
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

UNIVERSIT

�

AT KARLSRUHE

FAKULT

�

AT F

�

UR INFORMATIK

Postfach 6980, D-7500 Karlsruhe 1

Clustering in Object Bases

Carsten Gerlhof

�

Alfons Kemper

�

Christoph Kilger

y

Guido Moerkotte

y

�

RWTH Aachen

y

Universit�at Karlsruhe

Lehrstuhl f�ur Informatik III Fakult�at f�ur Informatik

5100 Aachen, Germany 7500 Karlsruhe, Germany

[gerlhof jkemper]@informatik.rwth-aachen.de [kilger jmoer]@ira.uka.de

Interner Bericht Nr. 06/92 � Juni 1992

Abstract

We investigate clustering techniques that are speci�cally tailored for object-oriented

database systems. Unlike traditional database systems object-oriented data mod-

els incorporate the application behavior in the form of type-associated operations.

This source of information is exploited for clustering decisions by statically deter-

mining the operations' access behavior applying data
ow analysis techniques. This

process yields a set of weighted access paths. The statically extracted (syntactical)

access patterns are then matched with the actual object net. Thereby the inter-

object reference chains that are likely being traversed in the database applications

accumulate correspondingly high weights. The object net can then be viewed as a

weighted graph whose nodes correspond to objects and whose edges are weighted

inter-object references. We then employ a newly developed (greedy) heuristics for

graph partitioning|which exhibits moderate complexity and, thus, is applicable

to object bases of realistic size. Extensive benchmarking indicates that our clus-

tering approach consisting of static operation analysis followed by greedy graph

partitioning is in many cases superior to traditional clustering techniques|most of

which are based on dynamically monitoring the overall access behavior of database

applications.

1

1 Introduction

The fate of object-oriented database systems will largely depend on their performance

compared to currently employed database technology, e.g., relational database systems.

To increase the performance, clustering has been considered for all data models since

the early days of databases, e.g., an optimal clustering strategy has been developed for

the hierarchical model [Sch77]. Contrary to other data models, it is one of the main

characteristics of object-oriented databases that the object nets tend to be recursive.

Consequently, several clustering strategies have been developed which can also deal with

recursive object nets, e.g. [Sta84, CDRS86, KCB88, HK89, BD90, TN91, CH91]. Except

for [KCB88, CDRS86, BD90], all these approaches rely on statistical data dynamically

collected from former application runs, i.e., monitoring. Thus, they are applicable to

object-oriented databases but they are not necessarily speci�cally tailored for those since

they ignore the object types' associated behavior as a source of information for clustering

decisions.

In this paper, we propose to exploit the knowledge about the objects' behavior|which

is an integral part of the object base schema|for clustering decisions. For this purpose,

we developed a technique, called decapsulation, that extracts the access patterns from

the operations' implementation. Thus, decapsulation is a static approach to determining

the application characteristics. The outcome is a set of weighted path expressions which

model the potentially traversed reference chains at the syntactical level. The weights may

either constitute the traversal frequency|if the goal is to optimize overall throughput|

or the criticality of the operation|if one wants to give priority to certain particularly

important operations. The static analysis of operations' access behavior exhibits major

advantages over monitoring the overall database usage characteristics:

� decapsulation does not induce any run-time penalty which has to be tolerated when

monitoring the database applications;

� monitoring generally requires an extensive (non-optimized) \training" phase during

which the statistics have to become consolidated;

� static operation analysis enables us to emphasize particularly critical operations

in the clustering decisions which is not possible when we monitor the anonymous,

overall database applications.

Following decapsulation, the statically derived weighted path expressions are matched

with the actual object net. Thereby the (inter-object) reference chains that are likely to

be traversed in a database application accumulate accordingly high weights. This results

in a net whose nodes correspond to objects and whose edges are weighted inter-object

references.

Deriving the access patterns of database applications|statically or dynamically|is,

however, only one dimension of the clustering problem. The other dimension is the map-

ping of the objects to pages under the consideration of the derived access characteristics.

In this dimension, we distinguish between sequence based and partitioning based approach-

es. The former subsumes a wide variety of algorithms that sequentialize the object net

into a total order and map the resulting object sequence to pages in a straight-forward

manner. It was shown before by Tsangaris and Naughton [TN91] that the partitioning

based approach, where subgraphs that exhibit a high degree of inter-object connectivity

2

are grouped, is usually superior to sequence based mappings. Unfortunately, the hitherto

employed heuristics for partitioning the object net based on Kernighan and Lin's graph

partitioning heuristics [KL70] is prohibitively expensive (in run time) for object bases

with realistically large numbers of objects. We, therefore, developed a greedy partition-

ing heuristics which has a moderate run time complexity while yielding an even better

clustering quality|according to our extensive benchmarks. Further, if we consider some

operations to be critical, the heuristics combined with decapsulation is often superior to

other approaches.

The rest of the paper is organized as follows. In Section 2 we �rst introduce the

classi�cation of clustering strategies and then develop our new greedy graph partitioning

algorithm for mapping objects to pages. Section 3 introduces the decapsulation technique

for statically extracting information on the access behavior of an operation from its imple-

mentation. Section 4 describes our simulation environment that we used for benchmarking

a large variety of clustering strategies. In Section 5 we present the benchmark results,

and Section 6 concludes the paper. Appendix A describes the decapsulation technique in

more detail, which could only be overviewed in Section 3.

2 Sequence Based and Partitioning Based Clustering

Most of the clustering algorithms found in the literature transform the object net into

a clustering sequence which is then stored on pages such that all objects on one page

form a subsequence of the clustering sequence. Section 2.1 describes a generic clustering

algorithm which subsumes all known sequence based clustering algorithms.

The main drawback of sequence based clustering algorithms is that objects being

closely related may be separated by some page border even if they are highly related

neighbors in the clustering sequence. An alternative|and more promising|approach to

clustering is to apply graph partitioning algorithms to the object graph. Thereby, the

object graph is partitioned, such that for each subgraph all objects can be stored on one

page. Unfortunately, optimal algorithms for the partitioning problem require exponential

run time. Therefore, heuristics must be applied. Section 2.2 presents our new graph

partitioning heuristics which exhibits very good performance, i.e., quality of the partition,

while having a moderate run time complexity. Section 2.3 classi�es related work.

2.1 A Generic Sequence Based Cluster Algorithm

The generic algorithm is denoted in the style of a UNIX pipe consisting of the two steps

PreSort and Traversal :

PreSort j Traversal

In the �rst step, all objects to be clustered are sorted applying a method PreSort, resulting

in the input sequence for the second step. During the second step the object net is

traversed using the method Traversal . Traversal is initialized by the �rst non-visited

object of the input sequence and then traverses all objects reachable from this one|this

is repeated until all objects have been visited. The objects are stored on pages in the

order in which they are visited, resulting in a sequence of pages. As we will show in

Section 2.3, this algorithm subsumes all known sequence based clustering strategies.

3

i

1

X: NULL

Y: NULL

Z: NULL

i

2

X: NULL

Y: NULL

Z: i

1

�

�3

i

3

X: NULL

Y: i

1

Z: NULL

6

i

4

X: NULL

Y: i

2

Z: i

3

6

�

�3

i

5

X: i

1

Y: NULL

Z: NULL

-

i

6

X: i

2

Y: NULL

Z: i

5

-

�

�3

i

7

X: i

3

Y: i

5

Z: NULL

-

6

i

8

X: i

4

Y: i

6

Z: i

7

-

6

�

�3

i

9

X: i

5

Y: NULL

Z: NULL

-

i

10

X: i

6

Y: NULL

Z: i

9

-

�

�3

i

11

X: i

7

Y: i

9

Z: NULL

-

6

i

12

X: i

8

Y: i

10

Z: i

11

-

6

�

�3

Figure 1: A simple database extension

To obtain a good clustering sequence the Traversal component should exhibit a similar

access behavior as the applications. Thus, the importance of the Traversal method is

obvious. Since the impact of the PreSort order may be less obvious, it is highlighted by

means of an example. Consider the database extension shown in Fig. 1. It consists of a

number of grid points with X, Y and Z coordinates constituting a regular grid. The goal

is to cluster these objects for the following sequence of operation invocations:

i

9

.xmove(3); i

10

.xmove(3); i

11

.xmove(3); i

12

.xmove(3);

(i

9

; i

5

; i

1

) (i

10

; i

6

; i

2

) (i

11

; i

7

; i

3

) (i

12

; i

8

; i

4

)

where xmove(n) follows a trajectory of length n in X direction. The access trace for each

invocation is written underneath it.

One traversal strategy proposed for clustering is depth-�rst traversal (see, e.g., [BKKG88]).

It is applied to our example where the entry points to the objects are i

1

, i

2

, i

3

, : : : , i

12

(in

this order). Let us assume that this is the order in which the objects have been created,

i.e., the order is by the objects' time of creation (abbreviated by toc). Instantiating the

generic clustering algorithm this strategy can be denoted by toc j depth-�rst .

If exactly four grid objects �t on one page, toc j depth-�rst clusters as follows:

[i

1

; i

2

; i

3

; i

4

] [i

5

; i

6

; i

7

; i

8

] [i

9

; i

10

; i

11

; i

12

]:

Assuming a page bu�er of size 1

1

, executing the above application leads to 12 page faults

which happens to be the worst case.

For comparison, let us assume another presort order. The objects of the grid are now

sorted by increasing static reference counts

2

(abbreviated src). Then, the traversal starts

at the root object i

12

(i

12

has a static reference count of 0). The clustering algorithm

src j depth-�rst yields the clustering sequence

[i

12

; i

8

; i

4

; i

2

] [i

1

; i

3

; i

6

; i

5

] [i

7

; i

10

; i

9

; i

11

]

leading to only 8 page faults for the above application. Thus, besides the traversal strategy

whose importance has been emphasized in the literature, the presort order has a major

impact on the result of a clustering strategy.

1

This unrealistically low number is chosen to compensate for the extremely low database volume.

2

The static reference count of an object o is given by the number of times o is referenced in the object

base [Sta84].

