thus, every operation

available for Y has to be (re-)de�ned in X . Since we do not want to redeclare

9

these operations,

no distinction between declaration and de�nition is needed. The second di�erence is a direct

consequence of the �rst one: even the attributes of Y have to be (re-)de�ned in X . We do not

want to insist in the existence of a corresponding attribute, instead of this, the implementation

of a pair of read and write operations is accepted. All together, two additional base predicates

are needed to model the fashion construct:

1. FashionDecl(DeclId, TypeId, Code)

2. FashionAttr(TypeId, AttrName, TypeId, Code, Code )

FashionDecl(X, Y, Z) re
ects that operation X will be imitated within type Y by means of

code Z. The same does FashionAttr(X

1

, Y, X

2

, Z

1

, Z

2

) for attributes: The pair X

1

, Y iden-

ti�es the attribute whose behavior will be made available for instances of X

2

by providing the

implementations of the read-operation Z

1

and the write-operation Z

2

.

Again, the key constraints and referential integrity constraints are obvious. Additionally, it

must be guaranteed that for FashionType(X, Y), the complete behavior of Y will be provided

by means of FashionDecls and FashionAttrs:

1. 8 X, Y, Z, U, V 9 W

FashionType(X, Y) ^ Decl

i

(Z, Y, U, V) =) FashionDecl(Z, X, W)

2. 8 X, Y, Z, U 9 V

1

, V

2

FashionType(X, Y) ^ Attr

i

(Y, Z, U) =) FashionAttr(Y, Z, X, V

1

, V

2

)

Now, we stated all constraints which have to be asserted if we want the instances of one type

version to be substitutable for another type version by means of fashion.

Implementation After �nishing the above design, implementation of these extensions |

adding versioning and masking | proceeds as follows. First, the above base predicates, rules,

and constraints have to be inserted into the system. This simple keyboard exercise can be

performed within an hour. Second, the Analyzer has to be expanded such that it can accept

the syntax for the fashion clause and perform the necessary modi�cations to the extensions of

the base predicates introduced above. Since Lex and Yacc have been employed, this task takes

a single day. Third, the Runtime System has to be enabled to work with objects which are not

9

i.e. we do not want to change parameter types, for example.
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instances of a subtype of the expected type but are instances of another version of this type

which is guaranteed to possess the necessary behavior. Since dynamic binding had already been

present in the system due to the possible re�nement, the extension to the Runtime System could

be held at a minimum. Nevertheless, lasting one week, this is the hardest of the three necessary

modi�cations.

4.2 User's Flexibility

As is our goal, the user gains more 
exibility by means of our approach, too. Since we decou-

pled schema modi�cation from asserting the schema to be consistent, the user may be allowed

to perform any possible complex schema change. Regardless to what he is really changing,

Consistency Control never looses track of possible errors.

Again, take the schema of section 3 as an example. This schema modeled the world before

there was the need to distinguish between cars with and without a catalyst: there didn't exist a

car with catalyst. Thus, the information not to have a catalyst was redundant and was therefore

not part of the database schema. But some years later, things got more complicated: cars with

catalyst have to tank unleaded fuel while cars without catalyst still need leaded fuel. Since there

remain still some cases where this distinction is not needed, our schema designer decided that

tailoring the existing hierarchy is the best thing to cope with the changed situation: the new

schema version NewCarSchema should contain not only a type Car but also two new subtypes

of Car : PolluterCar and CatalystCar , both equipped with an operation fuel returning the sort

of fuel the corresponding car needs:

type Car is

: : : !! see de�nition of Car in section 3

end type Car;

sort Fuel is enum (leaded, unleaded);

type PolluterCar supertype Car is

operations

declare fuel: ! Fuel;

implementation

de�ne fuel is return leaded;

end type PolluterCar;

type CatalystCar supertype Car is

operations

declare fuel: ! Fuel;

implementation

de�ne fuel is return unleaded;

end type PolluterCar;

The evolution of the old schema CarSchema to the new schema NewCarSchema is not just

adding two new subtypes to the existing schema. Even if this change would result in the same

type de�nitions, it does not re
ect the meaning of the changed situation in the world we want

to model.