4

PageList := h i;

Store each object on a new page and insert this page into PageList;

Let ConnectList be a list containing all tuples of the form (o

1

; o

2

; w

o

1

;o

2

)

where w

o

1

;o

2

is the total weight of all references from o

1

to o

2

or vice versa;

Sort ConnectList by descending weights;

foreach (o

1

; o

2

; w

o

1

;o

2

) in ConnectList do begin

Let P

1

; P

2

be the pages containing objects o

1

; o

2

;

if P

1

6= P

2

and all objects of P

1

and P

2

�t on one page then begin

Move all objects from P

2

to P

1

;

Remove P

2

from PageList ;

end if;

end foreach;

Figure 2: The greedy graph partitioning based clustering algorithm

2.2 Clustering Based on Greedy Graph Partitioning

Partitioning based clustering algorithms partition the object net into a set of subgraphs

such that for each subgraph all objects �t on one page. The problem is then to minimize

the sum of the weights of all references crossing the page borders (which is known to be

NP-complete).

In the literature graph partitioning was considered for clustering only in the work

of Tsangaris and Naughton [TN91], where the algorithm by Kernighan and Lin [KL70]

was applied. But this algorithm appears to be prohibitively expensive because of its

asymptotic run time complexity of O(n

2:4

), where n is the number of objects stored in the

object base. In this section, we present a new partitioning based clustering algorithm|

based on greedy graph partitioning|with a rather moderate asymptotic run time of

e log e, where e is the number of references stored in the object base. For realistic object

bases e log e will be signi�cantly lower than n

2:4

as the number of references emanating

from an object is not nearly as high as n. For example, if we consider an object base

with 100:000 objects, and assume that|in the average|100 references emanate from each

object, n

2:4

= 10

12

, whereas e log e � 2:3 � 10

8

.

Partitioning based clustering is strongly related to subset optimization problems (e.g.,

the minimum spanning tree problem [PS82]) for which greedy algorithms often �nd good

solutions. Our greedy clustering algorithm shown in Fig. 2 performs as follows: First, all

objects are stored on a new page; these pages are inserted into a PageList . Then, for all

objects o

1

, o

2

connected by some reference in the object base, the connectivity w

o

1

; o

2

of o

1

and o

2

is computed and a tuple (o

1

; o

2

; w

o

1

;o

2

) is inserted into the list ConnectList . The

connectivity of two objects o

1

and o

2

is given as the total weight

3

of all references stored

in the object base that lead from o

1

to o

2

and, vice versa, from o

2

to o

1

.

All tuples of ConnectList are visited in the order of descending connectivity values.

Let (o

1

; o

2

; w

o

1

;o

2

) be the current tuple and let P

1

, P

2

be the pages on which the objects

o

1

and o

2

are stored. If P

1

6= P

2

and if all objects stored on P

1

and P

2

�t on one page the

two pages are joined.

The run time complexity of the algorithm is O(e log e) because of sorting the list

ConnectList and|assuming logical object identi�ers|object lookup in pages.

3

The weights being determined either by dynamic monitoring or by our decapsulation based approach.

5

Example: Suppose for the references of the database extension of Fig. 1 the weights

shown in the illustration below (we will show in Section 3 how these weights could be

determined by static operation analysis). For these weights, the greedy graph partitioning

algorithm computes the clustering scheme

4

[i

12

; i

8

; i

4

] [i

11

; i

7

; i

3

;] [i

10

; i

6

; i

2

] [i

9

; i

5

; i

1

]

This clustering scheme leads to 4 page faults and is optimal for the application described

at the beginning of Section 2.1.

i

1

i

2

�

�

�3

0

i

3

6

0

i

4

6

0

�

�

�3

0

i

5

-

3:0

i

6

-

3:0

�

�

�3

0

i

7

-

3:0

6

0

i

8

-

3:0

6

0

�

�

�3

0

i

9

-

1:5

i

10

-

1:5

�

�

�3

0

i

11

-

1:5

6

0

i

12

-

1:5

6

0

�

�

�3

0

3

2.3 Related Work

Aside from the above cited work by Tsangaris and Naughton [TN91], all other related

work is founded on sequence based clustering algorithms. In this section, these algorithms

are classi�ed according to the generic clustering algorithm. The related work is summa-

rized in Table 1. The traversal component of the algorithms in Table 1 is denoted as

TraversalAlgorithm.OrderingOfSuccessors denoting the order in which the successors of

some object are visited. If OrderingOfSuccessors is omitted an arbitrary ordering is as-

sumed. Note that the sequence based clustering algorithms investigated in the literature

cover only a small part of all possible algorithms derivable from our generic algorithm.

Subsequently, we describe pre-sort orders and traversal strategies separately.

Pre-Sort Orders. In [BKKG88] user hints are exploited to select the starting points of

the traversal|leading to a partial order on the objects in which selected objects are sorted

before non-selected. A whole class of orders found in the literature is based on an order of

types. All objects of one type are arranged before all objects of another type if the former

precedes the latter in the given type order. This results in a partial order on objects

only|its completion to a full order is arbitrary. Type based pre-sort orders have been

examined by [Sta84, HZ87, BD90]. In [Sta84] the pre-sort order trace has been proposed

to obtain a near optimal clustering sequence. Trace sorts objects according to their �rst

appearance in the access trace of a speci�c application. This requires monitoring the trace

of the application. The clustering strategy incorporated in the Cactis prototype [HK89]

sorts objects by descending dynamic reference counts (abbreviated drc) before starting

the traversal. The drc value of an object is given by the number of times the object is

referenced in the trace of a former application. In [CH91] the Kruskal algorithm [Kru56] is

utilized to compute the maximum weight spanning tree of the object net. This spanning

4

The algorithm starts with some triple whose weight is maximal, say (i

8

; i

4

; 3:0). Thus, i

8

and i

4

are placed on the same page by merging the pages they were initially assigned. Eventually, the triple

(i

12

; i

8

; 1:5) is considered|before any triple with weight 0|and i

12

is placed on the same page as i

8

and

i

4

.

6

Sequence based clustering algorithms:

[Sta84] � j depth-�rst � j breadth-�rst � j id

� j depth-�rst.src � j breadth-�rst.src trace j id

� j depth-�rst.drc � j breadth-�rst.drc type j id

[HZ87] type j id

[BKKG88] user j depth-�rst user j breadth-�rst

user j children-depth-�rst

[HK89] drc j best-�rst.dtc

[BD90] type j placement-trees

[CH91] kruskal.dtc j id

Partitioning based clustering algorithms:

[TN91] Kernighan & Lin graph partitioning [KL70]

This paper greedy graph partitioning

� Arbitrary input

sequence

src Stat. ref. counts

(increasing)

drc Dyn. ref. counts

(decreasing)

dtc Dyn. transition

counts (decr.)

Table 1: Related work

tree is then transformed into an object sequence which is stored on consecutive pages. If

an arbitrary pre-sort order is applied, we denote this by �.

Traversal Strategies. For the traversal algorithmmany di�erent alternatives like depth-

�rst, breadth-�rst, children-depth-�rst, best-�rst, etc. can be found in the literature. In

the Cactis prototype [HK89] a best-�rst traversal is utilized: all references from an object

on the current page to a not yet stored object are ordered according to their traversal

frequencies, and the object referenced by the highest ranked reference is added to the

current page. We denote this traversal strategy by best-�rst .dtc (dtc abbreviates dynamic

transition count).

Beside dtc's, reference counts for objects can be used to guide the traversal. Here, the

successors of objects are sorted by increasing src or decreasing drc values [Sta84].

In [BD90] placement trees were introduced to describe the access patterns of applica-

tions. The nodes of placement trees represent types and the edges represent attributes.

The placement trees are then matched onto the object net and each matching set of

objects is stored on a single page.

The simplest traversal strategy is to copy the input sequence to the clustering sequence

(denoted by id). This strategy has been applied by [Sta84, HZ87, CH91].

3 Clustering by Static Method Analysis

Obviously, all clustering algorithms need information about the access patterns of appli-

cations that are to be supported by clustering. In this section, we focus on techniques

to determine these access patterns in terms of reference counts for objects and transition

counts for inter-object references, accumulating the access patterns of several applications.

Reference and transition counts can either be determined by monitoring real applications

or by analyzing the applications' schema and the object instances of the object base. We

7

refer to the former as dynamically and to the latter as statically derived reference and

transition counts, respectively.

Dynamically derived reference and transition counts exhibit three disadvantages. First,

monitoring real applications on the real object net is required which imposes a run-time

penalty on the applications during the sampling phase. Second, dynamically derived

reference and transition counts re
ect only the average load during the sampling phase.

Especially, they cannot account for the criticality of operations which may vastly di�er

from the relative invocation frequencies, e.g., in the case of emergency operations which

seldom occur but must be executed very fast. Third, in object-oriented databases dynam-

ic transition counts are by no means trivial to determine. Note, that it is not su�cient

to count the number of accesses to an attribute referencing another object since there is

no guarantee that the object will actually be accessed via the read reference.

Contrary to database systems founded on classical data models, e.g., the relational

model, object-oriented database systems also store the behavior of objects, i.e., the code of

the operations associated with the objects. This lead to the idea to analyze the operations'

code to derive the access patterns statically. Obviously, such a static code analysis avoids

the above mentioned disadvantages of dynamically gathered statistics. The outcome of

such an analysis could be placement trees as proposed in [BD90], or, as in our case, a

set of weighted path expressions. These can then be matched against the current object

net and their weights can be accumulated for each successful match to derive so-called

static weighted reference counts (abbreviated swrc) and static weighted transition counts

(abbreviated swtc) representing the access behavior of the analyzed operations.

The rest of this section is organized re
ecting the above outline. In Section 3.1 our code

analysis method called decapsulation is brie
y introduced. Section 3.2 de�nes the static

weighted reference and transition counts for a given set of weighted path expressions, and

elucidates the exploitation of swrc and swtc values for clustering.

type Gridpoint is

body [X, Y, Z: Gridpoint;

Data: : : : ;

: : :]

operations

declare YX

�

move : ! Gridpoint;

: : :

end type Gridpoint;

de�ne YX

�

move is

var g: Gridpoint;

begin

S

1

: g := self.Y; !! Assume self.Y 6= NULL

S

2

: while g.X 6= NULL do

S

3

: g := g.X;

S

4

: return g;

end de�ne YX

�

move ;

Figure 3: De�nition of the type Gridpoint

3.1 Decapsulation

The input of the decapsulation process is some operation with its weight denoting the

invocation frequency or the criticality of the operation. The output is a set of weighted

path expressions of the form

v[w

0

] : A

1

[w

1

] : A

2

[w

2

] : � � � : A

k

[w

k

]

Every `dot' in the above expression denotes | at the object level | a reference to some

object. The weight factors w

i

indicate the importance of these references for clustering

8

decisions. In order to give a �rst understanding of the subsequent usage of weighted

path expressions, the mapping of the weights of the above path expression to objects and

references is visualized by the following illustration:

v

@

@R

A

1

: �

w

0

-

w

1

A

2

: �

w

1

-

w

2

� � �

A

k

: �

w

k�1

-

w

k

: : :

w

k

The squares denote objects and the arrows references. Their corresponding weights are

written underneath. In order to avoid too many technical details we do not give the

complete formal de�nition of the decapsulation process which is based on term rewriting

and data
ow analysis techniques as de�ned in [ASU87]. Instead, we introduce the main

idea of decapsulation by means of an example.

5

Consider the de�nition of the operation YX

�

move associated with the type Gridpoint

shown in Fig. 3. Verbally, the access behavior of the operation YX

�

move can be described

as follows: Starting at self| i.e., the object on which YX

�

move is invoked | go one step

in Y direction and then follow the reference chain in X direction as far as possible. This

access pattern is characterized by the expression self:Y:X

�

where the star indicates the

presence of the loop. Taking into account the weight of YX

�

move , say 1.5, the outcome

of the decapsulation process should be

self[1:5] : Y [1:5] : (X[1:5])

�

(E.g., 1.5 could denote the weight of YX

�

move as assigned by the user.)

To capture the behavior of loop-statements the result of decapsulation is a set of

weighted regular path expressions, i.e. regular expressions over the alphabet (Var[Attr)�

W where Var denotes the set of all (persistent) variables, Attr denotes the set of all

attributes and W denotes the set of all weights, i.e., a �nite subset of the real numbers.

Given an operation op and its weight w

op

, the decapsulation process works as follows:

1. Propagate the operation weight to expressions. Path expressions | denoting

the access to objects | only occur within the expressions of op. Hence, to compute a set

of weighted path expressions describing the access behavior of op, the weight w

op

has to be

propagated to the expressions of op. This propagation starts by assigning the weight w

op

to the statement comprising the body of op, and proceeds by assigning to every statement

the weight of its directly enclosing statement or its predecessor statement, respectively.

The only exception are if-statements: given some if-statement "if e then S

1

else

S

2

" with weight w

if

and probability prob(e) of the boolean expression e being true, the

weights w

1

and w

2

of the statements S

1

and S

2

are de�ned as w

1

= w

if

� prob(e) and

w

2

= w

if

� (1 � prob(e)), respectively. In the above example all expressions receive the

weight 1.5, as YX

�

move does not contain any if-statements.

2. Extract weighted path expressions from expressions. In step 1 weights are

assigned to all expressions of op. These weights are now used to compute for every

expression e with weight w

e

the set of weighted path expressions P(e) occurring in e.

5

The formal de�nition of the decapsulation process is given in Appendix A. The decapsulation process

presented here is a re�nement of the decapsulation process applied in [KKM91].

9

If e is some constant P(e) = ; or if e is some variable v , P(e) = f v[0] g. If e is of the

form e = v:A

1

: � � � :A

k

P(e) = f v[w

e

] : A

1

[w

e

] : � � � : A

k�1

[w

e

] : A

k

[0] g

Here, all weights are set to w

e

except for the last one that is set to 0 | due to the fact

that every `dot' but the last one in the path expression v:A

1

: � � � :A

k

denotes an access to

some object. For compound expressions of the form e = e

1

� e

2

(`�' denotes some binary

operator) the set P(e) is de�ned as the union of the sets P(e

1

) and P(e

2

).

In the above example P(self:Y) = f self[1:5] : Y [0] g, and P(g:X) = f g[1:5] :X[0] g.

3. Rewrite according to assignments. In the operation YX

�

move, the assignment

statement S

1

stores the value of the expression self:Y in the local variable g and the

statements S

2

and S

3

access the X attribute of the object referenced by g. From a naive

analysis of these statements one could deduce that the operation YX

�

move traverses

paths of the form self:Y and g:X for arbitrary values of g and self. But, obviously, the

access behavior is not represented well by the separate path expressions self:Y and g:X.

The solution is to replace the variable g with its \value" self:Y in the path expression

g:X | resulting in the expression self:Y:X. Performing the indicated rewriting with the

weighted path expressions results in the weighted path expression self[1:5] : Y [1:5] :X[0]

which models the access behavior of YX

�

move much better.

4. Consider loops. So far, the weighted path expression deduced for statement S

3

is

self[1:5] : Y [1:5] :X[0]. Thus, there is no account for S

3

being contained within a loop. To

remedy this problem, cycles within the assignments of the loop's body are searched, and

for each cyclic assignment of some variable v the path expression corresponding to one

iteration is computed. This path expression is labeled by a star `*' and is used to replace

v in expressions of the loop's body.

In our example, there exists the simple cyclic assignment g := g:X in the body of the

loop statement S

2

. Here, the weighted path expression corresponding to one iteration is

g[1:5] :X[1:5]. Hence, the expression corresponding to an arbitrary number of iterations

is g[1:5] : (X[1:5])

�

. This expression is used to replace g in the expressions occurring in

S

2

, leading to the weighted path expression g[1:5] : (X[1:5])

�

:X[0]. Finally, replacing

g by its value from the assignment of S

1

yields the desired weighted path expression

self[1:5] : Y [1:5] : (X[1:5])

�

:X[0]. In the �nal result, the last component X[0] will be

discarded because of its weight 0.

The steps 1 to 4 listed above give only a short outline of decapsulation. For clustering

according to a mix of operations all operations are decapsulated in the above fashion,

variables are replaced by their corresponding types, and all resulting sets of weighted path

expressions are merged to one set with weights of matching expressions being accumulated.

Index structures like access support relations [KM90] or generalized materialization

relations [KKM91] have a signi�cant impact on clustering. If there is an access support

relation, i.e., an index supporting a path expression p of the operation op, then p should

not be considered for clustering and thus its weights have to be set to 0. If the results of the

operation op are materialized and stored in the corresponding generalized materialization

relation, an invocation of op does not induce any access to objects in the object base

(assumed the precomputed results are still valid). Thus, materialized functions should

not be decapsulated at all | as they need not to be considered for clustering.

10

3.2 Decapsulation Based Clustering Strategies

Remember that our goal is to compute for each object of the object base the static

weighted reference count and for each inter-object reference the static weighted transition

count according to some set of weighted path expressions. Every path expression describes

| on the type level | a set of paths, i.e., reference chains, of the object net. These paths

are called instantiations of the path expression. For all path expressions their weights are

propagated to the objects and references of their instantiations. All weights propagated

to some object (resp. reference) are accumulated yielding its swrc (resp. swtc) value.

Subsequently, this intuitive notion of swrc and swtc values is formalized.

For a given set of operations, let P be the set of weighted path expressions extracted

from these operations. The path expressions in P are regular expressions over the alphabet

(Type [Attr) �W where Type denotes the set of all types, Attr denotes the set of all

attributes and W denotes the set of all weights, i.e., a �nite subset of the real numbers.

To match the path expressions in P with the object net, we proceed in three steps:

1. All regular path expressions in P are merged to one regular path expression PE

P

.

2. PE

P

is transformed into a deterministic, �nite automaton denoted by DFA

P

.

3. The words of the language represented by DFA

P

are matched with the object net

in order to compute the swrc and swtc values.

In step 1 all regular path expressions of the set P = f p

1

; p

2

; : : : ; p

n

g are combined

to one regular path expression p

1

j p

2

j : : : j p

n

. This expression is then transformed using

algebraic identities for regular expressions; the resulting expression is called PE

P

.

In the second step PE

P

is transformed into a deterministic �nite automaton DFA

P

over the alphabet (Type [Attr)�W such that for each word p 2 jPE

P

j, all pre�xes of p

are in L(DFA

P

). Here, jPE

P

j is the set of weighted path expressions represented by the

regular expression PE

P

, and L(DFA

P

) is the language accepted by the automaton DFA

P

.

For example, if PE

P

= Gridpoint[1:5]:Y [1:5]:(X[1:5]

�

) then

L(DFA

P

) = fGridpoint[1:5]; Gridpoint[1:5]:Y [1:5]; Gridpoint[1:5]:Y [1:5]:X[1:5]; : : : g

Finally, the words, i.e., the weighted path expressions, of L(DFA

P

) are matched with

the object net. We denote the set of all objects of the object net by Obj ; if o 2 Obj ,

type(o) is the type of o.

For some object o 2 Obj we de�ne swrc(o; P; l) as the sum of all weights w

i

, such that

o lies on a path described by some path expression p 2 f p 2 L(DFA

P

) j length(p) � l g

6

and w

i

is the weight of the subexpression of p directly referencing object o. More precisely,

we de�ne

swrc(o; P; l) =

X

w 2W

ref

(o;P;l)

w

where W

ref

(o; P; l) is the multi-set containing all weights w

i

of subexpressions of the set

f p 2 L(DFA

P

) j length(p) � l g directly referencing object o:

W

ref

(o; P; l) = fw

n

j 9 o

0

2 Obj ; t[w

0

] : A

1

[w

1

] : � � � : A

n

[w

n

] 2 L(DFA

P

);

0 � n � l : type(o

0

) = t ^ o

0

:A

1

: � � � :A

n

= og

6

For some path expression p = t[w

0

]:A

1

[w

1

]: � � � :A

k

[w

k

] and k � 0, length(p) = k + 1.