If we take a closer look at the semantics of this evolution, we have to do the following:

1. De�ning a new type PolluterCar within schema NewCarSchema.

2. De�ning PolluterCar as an evolution of type Car from schema CarSchema.
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3. Adding an operation fuel: ! Fuel to this (renamed) type.

4. De�ning a new type Car by using the same textual de�nition as Car in schema CarSchema.

5. De�ning a new type CatalystCar .

6. De�ning both PolluterCar and CatalystCar as subtypes of Car .

7. De�ning an adoption mechanism (via FashionType) to be able to reuse the instances of

the \old" Car type de�nition as instances of PolluterCar in the new schema.

We do not want to give the complete list of primitive evolution operators which have to be

executed to get the expected result|they are obvious. What we want to stress at this point is,

that the user is really able to execute exactly those changes which re
ect the speci�c evolution

in the modeled world. To perform these changes, the user can call the corresponding operations

of the Analyzer 's interface in a step-by-step manner within a schema modi�cation session. If

he did everything right|i.e. if none of the constraints will be violated|Consistency Control

will accept his modi�cation and the user can rely that the runtime system will interpret his

schema in exactly the intended and appropriate way. But beside the manual execution of these

steps, the user also has the possibility to abstract from this concrete case and to program a new

parameterized complex schema evolution operator which will be added to the implementation of

the Analyzer . Note, that all other modules of the system are not touched by this extension. If

we assume the Analyzer as a dedicated (and probably graphic) schema editor, such a program

can be realized by an editing macro.

Of course, the system developer can easily provide the system with libraries containing lots

of such complex evolution operators, like \deleting nodes within the type hierarchy" or \re-

structuring the type hierarchy". We did introduce another example of such a complex evolution

operation in section 2 already: if we want to change the argument list of an operation, even

those locations within the code of (other) operations have to be changed, which contain calls of

this operation. This case could be supported by a complex evolution operator which �nds out

all relevant locations and o�ers them to the user to do the necessary change. The set of such

complex evolution operations will never be complete, there will always remain cases which are

speci�c to the modeled situation and cannot be foreseen by the developer. With our approach,

this does not matter at all|the user can easily make up for the developer's lack of foresight by

de�ning the complex operations for his/her own.

5 Conclusion

A new approach to schema management was introduced. The generic architecture of our ap-

proach centers the schema management tasks around the consistency control component. Besides

the runtime system this component is the most di�cult to implement. Deciding to rely on de-

ductive database technology cuts the implementational e�orts for this component down to zero

| provided that a deductive database is available | and exhibits the further advantage that

schema consistency can be stated declaratively, easing its de�nition.

The proposed generic architecture has been instantiated by designing a speci�c simple schema

manager. The necessary design e�ort consisted solely in modeling the data model the schema

manager has to handle. In order to assess the achieved 
exibility of our approach, the simple

schema manager was enhanced by advanced features for inconsistency cures and versioning. As

for the simple schema manager, it was shown that the main task consisted in designing the

cures and versioning concepts to be incorporated. The necessary \implementation" of these

features consisted in feeding some additional de�nitions into the consistency control component,
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performing some slight extensions to the analyzer and the necessary modi�cations to the runtime

system.
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Figure 3: A Sample Schema Hierarchy

A Schema Management

A.1 The Notion of Schema in GOM

Consider a company manufacturing mechanical artifacts. Typically, this company has at least a

CAD, CAPP (Computer Aided Production Planning), CAM, and a marketing department. Not

all types required to represent the objects needed in one department are also necessary for all the

other departments. For example, the CAD department utilizes types for representing geometric

data. Dealing with 3-D models, boundary representations as well as constructive solid geometry

representations are applied. These types may not be needed, e.g., in the marketing department.

Covering the whole spectrum of data to be processed within the company, thousands of types are

needed. Thus, it might be worthwhile not to have a large unstructured set containing all these

types but, instead, to structure the set of all types, e.g., according to the varying requirements of

di�erent departments. Further, it is useful to structure the data for each department according

to other aspects. Therefore, a hierarchical structuring mechanism of the set of all available types

is needed.