11

For two objects o

1

; o

2

2 Obj being connected by some reference (o

1

; o

2

) the static

weighted transition probability swtc(o

1

; o

2

; P; l) is the sum of the weights w

i

, such that

the reference (o

1

; o

2

) is part of a path described by some weighted path expression p 2

f p 2 L(DFA

P

) j length(p) � l g and w

i

is the weight of the subexpression of p directly

referencing the \terminal" object o

2

of the edge (o

1

; o

2

). More precisely, we de�ne

swtc(o

1

; o

2

; P; l) =

X

w 2W

trans

(o

1

;o

2

;P;l)

w

where W

trans

(o

1

; o

2

; P; l) is the multi-set containing all weights w

i

of subexpressions of

f p 2 L(DFA

P

) j length(p) � l g describing some reference from o

1

to o

2

:

W

trans

(o

1

; o

2

; P; l) = fw

n

j 9 o

0

2 Obj ; t[w

0

] : A

1

[w

1

] : � � � : A

n

[w

n

] 2 L(DFA

P

);

1 � n � l : type(o

0

) = t ^ o

0

:A

1

: � � � :A

n�1

= o

1

^ o

0

:A

1

: � � � :A

n

= o

2

g

For sequence based clustering algorithms, swrc will be used as a presort order and

swtc is used for ordering of successors. For partitioning based algorithms, the edges of

the object graph will be labeled with their according swtc value.

Example: Consider the database extension

shown in Fig.1, and let the set P equal

fGridpoint[1:5] : Y [1:5] : (X[1:5])

�

g. The illus-

tration on the right hand side shows the

swtc(o

1

; o

2

; P; 3) values for all references of the

example extension. The computation of the

swrc(o; P; 3) values is analogous. 3

i

1

i

2

�

�

�3

0

i

3

6

1:5

i

4

6

1:5

�

�

�3

0

i

5

-

3:0

i

6

-

3:0

�

�

�3

0

i

7

-

0

6

1:5

i

8

-

0

6

1:5

�

�

�3

0

i

9

-

1:5

i

10

-

1:5

�

�

�3

0

i

11

-

0

6

1:5

i

12

-

0

6

1:5

�

�

�3

0

4 Simulation Environment

Although clustering strategies are incorporated into almost all object base management

systems|research prototypes as well as products|no system we know of provides for

the replacement of the implemented clustering mechanism. Therefore, we have developed

the extensible access simulator for object bases (called TEXAS). Even though TEXAS is

based on our object-oriented database system GOM [KMWZ91] the results carry over to

other object models. Every experiment is divided into three phases: the training phase

to collect statistics for the dynamic methods, the clustering phase where static access

patterns are determined and the objects are mapped to pages, and the benchmark phase

to evaluate the generated mapping of objects to pages.

We implemented two benchmarks on top of TEXAS: the Sun Engineering Bench-

mark [CS90] and the Grid Benchmark. The Sun benchmark is widely known for bench-

marking object-oriented database systems. Although providing a good �rst understanding

of the performance of di�erent clustering strategies, this benchmark exhibits several disad-

vantages. First, because of its simplicity, the schema of the Sun Benchmark does not well

re
ect real-world applications (e.g., in GOM, the schema of the Sun Benchmark consists

of only two tuple-structured types having four attributes in total, one set-structured type,

and one operation). Contrary to the Sun benchmark schema, real-world applications, es-

pecially engineering applications, often contain more complex types and several operations

12

i

1

Part

forward: i

2

backward: i

3

i

2

hConnection i

h i

4

; i

5

; i

6

i

i

3

hConnection i

h i

33

; : : : i

i

4

Connection

from: i

1

to: i

77

i

5

Connection

from: i

1

to: i

88

i

6

Connection

from: i

1

to: i

99

Figure 4: The structure of the Sun benchmark database

having diverging access patterns. Second, the behavior of the benchmark operations|and

the benchmark results|are di�cult to \understand" because of the random structure of

the database extension. All connections between objects are chosen randomly, preventing

any regular structure of the object net.

Therefore, we created the Grid benchmark having the following properties: (1) It

provides a high degree of recursiveness which is a challenge to any clustering strategy, (2)

it provides a (rather) complex schema with several operations exhibiting di�erent access

behaviors, and (3) the structure of the benchmark database includes regular patterns as

well as random connections between objects.

4.1 The Sun Benchmark

The database of the Sun benchmark consists of N objects of type Part, each of them being

connected to exactly K children (also of type Part). The database is built as follows: N

objects of type Part are created. For each of these objects, the K children are randomly

selected with probability 0:9 from the objects being \close" to the parent object (within

1% of N) in terms of OID distance, and with probability 0:1 from all objects. Every child

keeps back-references to all its parents. All references between Part objects are realized

via separate objects of type Connection . The structure of the database created by the

Sun benchmark is shown in Fig. 4 (for K = 3).

Two access operations, Lookup and Traversal , are de�ned for the Sun benchmark.

Lookup randomly selectsK Part objects and visits each of them separately. This operation

cannot be used for evaluating clustering algorithms because of its totally random access

behavior. Traversal performs a recursive depth-�rst traversal along the forward pointers

of one randomly selected Part object. (The forward pointers connect parents with their

children.) The depth of the traversal is limited by some non-negative integerD. Traversal

accesses

P

D

i=0

K

i

Part objects with possible duplicates.

4.2 The Grid Benchmark

The database of the Grid benchmark consists of N objects of type Gridpoint, each of

them having 8 attributes X, Y , Z, X

inv

, Y

inv

, Z

inv

, random, and data. The Gridpoints

constitute a regular grid via their X, Y , and Z references|as shown in Fig. 1 on Page 4.

The total number of Gridpoint objects equals N = NG � NX � NY � NZ where NG is

13

i

1

Gridpoint

X: i

2

X

inv

: i

42

Y : i

3

Y

inv

: i

39

Z: i

4

Z

inv

: i

51

random: i

5

data: i

6

i

5

fGridpoint g

f i

73

; i

91

g

i

6

Data

next : i

7

i

7

Data

next : i

8

: : :

i

15

Data

next : NULL

Figure 5: The structure of the Grid benchmark database

Operation Decapsulation Results

7

Traversal fGridpoint :(random:$)

�

g

ShortPaths fGridpoint :X; Gridpoint :Y; Gridpoint :Z;

Gridpoint :X

inv

; Gridpoint :Y

inv

; Gridpoint :Z

inv

g

LinearPath fGridpoint :X:Y:Z:Y

inv

:X

inv

:data :next g

Y X

�

move fGridpoint :Y:(X)

�

g

Y

�

ZZ

inv

move fGridpoint :(Y)

�

:Z; Gridpoint :(Y)

�

:Z

inv

g

next

�

move fGridpoint :data :(next)

�

g

Table 2: Operations of the Grid benchmark

the number of grids, and NX , NY , and NZ give the lengths of the grids in X, Y , and

Z dimension. Every Gridpoint also keeps back-pointers (X

inv

, Y

inv

, Z

inv

) to its neighbor

objects in X

�1

, Y

�1

, and Z

�1

direction, respectively.

Besides the regular grid patterns of the database, there are also randomly selected

object references. For each Gridpoint, these are stored in a separate set object referenced

by the attribute random. This set contains between 0 and K references to objects equally

selected among all Gridpoints (in the average K=2). The last component of Gridpoint is

the attribute data referencing a linear list of L objects of type Data. The objects of this

list are not shared between several Gridpoints. The structure of the grid database for

K = 4 and L = 10 is illustrated by Fig. 5.

We have de�ned six operations each of them performing di�erent access patterns.

The operations together with the path expressions obtained from their decapsulation are

summarized by Table 2. The �rst operation of the operation mix, Traversal , is similar to

the Traversal operation of the Sun benchmark: the grid is traversed depth-�rst following

random pointers all the time. Again, the depth of the traversal is limited by some non-

negative integer D. In the path expression Gridpoint:(random:$)

�

extracted from the

operation Traversal the set-iterator symbol $ denotes the access to all elements of some

set-structured object.

The operations ShortPaths and LinearPath merely traverse a set of prede�ned paths

as speci�ed in Table 2. The next two operations, Y X

�

move and Y

�

ZZ

inv

move, traverse

a path in X direction or in Y direction, respectively, until the end of the grid is reached.

Y X

�

move access the Y attribute of the receiver object before starting the traversal in

X direction, and Y

�

ZZ

inv

move accesses for each object o encountered along its traversal

in Y direction the attributes o:Z and o:Z

inv

. The last operation of the mix, next

�

move,

accesses all elements of the data list associated with some Gridpoint.

14

5 Benchmark Results

In this section, we present a selection of all experiments we have carried through. This

section is divided into two subsections. In Section 5.1, the Sun benchmark is used to

evaluate nine di�erent combinations of page mapping algorithms and methods for deriv-

ing access patterns of the applications. From these results, the best two page mapping

algorithms and the best two methods for deriving the access patterns are determined

and further evaluated using the Grid benchmark. The results for the corresponding four

combinations are shown in Section 5.2.

5.1 Sun Benchmark

The parameters of the Sun benchmark are N = 1300, K = 3, and D = 5 (7800 objects

in total). The object size for Part and Connection is 52 bytes, and for hConnection i 8

bytes per element. During the training phase 4000 Traversal operations were performed

ensuring that|in the average|three traversals where started at each Part object. We

measured nine combinations of page mappings and methods for deriving access patterns

as shown by the following table:

8

derivation of access behavior

dynamic static

partitioning

based

kern .dtc

ggp.dtc

kern.swtc

ggp.swtc

page

mapping

sequence

based

drc j bstf .dtc

kruskal .dtc j id

swrc j bstf .swtc

kruskal .swtc j id

type j pt

Some of these clustering strategies were already examined in previous work, or realized in

OODBMS prototypes: kern.dtc was examined in [TN91], kruskal.dtc j id was examined

in [CH91], drc j bstf.dtc is realized in Cactis, and type j pt is realized in O

2

. The remaining

�ve combinations are new using the decapsulation based access information or the greedy

graph partitioning algorithm (or both).

From the decapsulation of the operation Traversal the weighted path expression

Part[1] : (forward[1] : $[1] : to[1])

�

was determined and was used for computing the swrc and swtc values. For the clustering

strategy type j pt , we used the (linear) placement tree described by the path expression

Part :forward:$:to:forward:$:to:forward

A similar placement tree was determined as the best possible placement tree for the

traversal operation in a subset of the Tektronix benchmark described by Benzaken et

al. [HBD91].

7

The weights of all paths expressions equal the weights of the corresponding operations.

8

Partitioning based clustering algorithms are denoted by PartAlgo.EdgeLableAlgo. We use kern as

an abbreviation for the Kernighan & Lin graph partitioning algorithm, and ggp for our greedy graph

partitioning algorithm.

15

5.1.1 Single Page Bu�er

In the �rst benchmark, we evaluated the performance of the nine algorithms in terms of

page faults under varying page sizes, employing a page bu�er of size 1 (i.e., the number

of logical page references of the application was measured). When using a larger bu�er of

size > 1 not only the clustering algorithm but also the choice of the replacement strategy

in
uences the number of page faults|thereby diluting the e�ect of good clustering. As

we wanted to omit this in
uence, we used a single page bu�er for most of the experiments

described in this paper. A second reason for using a single page bu�er is that clustering

aims at grouping strongly related objects on one page. To measure this grouping ability

of algorithms in terms of page faults, a single page bu�er must be used. The results of

the �rst benchmark are visualized in Fig. 6 with the page size varying from 1 K to 4 K. 10

Traversals with randomly selected start objects were performed during this benchmark

producing 22736 object accesses.

4000

4500

5000

5500

6000

6500

7000

7500

8000

1K 2K 4K

P
a
g
e

f
a
u
l
t
s

Page size

type | pt
kern.dtc

kern.swtc
krusk.swtc | id, krusk.dtc | id

2000

2500

3000

3500

4000

4500

5000

5500

1K 2K 4K

P
a
g
e

f
a
u
l
t
s

Page size

drc | bstf.dtc
swrc | bstf.swtc

ggp.swtc
ggp.dtc

Figure 6: Traversal under varying page sizes

Fig. 6 shows that all clustering algorithms achieved a performance gain of 70 % or bet-

ter compared to random placement of the objects. Interestingly the plots of the clustering

algorithms employing the same page mapping algorithm run very close|indicating that

the statically derived access information (swrc, swtc) performs as well as the dynamically

derived access information (drc, dtc)|without inducing the disadvantages of monitoring.

Note that computing the drc and dtc values for 4000 training operations lasted 2 days on

a Sun Sparc 2 workstation, whereas the time for computing the swrc and swtc values was

below 10 minutes|which can even be done o�-line, i.e., does not have to be done during

regular database use.

Our greedy graph partitioning algorithm applied to both dynamically and statically

derived statistics performed best among the tested algorithms reducing the number of

page faults by about 90 % (for 4 K pages). The clustering algorithms using the best �rst

algorithm and the Kruskal algorithm also achieved good clustering results. The worst

performance exhibited the algorithms based on the kern algorithm and on placement

trees. The result of the kern algorithm is surprising as we performed 300 iterations over

all possible pairs of pages running about 12 hours on a Sun Sparc 2 workstation. However,

this algorithm failed to achieve a good partitioning of the object graph because of (1) the

�xed number of pages determined by the initial partition and (2) the varying object sizes

of the Sun benchmark (objects of di�erent size cannot be swapped between nearly full

16

pages). Contrary to kern the ggp algorithm is a constructive graph partitioning algorithm

and, thus, avoids the problems mentioned above.

The algorithm type j pt exhibited the worst performance of the nine algorithms. Inter-

estingly, the plot of this algorithm also shows the smallest decline upon the increase of the

page size. This can be explained as follows: as the traversal component of the algorithm

is speci�ed by the given placement tree, only small groups of objects are visited during

each traversal. Hence, an increase of the page size increases the number of groups per

page, but does not necessarily lead to an improvement of the clustering scheme because

objects of di�erent groups stored on a page might not be related at all.

5.1.2 Varying the Bu�er Size

Since the size of the bu�er could have an impact on the relative performance of the cluster-

ing algorithms, we compared the algorithms under varying bu�er sizes. Four experiments

were conducted with bu�er sizes varying from 1 to 8 pages for a page size of 4 K (8

pages of 4 K are about 10 % of the database volume). A LRU replacement strategy was

employed. The results of this benchmark are visualized in Fig. 7. Again, we conducted

10 Traversals with 22736 object accesses.

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8

P
a
g
e

f
a
u
l
t
s

Buffer size

type | pt
kern.dtc

kern.swtc
krus.dtc | id

krus.swtc | id

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

P
a
g
e

f
a
u
l
t
s

Buffer size

drc | bstf.dtc
swrc | bstf.swtc

ggp.swtc
ggp.dtc

Figure 7: Traversal under varying bu�er sizes

Although the di�erences among the clustering algorithms decrease as the bu�er size

increases, the relative order among the algorithms remains invariant. As in the previous

benchmark, the algorithms can be divided into three classes according to their perfor-

mance. Again the bstf and ggp based algorithms performed best, with the latter being

slightly superior on large bu�ers and essentially superior on small bu�ers. The static and

dynamic versions of the Kruskal algorithm together with the identical page mapping rep-

resent the second group. The last group contains the algorithms kern.dtc, kern.swtc and

type j pt performing about a factor 3� 4 worse than the ggp based algorithms. In [TN92]

similar results were observed for a bu�er size of 10 % of the database volume and a desired

LRU hit ratio of 90 %. However, in their work, all objects were of equal size leading to

much better results for the kern algorithm.

5.1.3 Run Time of Clustering Algorithms

In order to verify the algorithm's value for practical use, i.e., for clustering object bases

of realistic size, their run time has been evaluated in the next benchmark. The number

17

of Parts of the object base was varied from 200 to 500. Fig. 8 shows the results. The run

time of the algorithms is plotted against the logarithmically scaled y-axis.

9

Except for

kern all algorithms exhibited a very low run time of 1 sec or below. The run time of the

kern algorithm varied from 7.5 min to about 50 min due to the algorithm's complexity

of O(n

2:4

). This|for the rather small database volume|tremendous run time together

with the rather poor clustering results especially for objects of various sizes|as illustrated

by the �rst benchmark|disqualify the kern algorithm for clustering of realistically large

databases.

10

100

1000

10000

100000

1e+06

1e+07

200 300 400 500

[
m
s
]

Number of Parts

kern
bstf
pt

ggp, id

Page Size (KB) 4

200, 300,

No. of Parts

400, 500

ops 10

accessed objects � 22000

Figure 8: Run time of clustering algorithms

5.2 Grid Benchmark

In this subsection, we further examine the \winners" from the previous benchmarks|the

page mappings ggp and bstf together with the dynamic and static reference and transition

counts|using our Grid benchmark. The goals of these experiments are: (1) to compare

the quality of static and dynamic access information utilizing the same page mapping

algorithms, and (2) to compare the ggp with the bstf algorithm if both utilize the same

access information.

The database of the Grid benchmark consists of two separate grids with NX = 8,

NY = 8, NZ = 16 (2048 grid objects), K 2 f 0; : : : ; 4 g (mean 2), and L = 4 constituting

11893 objects in total. The object size for the types Gridpoint and Data is 300 bytes, and

the size of objects of type fGridpoint g is 8 bytes per element. The operation mix includes

all operations listed in Table 2.

10

For each experiment, the operation mix is described

by a set of quadruples (op; W; Tr ; Be) with W denoting the weight of the operation

op (as utilized by the decapsulation process), and Tr and Be denoting the probability

that op is chosen from the set of operations during the training phase or the benchmark

phase, respectively. During the training phase 4000 operations were performed, randomly

selected according to the Tr probabilities. During the benchmark phase, 1000 operations

were performed (selected according to the Be probabilities). For the reasons explained

9

Note, that we measured only the run time of the graph partitioning algorithms and the traversal

algorithms, respectively. The run time for pre-sorting the objects and computing the dtc and swtc values

was not included.

10

The depth of the Traversal operation was D = 2.

18

above, we describe here only those experiments that were carried out with a single page

bu�er.

5.2.1 Uniformly Distributed Operation Mix

The objective in the �rst benchmark is to examine the performance of clustering al-

gorithms under a broad operation mix with strongly diverging access patterns. 1000

operations were executed uniformly selected among all six operations|inducing 11759

object accesses. To model uniform importance of all operations within the operation mix,

the weight factors W of all operations were set to 1. The results of this benchmark are

visualized in Fig. 9.

7000

7500

8000

8500

9000

9500

10000

1K 2K 4K

P
a
g
e

f
a
u
l
t
s

Page size

drc | bstf.dtc
ggp.dtc

swrc | bstf.swtc
ggp.swtc

Operation W Tr Be

Traversal 1 1=6 1=6

ShortPaths 1 1=6 1=6

LinearPath 1 1=6 1=6

Y X

�

move 1 1=6 1=6

Y

�

ZZ

inv

move 1 1=6 1=6

next

�

move 1 1=6 1=6

ops (training) 4000

ops (benchm.) 1000

accessed objects 11759

Figure 9: Uniformly distributed operation mix

It is intuitively known that clustering strategies are less e�cient under a mix of opera-

tions exhibiting di�erent access behavior and working on the same set of objects. Indeed,

the plots in Fig. 9 show a ratio between page faults and object accesses ranging from 78 %

(drc j bstf.dtc, 4 K pages) to 60 % (ggp.swtc, 4 K pages)|constituting a much smaller

performance gain with respect to random object clustering than the clustering results

obtained from the Sun benchmark.

The results of this benchmark indicate further that the decapsulation based reference

and transition counts provide a better model of the complex access behavior of the op-

eration mix than the dynamic reference and transition counts. For both page mapping

algorithms|ggp and bstf|the ratio of page faults of the decapsulation based version and

the dynamic version is about 85 %. Although this result strongly depends on the actual

operation mix and database structure, it was also backed by further experiments where

decapsulation based reference and transition counts showed comparable or even better

quality for clustering decisions than dynamic reference and transition counts.

The third result of this benchmark is the performance of the ggp algorithm compared

to the bstf algorithm. ggp out-performed bstf independently of the utilized access infor-

mation. This result is also backed by a large variety of experiments we carried through

on both the Sun and the Grid benchmark.

19

5.2.2 Changing the Operation Mix

Although object bases are usually loaded with a broad mix of applications with strongly

diverging access patterns|as measured in the previous benchmark|there may be a few

distinguished particulary critical operations that are to be speci�cally supported by clus-

tering. As the access patterns of these critical operations may be totally submerged by

the total load of the object base they cannot be detected by dynamic monitoring under

normal database use. Of course the access patterns of these operations could be \learned"

during a speci�c training phase|but, this is only possible if the operations have no side

e�ects and, furthermore, it would induce an additional load on the object base system.

Nevertheless, the access patterns of critical operations can be deduced by decapsulating

the operations' implementation.