As an example, consider the hierarchical structure of the information as found in a typical

company manufacturing mechanical artifacts. In Figure 3 the division of data processed in the

whole company into three aspects corresponding to the departments CAD , CAPP , CAM , and

Marketing is shown. On a second level, the data processed in the CAD department is further

divided into data concerning geometry (Geometry), �nite element models (FEM ), functional

aspects (Function), and technological aspects (Technology). On the last level of nesting of

the structuring of the data, the data types necessary to capture geometry are classi�ed into

two partitions, one class comprising constructive solid geometry models (CSG) and the other

comprising boundary representation models (BoundaryRep).

Note that, so far, not even a single type has been visible. Instead, only a division of all

possible types into several sets has been sketched. By the mechanisms presented before in this

book, it is impossible to express this partitioning of the company's information and make it

known to the database. Consequently, a new mechanism|the notion of schema|has to be in-

troduced. As a �rst approximation, a schema can be thought of as a set of types. Then, Figure 3

represents a schema hierarchy . The descendant schemas of a schema are called subschemas , e.g.,

CAD , CAPP , and CAM are subschemas of Company . The schema BoundaryRep will then, e.g.,

contain the types Cuboid , Surface, Edge, and Vertex . Note, that these types are of no relevance

to the Marketing department. A typical example type of the CAPP subschema is the object

type Schedule|representing a processing schedule for manufacturing|which is fundamental for

the CAPP department and of no interest for the CAD department.

Partitioning the set of all types into subsets|that is, providing a structuring mechanism|is
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not the only functionality a schema provides. In summary, there exist three di�erent equally

important aspects of schema:

1. structuring the set of all types and governing their persistence,

2. allowing high-level information hiding, and

3. providing distinct name spaces.

These points are discussed in more detail in subsequent sections.

A.2 The Schema De�nition Frame

A schema with its subschemata can be speci�ed by the schema de�nition frame. Part of the

schema hierarchy of Figure 3 can be speci�ed by the following three (preliminary) schema de�-

nition frames:

schema Company is

subschema CAD;

subschema CAPP;

subschema CAM;

subschema Marketing;

end schema Company;

schema CAD is

subschema Geometry;

subschema FEM;

subschema Function;

subschema Technology;

end schema CAD;

schema Geometry is

subschema CSG;

subschema BoundaryRep;

end schema Geometry;

schema BoundaryRep is

type Cuboid is : : : ;

type Surface is : : : ;

type Edge is : : : ;

type Vertex is : : : ;

var exampleCuboid: Cuboid;

end schema BoundaryRep;

Here, only the schema BoundaryRep contains type de�nitions |i.e., the type speci�cations of

Cuboid , Surface, Edge, and Vertex . However, in general every schema may contain actual type

de�nitions. Note, that we also de�ned a variable exampleCuboid within the schema Boundary-

Rep. Thus, a schema is not only used to structure the set of all types but also to group variables.

Types, variables, and (sub-) schemata are generalized to schema components . Then, a schema

is a collection of schema components.

A schema also implicitly governs persistence:

A schema is always persistent, and with it, all its schema components!

This means, that the keyword persistent is of no meaning within a schema de�nition frame.

It might as well be dropped as we already did in the example schema de�nitions. Thus, all the

schemata de�ned above and all the types and variables included are persistent.
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A.3 Information Hiding for Schemata

Remember the type de�nition frame. There, the public clause controlled the possible operations

to be executable on the instances of the type. Only those operations which appeared in it were

executable by clients of the type|or, more precisely, by clients of isntances of the type. The

same occurs on a di�erent level when considering schemata and contained types. Not all types

have to be visible to all other schemata. In the above example, the type Cuboid in the schema

BoundaryRep should be visible to other schemata whereas the other types Surface, Edge, and

Vertex should not be visible, since they are only used to implement the type Cuboid . This

leads to information hiding on a higher level. Therefore, the public clause is also introduced

for schemata:

schema BoundaryRep is

public Cuboid;

interface

type Cuboid is : : : ;

implementation

type Surface is : : : ;

type Edge is : : : ;

type Vertex is : : : ;

end schema BoundaryRep;

This schema realizes hiding the types Surface, Edge, and Vertex . Or, expressing it from a di�e-

rent viewpoint, only the type Cuboid may be used by other schemata. Further note, that the type

de�nitions of the types made public are de�ned in the interface section of the schema de�nition

frame whereas those only used for internal purposes are de�ned within the implementation

section. Summarizing, a schema de�nition frame consists of three sections:

1. the public section where all the schema components made public to the super schema

and|as we will see|possibly other schemata are listed,

2. the interface section where all the schema components made public are to be speci�ed,

and

3. the implementation section where all the schema components used for internal imple-

mentation purposes are speci�ed.