We designed the following benchmark in order to measure the performance of the

four algorithms from the prior benchmark based on an operation mix containing the

critical operations Traversal and Y X

�

move. The weights of these operations were set

to 100|denoting their criticality|and the weights of the remaining operations were set

to 1. During the training phase, all operations were invoked with uniform probability

1=6 (representing a mixed workload during normal operation of the object base), whereas

during the benchmark phase only the critical operations Traversal and Y X

�

move were

invoked with probability 1=2.

6000

7000

8000

9000

10000

11000

12000

13000

1K 2K 4K

P
a
g
e

f
a
u
l
t
s

Page size

drc | bstf.dtc
ggp.dtc

swrc | bstf.swtc
ggp.swtc

Operation W Tr Be

Traversal 100 1=6 1=2

ShortPaths 1 1=6 0

LinearPath 1 1=6 0

Y X

�

move 100 1=6 1=2

Y

�

ZZ

inv

move 1 1=6 0

next

�

move 1 1=6 0

ops (training) 4000

ops (benchm.) 1000

accessed objects 15620

Figure 10: Operation mix with critical operations

The results of this benchmark are shown in Fig. 10. As expected, the clustering algo-

rithms based on the swrc and swtc values performed much better than their corresponding

dynamic versions. Whereas in the previous benchmark, the ratio of page faults of the stat-

ic and the dynamic version of clustering algorithms employing the same page mapping

was about 85 %, it declined to 70 % in this benchmark. Please note that independent of

the utilized access information, the ggp algorithm achieved better clustering results than

the bstf page mapping.

We conducted a second experiment in order to measure the penalty that is imposed

on the \normal" use of the database by adapting the operation weigths according the

operations' criticality. In this experiment, the \normal" use of the database was modelled

by an uniformly distributed operation mix. We compared the ggp and bstf algorithms

using the operations' criticality as operation weights (100; 1; 1; 100; 1; 1) with the ggp

20

and bstf algorithms using equal operation weights corresponding to the operation mix

(1; 1; 1; 1; 1; 1). The operation mix is a set of quadruples (Op;W

1

;W

2

;Be) with W

1

and

W

2

denoting the criticality or the weights corresponding to the invocation probabilities,

respectively. The result are visualized in Figure 11.

As expected, the algorithms using the operations' criticality (W

1

) perform worse than

the algorithms using the \correct" access patterns of the benchmark (W

2

). Nevertheless,

the algorithms using the weights W

1

perform comparable or even better than the algo-

rithms based on dynamic access information that were measured in the benchmark of

the preceding subsection (see Fig. 9). Please note, that by adapting the weights of the

critical operations (which were set to 100 in the above benchmark) the algorithms could

be further tuned to reach a better performance during \normal" use of the database.

7000

7500

8000

8500

9000

9500

10000

10500

1K 2K 4K

P
a
g
e

f
a
u
l
t
s

Page size

ggp.swtc (W_1)
ggp.swtc (W_2)

swrc | bstf.swtc (W_1)
swrc | bstf.swtc (W_2)

Operation W

1

W

2

Be

Traversal 100 1 1=6

ShortPaths 1 1 1=6

LinearPath 1 1 1=6

Y X

�

move 100 1 1=6

Y

�

ZZ

inv

move 1 1 1=6

next

�

move 1 1 1=6

ops (training) �

ops (benchm.) 1000

accessed objects 11759

Figure 11: E�ect of adapting the operation weights

5.2.3 Length of Training Phase

The inferior clustering quality of algorithms relying on dynamic reference and transition

counts in the case of critical operations (as demonstrated by the previous benchmark)

indicates that a speci�c training phase for monitoring the access patterns of the critical

operations is necessary. As the training phase induces an additional load upon the object

base system, it should be as short as possible. The next benchmark was designed to

examine the impact of the length of the training phase on the clustering results of dynamic

clustering algorithms. The workload consisted of a mix of four operations whose weights

and invocation probabilities are shown in Fig. 12. During the benchmark phase, 1000

operations were executed. The number of operations executed during the training phase

varied from 0 (no access information) to 4000.

The graph of Fig. 12 shows the number of page faults as a function of the length of

the training trace. Obviously, the static algorithms swrc j bstf.swtc and ggp.swtc are not

a�ected by the length of the training trace, whereas the plots for the dynamic algorithms

drc j bstf.dtc and ggp.dtc show a steep decline between 0 and 1000 training operations

and a slow decline between 1500 and 4000 operations. For a training trace of length 0, no

access information is available. In this case, the page mapping algorithms randomly group

(structurally) related objects together. As the number of training operations increases

better access information becomes available, leading to a reduction of page faults. But

21

5000

6000

7000

8000

9000

10000

11000

12000

0 200 500 1000 1500 2000 3000 4000

P
a
g
e

f
a
u
l
t
s

Training operations

drc | bstf.dtc
ggp.dtc

swrc | bstf.swtc
ggp.swtc

Operation W Tr Be

Traversal 0 0 0

ShortPaths 20 0:2 0:2

LinearPath 10 0:1 0:1

Y X

�

move 0 0 0

Y

�

ZZ

inv

move 60 0:6 0:6

next

�

move 10 0:1 0:1

ops (training) 0 - 4000

ops (benchm.) 1000

accessed objects 14288

page size 4K

Figure 12: Importance of the training phase for dynamic sampling

even after 4000 training operations the dynamic versions of the clustering algorithms

do not reach the performance of the corresponding static versions. Interestingly, the

number of page faults of the dynamic algorithms increases between 1000 and 1500 training

operations. Thus, increasing the length of the training trace does not always lead to better

clustering results.

6 Conclusion

In this paper we have distinguished two dimensions that are crucial for clustering decisions:

(1) determining the access patterns of object base applications and (2) mapping objects

to pages based on the characteristics obtained in (1). Along the �rst dimension, we

distinguish dynamic monitoring of the object base from static operation analysis, i.e.,

decapsulation. Along the second dimension, we separate the algorithms into sequence

based and partitioning based mappings of objects to pages.

The contribution of this paper is two-fold. Along the �rst dimension, i.e., obtaining the

access behavior, we developed a new technique, called decapsulation, for static operation

analysis. The decapsulation yields a set of weighted path expressions where the weights

represent traversal frequency or \criticality". The weighted path expressions are matched

with the actual object net to obtain static weighted reference counts for objects and static

weighted transition counts for inter-object relationships. Along the second dimension,

i.e., mapping objects to pages, we proposed a new heuristic partitioning based algorithm

called greedy graph partitioning (ggp). Whereas former proposals for graph partitioning

are prohibitively expensive, our ggp algorithm exhibits a moderate run time complexity

that makes it suitable even for (realistically) large object bases.

Our extensive benchmarking|of which only a small fraction could be presented in

the paper|indicates that the ggp page mapping algorithm is superior to the various

sequence based mappings. Furthermore, the benchmarks substantiate that in many cases

reference and transition counts obtained from static operation analysis (decapsulation)

are superior to those obtained from dynamic monitoring, especially if certain operations

are particularly critical and have to be given priority in clustering decisions. Even under

the objective of maximizing the overall throughput of a wide variety of operations, static

analysis performs comparable to dynamic monitoring|without inducing the additional

22

overhead of monitoring.

Acknowledgements

This work was supported by the German Research Council DFG under contracts SFB 346

and Ke 401/6-1. Peter C. Lockemann's continuous support of our research is gratefully

acknowledged. Christoph M�uller and Heiner Spies carried out the implementation of the

decapsulation process.

References

[ASU87] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and

Tools. Addison Wesley, 1987.

[BD90] V. Benzaken and C. Delobel. Enhancing performance in a persistent object

store: Clustering strategies in O

2

. In A. Dearle, G. Shaw, and S. Zdonik, ed-

itors, Implementing Persistent Object Bases, pages 403{412, Martha's Vine-

yard, Sep 1990. Morgan Kaufmann.

[BKKG88] J. Banerjee, W. Kim, S. J. Kim, and J. F. Garza. Clustering a DAG for

CAD databases. IEEE Trans. on Software Engineering, 14(11):1684{1699,

Nov 1988.

[CDRS86] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita. Object and

�le management in the EXODUS extensible database system. In Proc. of

The Conf. on Very Large Data Bases (VLDB), pages 91{100, Kyoto. Japan,

Aug 1986.

[CH91] J. R. Cheng and A. R. Hurson. E�ective clustering of complex objects in

object-oriented databases. In Proc. of the ACM SIGMOD Intl. Conf. on

Management of Data, pages 22{31, Denver, CO, May 1991.

[CS90] R. Cattell and J. Skeen. Engineering database benchmark. Technical report,

Database Engineering Group, Sun Microsystems, Mountain View, Ca., April

1990.

[HBD91] G. Harrus, V. Benzaken, and C. Delobel. Measuring performance of clustering

strategies: The CluB-0 benchmark. Technical Report 66-91, Altair, GIP-

Altair-INRIA, BP-105, 78153 Le Chesnay, France, Jan 1991.

[HK89] S. E. Hudson and R. King. Cactis: A self-adaptive, concurrent implemen-

tation of an object-oriented database management system. ACM Trans. on

Database Systems, 14(3):291{321, Sept 1989.

[HZ87] M. Hornick and S. Zdonik. A shared, segmentedmemory system for an object-

oriented database. ACM Trans. on O�ce Information Systems, 5(1):70{95,

Jan 1987.

23

[KCB88] W. Kim, H. T. Chou, and J. Banerjee. Operations and implementation of

complex objects. IEEE Trans. on Software Engineering, 14(7):985{996, Jul

1988.

[KKM91] A. Kemper, C. Kilger, and G. Moerkotte. Function materialization in object

bases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data,

pages 258{267, Denver, CO, May 1991.

[KL70] B. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning

graphs. Bell System Technical Journal, 49(2):291{307, Feb 1970.

[KM90] A. Kemper and G. Moerkotte. Access support in object bases. In Proc. of the

ACM SIGMOD Intl. Conf. on Management of Data, pages 364{374, Atlantic

City, NJ, May 1990.

[KMWZ91] A. Kemper, G. Moerkotte, H.-D. Walter, and A. Zachmann. GOM: a strongly

typed, persistent object model with polymorphism. In Proc. of the German

Conf. on Databases in O�ce, Engineering and Science (BTW), pages 198{

217, Kaiserslautern, Mar 1991. Springer-Verlag, Informatik Fachberichte Nr.

270.

[Kru56] J. B. Kruskal. On the shortest spanning subgraph of a graph and the travelling

salesman problem. Proc. of the Amer. Math. Soc., 7:48{49, 1956.

[LNS90] R. Lipton, J. Naughton, and D. Schneider. Practical selectivity estimation

through adaptive sampling. In Proc. of the ACM SIGMOD Intl. Conf. on

Management of Data, pages 1{11, 1990.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice

Hall, Englewood Cli�s, NJ, 1982.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of

tuples satisfying a condition. In Proc. of the ACM SIGMOD Intl. Conf. on

Management of Data, pages 256{276, 1984.

[Sal69] A. Salomaa. Theory of Automata, volume 100 of Int. Series of Monographs

in Pure and Applied Mathematics. Pergamom Press, Oxford, 1969.

[Sch77] M. Schkolnick. A clustering algorithm for hierarchical structures. ACM

Trans. on Database Systems, 2(1):27{44, Mar 1977.

[Sta84] J. Stamos. Static grouping of small objects to enhance performance of a

paged virtual memory. ACM Transactions on Computer Systems, 2(2):155{

180, May 1984.

[TN91] M. Tsangaris and J. F. Naughton. A stochastic approach for clustering in

object bases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of

Data, pages 12{21, Denver, CO, May 1991.

[TN92] M. Tsangaris and J. Naughton. On the performance of object clustering

techniques. In Proc. of the ACM SIGMOD Intl. Conf. on Management of

Data, pages 144{153, San Diego, CA, June 1992.

24

A Decapsulation

This section summarizes the principles of decapsulation. We de�ne the decapsulation

process only for a subset of the GOM data model, but it can easily be extended to cover

the full model. Without loss of generality, we may assume that there are no super
uous

assignments in the operations, i.e., assignments where a variable is set and subsequently

overwritten before the value is used elsewhere. (Statements of this kind may be removed

without altering the semantics.) The input of the decapsulation process is some operation

op with its associated weight factor w

op

. The output is a set of weighted path expres-

sions | denoted by paths(op) | describing the access behavior of op. Weighted path

expressions are of the form v[w

0

]:A

1

[w

1

]: � � � :A

k

[w

k

] where v is a variable referencing some

object, and the A

i

are attribute names.

11

The weight factors w

i

indicate how often paths

of this kind probably will be traversed during an invocation of op. If all weight factors

of some path expression p equal 0 the weights can be omitted (in this case p is called a

non-weighted path expression).

The de�nition of the decapsulation process proceeds in �ve steps:

1. For some expression e we de�ne the set P(e) of all weighted path expressions oc-

curring in e.

2. For each statement S the execution probability of S is computed. The execu-

tion probabilities of statements are used to weight the path expressions in the set

paths(op) (see step 5).

3. Variables are replaced by their \value" according to preceding assignments.

4. The semantics of loop-statements are considered.

5. The �nal result | the set paths(op) | is computed by merging the path expressions

extracted from the expressions and re-weighting these expressions using the weight

of the operation and the execution probabilities of the statements.

This section is organized re
ecting the above outline.

A.1 Expressions

The set of all path expressions occurring in some expression e is denoted by P(e). The

following de�nition introduces the mapping P.

De�nition A.1 (Path Extraction for Expressions)

Let c be some constant, v some variable, A

1

; : : : ; A

k

attributes, and � some binary operator,

e.g., +, �, <. Further, let e

1

; e

2

be two expressions. The mapping P is de�ned by the

following equations:

P(c) = ;

P(v) = f v[0] g

P(v:A

1

: � � � :A

k

) = f v[1]:A

1

[1]: � � � :A

k�1

[1]:A

k

[0] g

P(e

1

� e

2

) = P(e

1

)] P(e

2

)

11

Additionally, weighted path expressions may contain operation invocations and the set iterator symbol

$ denoting the access to all elements of some set- or list-structured object. However, in the remainder of

this section we consider only path expressions containing neither operation invocations nor the iterator

symbol $.

25

Statement S Data-
ow equations for S

v := e w

out

(S) = w

in

(S)

return e w

out

(S) = 0

if e then S

1

else S

2

w

in

(S

1

) = prob(e) �w

in

(S)

w

in

(S

2

) = (1� prob(e)) � w

in

(S)

w

out

(S) = w

out

(S

1

) + w

out

(S

2

)

while e do S

1

w

in

(S

1

) = prob(e) �w

in

(S)

w

out

(S) = (1� prob(e)) � w

in

(S) + w

out

(S

1

)

S

1

;S

2

(S

2

must not be a

sequence of statements)

w

in

(S

1

) = w

in

(S)

w

in

(S

2

) = w

out

(S

1

)

w

out

(S) = w

out

(S

2

)

Table 3: Data-
ow equations for computing execution probabilities for statements

2

The operator] computes the union of two sets P

1

, P

2

of weighted path expressions. If

there are two path expressions p

1

2 P

1

and p

2

2 P

2

such that the variable and attributes

of p

1

equal those of p

2

then p

1

and p

2

are joined to one path expression in P

1

] P

2

with

corresponding weights being added.

A.2 Execution Probabilities

Path expressions only occur within expressions, and expressions are embedded in state-

ments. Our goal is to assign to the each statement S the probability that S will be

executed during some invocation of op. The execution probability of S is then propagat-

ed to the path expresssion occuring in S.

We de�ne two probability factors for each statement S: w

in

(S) denotes the probability

that statement S will be executed, i.e., w

in

(S) is the execution probability of S. w

out

(S)

denotes the probability, that after the execution of S terminated the statement succeeding

S will be executed. w

out

(S) equals w

in

(S) if there are no return statements in S. The

computation of the probabilities w

in

and w

out

are de�ned by the data-
ow equations of

Table 3. The computation starts with the statement comprising the body of op denoted

by S

0

with w

in

(S

0

) = 1. Then, the computation of w

in

and w

out

proceeds with subsequent

and directly enclosed statements.

In the equations of Table 3 prob(e) equals the probability of some boolean expression

e to be true. This probability can be estimated as follows:

� Statistics about the state of the database may contain information to estimate

selectivity factors. The statistics can be determined either statically by inspecting

the database or dynamically by keeping result traces for boolean expressions (e.g.,

see [LNS90, PSC84]).

� If only a rough branching probability is needed the values of prob(e) can be set to

a constant, e.g., 0.5, for all expressions e.

� The database programmer can be asked to set the values prob(e).

26

Subsequently, we abbreviate the execution probability w

in

(S) of some statement S by

w

S

.

A.3 Statements

Based on the mapping P from expressions to sets of path expressions and the execution

probabilities of statements we can now de�ne the extraction of weighted path expressions

from statements. In this section, we do not consider the e�ect of loop-statements, e.g.,

while statements. These are discussed in Section A.4.

For the extraction of path expressions from statements the e�ect of variable assign-

ments occurring in preceding statements has to be considered. This is done by replac-

ing variables by their current \value". We will use term rewriting systems to repre-

sent the state of variable assignments. The rules of these rewriting systems are of the

form (v p;W) with v being a variable, p being a non-weighted path expression, and

0 � W � 1. The rule (v p;W) indicates that v references the same object as p with

probability W . Rules of the above form are called assignment rules. Subsequently, the

following de�nitions are needed.

De�nition A.2 (Auxiliary de�nitions)

Let R;R

1

; R

2

be a set of assignment rules and let V be a set of variables. Then the sets

defs(R), R � V , and R

1

]R

2

are de�ned as

defs(R) = f v j 9 (v p;W) 2 R g

R � V = f (v p;W) 2 R j v 62 V g

R

1

]R

2

= f (v p;W

1

+W

2

) j (v p;W

1

) 2 R

1

; (v p;W

2

) 2 R

2

g

[f (v p;W

1

) 2 R

1

j 6 9(v p;W

2

) 2 R

2

g

[f (v p;W

2

) 2 R

2

j 6 9(v p;W

1

) 2 R

1

g

Let p = v[w

0

]:A

1

[w

1

]: � � � :A

k

[w

k

] be a path expression, P a set of path expressions, R

a set of assignment rules, and u 2 [0; 1].

p � u = v[w

0

� u]:A

1

[w

1

� u]: � � � :A

k

[w

k

� u]

P � u = f p � u j p 2 P g

R � u = f (v p;W � u) j (v p;W) 2 R g

2

A set of assignment rules is applied to a set of path expressions (or to the path

expressions of a second set of assignment rules) using the operator � which is de�ned by

De�nition A.3.

De�nition A.3 (Rewriting of path expressions)

Let P be a set of path expressions, R; R

0

two sets of assignment rules, and 0 � w � 1.

P �

w

R

0

= f p

0

�W

0

j 9 p 2 P : (p;R

0

; w) �! (p

0

;W

0

) g

R �

w

R

0

= f (v p

0

;W �W

0

) j 9 (v p;W) 2 R : (p;R

0

; w) �! (p

0

;W

0

) g

The predicate (p;R

0

; w) �! (p

0

;W

0

) holds for some set R

0

of assignment rules, some path

expressions p and p

0

and some w; W

0

2 [0; 1] i�

27

1. p = v

1

[w

0

]:A

1

[w

1

]: � � � :A

k

[w

k

], there is some rule (v

1

 v

2

:B

1

: � � � :B

l

;W

0

) 2 R

0

, and

p

0

= v

2

[0]:B

1

[0]: � � � :B

l�1

[0]:B

l

[w

0

]:A

1

[w

1

]: � � � :A

k

[w

k

] or

2. there is no rule in R

0

applicable to p, p = p

0

, and W

0

= w.

w is the default weight if there is no rule applicable. We write P � R

0

for P �

1

R

0

and

R �R

0

for R �

1

R

0

. 2

To compute for some statement S the set of assignment rules valid at the beginning of

S | denoted by in(S) | and the set of assignment rules valid at the end of S | denoted

by out(S) | we analyze the data
ow of the operation op similar to [ASU87, Chapter

10]. Before de�ning the sets in(S) and out(S) we introduce the sets gen(S) and kill (S)

as follows: For some statement S the set gen(S) contains rules modelling all assignments

generated by S, and the set kill (S) contains the identi�ers of all variables whose former

assignments were killed by S. If S assigns a new value to some variable v then v 2 kill (S)

holds.