Remember that schema components can be types, variables, free operations, and (sub-) sche-

mata.

A.4 Name Spaces of Schemata

The third aspect of a schema is that it provides a name space. So far, without the notion

of schema, all type names had to be distinct. Also, all names of global variables had to be

distinct. There existed a single global name space. This is not necessarily easy to guarantee.

In fact, in both of the schemata CSG and BoundaryRep a type representing cuboids may be

appropriate. By allowing each schema to have its own local name space, it is possible to de�ne

a type Cuboid in the schema named CSG and another type Cuboid in the schema BoundaryRep

without inducing a name con
ict. Thus, the following two schema de�nitions are both valid,

even in conjunction:
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schema CSG is

public Cuboid;

interface

type Cuboid is : : : ;

implementation

: : :

end schema CSG;

schema BoundaryRep is

public Cuboid;

interface

type Cuboid is : : : ;

implementation

: : :

end schema BoundaryRep;

This becomes a very important feature when considering di�erent designers developing the ty-

pes for constructive solid geometry and boundary representation independently and in parallel.

Thus, providing di�erent name spaces for di�erent schemata allows to design schemata indepen-

dent of each other|thereby avoiding the necessity of a global consensus of naming.

Unfortunately, this advantage is not for free. As soon as the type Cuboid , which is a pu-

blic type in both CSG and BoundaryRep, is referenced (i.e., used) in Geometry , this reference

cannot be resolved uniquely. Both Cuboid types qualify. This problem is solved by explicitly

renaming both types in the Geometry schema. Under the assumption that both Cuboid de�-

nitions are made public in Geometry , this is done by extending the subschema entries in the

schema de�nition frame of Geometry :

schema Geometry is

public CSGCuboid, BRepCuboid;

interface

subschema CSG with

type Cuboid as CSGCuboid;

end subschema CSG;

subschema BoundaryRep with

type Cuboid as BRepCuboid;

end subschema BoundaryRep;

end schema Geometry;

The subschema entry has been expanded as indicated by the keyword with. Following the

keyword with, a list of schema components follows. Each entry in this list is preceded by the

kind of the schema component to be renamed, followed by the \old" name, followed by as,

followed by the \new" name. Thus, in the example, the type Cuboid of schema CSG is renamed

to CSGCuboid and can be referred to by this new name within the schema Geometry and its

super schema CAD. The latter holds because both new names for the Cuboid types have been

made public. This public clause implies also that the renaming, that is the statement of the

subschema entry, has to be in the interface section. If the types had not been made public,

the subschema entry would have to be in the implementation section. For renaming imported

types the quali�er type is utilized. If variables or operations are to be renamed, the quali�ers

var and operation are used, respectively.

One might ask, whether the advantage of di�erent name spaces for schemata becomes ob-

solete since if name con
icts occur they have to be explicitly resolved by renaming and if they

do not occur, there is no e�ect of di�erent name spaces. Since a name con
ict occurs only if

two public schema components have the same name and both are used within a single schema,

the number of name con
icts is limited by the di�erent name spaces of schemata. Further,

independent development of schemata is not a�ected by the name con
icts. These have to be

resolved within the single schema using the components whose names con
ict.

A.5 Importing Schemata

Public types or other schema components implemented in a speci�c schema should be available to

the implementor of other schemata. Consider, for example, the implementor of the schema CAD .
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He or she has free access to the public types speci�ed in the schemataGeometry , FEM , Function,

and Technology but to no other schema components. This is the|somewhat restrictive|default.

That is, exactly those schema components of direct subschemata which are speci�ed as being

public are available to the implementor of the super schema.

There exist several reasons for this restrictive default. In general, a schema corresponds to a

certain abstraction level of the application. The consequence of abstraction hierarchies often is

that details at lower levels are of no relevance to levels higher than the direct upper level. Thus,

the default provides for automatically hiding the details.

Of course, this is an idealized situation and there often exist good reasons to use schema

components de�ned in a schema several levels down or even to use schema components of a

schema which is not a direct or indirect subschema. If this is the case, the implementor can

import other schemata. Since importing a schema implies a dependency, this mechanism should

be handled with care. Therefore, it is required that any import of a schema has to be stated

explicitly. Hence the restriction on the default.

Yet another reason for the restrictive default is the name space. Since the imported schemata

have most likely been developed independently, name con
icts may occur within the total set of

locally de�ned schema components unioned with all imported schema components. Assume a

type Cuboid has also been de�ned in schema CAPP . Then, if the components of CAPP would

automatically be visible to all other schemata, i.e., if there were an unconstrained import of all

other schemata, another name con
ict on Cuboid occurs within Geometry although the type

de�nition of Cuboid within CAPP is of no relevance to the schema Geometry . Resolving name

con
icts for irrelevant schema components is a tedious task. The whole advantage of di�erent

name spaces would be nihilated.

Consider a tool which allows the automatic conversion of CSG into boundary representation.

To integrate this tool into the schema hierarchy, a third subschema CSG2BoundRep of schema

Geometry containing its implementation is introduced. Due to its functionality, it has to deal

with both types of cuboids, the type Cuboid in CSG and the type Cuboid in BoundaryRep.

Nevertheless, CSG2BoundRep has no access to either of the Cuboid type de�nitions. What is

needed is the explicit import of the schemata CSG and BoundaryRep. These are realized by

utilizing the import clause within the schema de�nition frame:

schema CSG2BoundRep is

public convert;

interface

import /Company/CAD/Geometry/CSG with

type Cuboid as CSGCuboid;

end schema CSG;

import /Company/CAD/Geometry/BoundaryRep with

type Cuboid as BRepCuboid;

end schema BoundaryRep;

� � �

end schema CSG2BoundRep;

The import clause is followed by a schema path specifying the schema to be imported. A

schema path is a sequence of schemata separated by backslashes, i.e., \/". The �rst backslash

indicates that the speci�ed path starts at the root. Thus, \/Company" refers to the root schema

Company . \/Company/CAD" refers to its subschema CAD , and so on until the needed schema

is reached. A path starting at the root is called an absolute schema path. A relative schema

path starts with either

� a schema name, in which case this schema name refers to the subschema of the enclosing

schema and this is the start of the path, or
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� a double dot, i.e., \..", in which case the super schema of the enclosing schema is the start

of the path.

Thus, in our example, the following paths are equivalent:

� /Company/CAD/Geometry/CSG and

� ../CSG

The double dot can also be iterated, e.g., \../.." refers to Company , if utilized directly within

Geometry . It refers to CAD , if it occurs within BoundaryRep or CSG .

By starting with a schema name, only direct or indirect subschemata can be reached. In

the example of Figure 3, the schema CSG can be imported into CAD by specifying the import

clause utilizing the schema path \Geometry/CSG".

The renaming within the import clause is analogous to the renaming as employed in the

subschema clause. Additionally to the above de�nition of the schema CSG2BoundRep, it has

to be de�ned as a subschema of Geometry by adding the appropriate subschema entry.

Let us brie
y summarize the e�ects of importing a schema B by a schema A using the

import clause: all the schema components |types, variables, free operations|de�ned in B

are|by specifying import B in A|readily available and can be accessed in the same manner

as any other schema component directly de�ned in A. Also, all the schema components public

in any subschema of A are available transparently in A. The only problem occurrs in the case

of a name con
ict. Name con
icts in a schema A can only occur if

1. the same name was used at least twice for the same kind of schema component, e.g., a

type, within the set union of all schema component names of A, its subschemata and its

imported schemata, and

2. this schema component was used within A, e.g. in an attribute de�nition.
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