Note the di�erence between the sets gen and out : For some statement S, gen(S)

contains all assignments that reach the end of S independently of the assignments reaching

the beginning of S, whereas out(S) is the set of assignments that reach the end of S with

respect to the assignments valid at the beginning of S. Similarly, the weight assigned

to some rule (v p;W) 2 gen(S) denotes the probability that p is assigned to v when

executing S, whereas the weight assigned to some rule (v

0

 p

0

;W

0

) 2 out(S) denotes

the probability of p

0

being assigned to v

0

if S is executed with probability w

S

, i.e., during

some invocation of the operation op.

The equations in Table 4 give an inductive de�nition of the sets gen , kill , in, and

out . First the sets gen and kill are computed for all statements of op starting with the

innermost statements, i.e., statements without nested substatements. To compute gen(S)

and kill (S) for some statement S the sets gen and kill must already be computed for all

substatements of S. Then, the sets in and out are computed top-down starting at the

statement representing the body of op (for that statement the set in is empty). For all

other statements S the set in(S) is inherited from the statement preceding or directly

enclosing S.

Subsequently, the data
ow equations of Table 4 are discussed separately for each kind

of statement.

Empty statement, return statement. Neither the empty statement � nor the return

statement produce any assignment rules. Therefore, for some empty statement or return

statement S the sets gen(S) and kill (S) are empty, and out(S) = in(S).

Assignment. If S is an assignment statement v := e the set gen(S) contains one

assignment rule (v p; 1) for each p 2 P(e) � 0. The non-weighted path expressions

P(e) � 0 are used to rewrite path expressions extracted from subsequent statements. In

these statements the evaluation of v does not induce the traversal of any path | that

is why the weights of the path expressions are set to 0 in the corresponding assignment

rules. The set out(S) for some assignment statement S contains all assignment rules

generated by S after being rewritten by the assignment rules valid at the beginning of S

using the default weight w

S

(gen(S) �

w

S

in(S)), together with all assignment rules valid

at the beginning of S but not killed by S (in(S)� kill (S)).

28

Statement S Data-
ow equations for S

return e, �

(� denotes

the empty statement)

gen(S) = ;

kill(S) = ;

out(S) = in(S)

v := e gen(S) = f (v p; 1) j p 2 P(e) � 0 g

kill(S) = f v g

out(S) = (gen(S) �

w

S

in(S))] (in(S)� kill(S))

if e then S

1

else S

2

gen(S) = gen(S

1

) � prob(e)] gen(S

2

) � (1� prob(e))

] f (v v; w

S

1

) j v 2 defs(gen(S

2

)) n defs(gen(S

1

)) g

] f (v v; w

S

2

) j v 2 defs(gen(S

1

)) n defs(gen(S

2

)) g

kill(S) = kill(S

1

) [kill(S

2

)

in(S

1

) = in(S)

in(S

2

) = in(S)

out(S) = out(S

1

)] out(S

2

)

] f (v v; w

S

1

) j v 2 defs(gen(S

2

)) n defs(gen(S

1

)) g

] f (v v; w

S

2

) j v 2 defs(gen(S

1

)) n defs(gen(S

2

)) g

while e do S

1

gen(S) = gen

�

(S

1

)

kill(S) = kill(S

1

)

in(S

1

) = (gen(S) �

w

S

in(S))] in(S)

out(S) = out(S

1

)

S

1

;S

2

(S

2

must not be a

sequence of statements)

gen(S) = (gen(S

2

) � gen(S

1

))] (gen(S

1

)� kill(S

2

))

kill(S) = kill(S

2

) [kill(S

1

)

in(S

1

) = in(S)

in(S

2

) = out(S

1

)

out(S) = out(S

2

)

Table 4: Data-
ow equations for reaching and rewriting assignments

Conditional Statement. The set gen(S) for a statement S : if e then S

1

else S

2

contains all assignment rules generated either by S

1

or by S

2

, i.e., the set gen(S

1

) �

prob(e) [gen(S

2

) � (1 � prob(e)). Further, identity rules of the form v v are inserted

into gen(S) for all variables to which a new value is assigned in only one of the branches

| because the use of the old values of v has to be re-weighted according to the branching

probability. For example, consider the conditional statement

S : if g.X 6= NULL

S

1

: then g := g.X;

[S

2

: else ;]

where the else branch is empty. Let the branching probability of S be 0.7. Clearly, the

rules (g g:X; 0:7) and (g g; 0:3) have to be inserted into gen(S) to re
ect the state

of variable assignments independent of the outcome of the condition g:X 6= NULL.

Contrary to [ASU87] we de�ne the set kill (S) as the union of kill (S

1

) and kill (S

2

) to

compensate for the additional identity rules inserted into the set gen(S). (In [ASU87]

kill (S) = kill (S

1

) \ kill (S

2

).)

Sequence. A sequence of statements S

1

; S

2

is analyzed from left to right according to

the sequence of execution | here, S

2

must not be a sequence of statements. The set of

29

assignment rules generated by S

1

; S

2

is given by all statements generated by S

2

rewritten

by the assignment rules generated by S

1

(gen(S

2

) � gen(S

1

)) and all assignment rules

generated by S

1

that are not killed by S

2

(gen(S

1

)� kill (S

2

)).

A.4 Loops

Our desire is that recursive assignments generated by the body of a loop are re
ected

by the extracted path expressions. For example, consider the loop statement S

2

of the

operation YX

�

move (also shown in Fig. 3):

S

2

: while g.X 6= NULL do

S

3

: g := g.X;

The assignment statement S

3

generates the rule gen(S

3

) = f (g g:X;w

S

3

) g. But

which rules are generated by repeatedly executing S

3

inside the loop? Obviously, in each

iteration the variable g is recursively de�ned using the value of g from the last iteration

(or its initial value). The corresponding assignment rules are

f (g g;w

S

3

); (g g:X;w

S

3

); (g g:X:X;w

S

3

); : : : g

which can be abbreviated by f (g g(:X)

�

; w

S

3

) g| using the \�"-notation known from

regular expressions. We call this set the loop closure of the statement S

3

and denote it

gen

�

(S

3

). In the data
ow equations of Table 4 for some loop statement S : while e do S

1

the loop closure gen

�

(S

1

) is used to de�ne the set of assignment rules gen(S) generated

by the loop S.

To compute the loop closure gen

�

(S) for an arbitrary statement S we proceed in three

steps:

1. From statement S we compute the set gen(S) of assignment rules generated by S

using the data
ow equations of Table 4.

2. Then, the rules of gen(S) are transformed into a deterministic �nite automaton

(DFA), whose states represent the variables appearing in gen(S) and whose transi-

tions represent the rules of gen(S). This automaton is denoted A(S).

3. Finally, the rules of the loop closure gen

�

(S) are de�ned by the regular language

accepted by A(S).

The goal of transforming the set gen(S) into a DFA A(S) is to yield a DFA for a

language representing all path expressions that may be traversed by the sequence

S; S; S; : : :

Obviously, the transition function of A(S) must directly re
ect the rules of gen(S). For

reasons of simplicity we do not consider the weights of the rules in gen(S) when con-

structing the automaton A(S).

12

It is convenient to take the variables occuring in gen(S)

12

Considering the weights of the rules would mean to get a probabilistic automaton [Sal69]. We plan

to extend the decapsulation process described in this work to include also weights of assignment rules

inside the body of loop statements. By ommitting these weights, the decapsulation process described in

this work cannot capture the e�ect of branching statements inside loop statements.

30

as states and the rules of gen(S) as transitions in A(S). Some rule v

2

 v

1

:Q 2 gen(S)

13

corresponds to a transition from state v

1

into state v

2

with the input Q. To specify the

domain of the transition function in the subsequent de�nition of A(S) we abbreviate the

set of all attribute chains Q occuring in the rules of gen(S) by E. (The DFA A(S) will

be de�ned over the alphabet E.)

The variables appearing on the right hand side of some rule in gen(S), e.g., the variable

v

1

in the above example, are called the initial variables of S as they represent the input

to the execution of S; S; S; : : :; all paths traversed by S; S; S; : : : start at one of the

initial variables of S. Because of that, the initial variables of S are taken as initial states

of A(S).

De�nition A.4 (Computation of A(S))

Let S be some statement generating the assignment rules gen(S). The DFA A(S) =

(S;S

0

; �) is de�ned by the following condition:

v

1

2 S

0

; v

2

2 S; �(v

1

; Q) = v

2

i� v

2

 v

1

:Q 2 gen(S)

where S is the set of states, S

0

� S is the set of initial states and � : S � E ! S is the

transition function of A(S). 2

The language that is represented by some initial state v

1

2 S

0

and some state v

2

2 S in

the DFA A(S) is

L(A(S); v

1

; v

2

) = fQ

1

Q

2

: : : Q

k

j �(v

1

; Q

1

Q

2

: : : Q

k

) = v

2

g

Here, the domain of the transition function � is extended to S�E

�

in the canonical way.

Now we must show that A(S) accepts exactly those words representing assignments

generated by the sequence S; S; S; : : :

Lemma A.1 The variable v

2

may be assigned the value of v

1

:Q

1

:Q

2

: � � � :Q

k

during the

execution of S; S; S; : : : i� v

1

2 S

0

, v

2

2 S, and Q

1

Q

2

: : :Q

k

2 L(A(S); v

1

; v

2

) hold.

Proof The following equivalences hold according to the de�nition of A(S):

(P1) Q

1

Q

2

: : :Q

k

2 L(A(S); v

1

; v

2

)

() �(v

1

; Q

1

Q

2

: : : Q

k

) = v

2

() �(�(: : : (�(v

1

; Q

1

); : : :); Q

k�1

); Q

k

) = v

2

(P2) () 9 v

(1)

; v

(2)

; : : : ; v

(k)

; v

(k+1)

2 S :

v

(1)

= v

1

^ v

(k+1)

= v

2

^ v

(i+1)

 v

(i)

:Q

i

2 gen(S) (1 � i � k)

By considering the equivalence (P1) () (P2) and the equation

gen(S; S; : : : ; S

| {z }

k times

) = gen(S) � gen(S) � : : : � gen(S)

| {z }

k times

(1)

the result of the lemma is easily being seen. Equation (1) is derived from the data
ow

equations of Table 4 for sequences and the fact that gen(S) � kill (S) = ; holds for all

statements.

Now we can de�ne the loop closure gen

�

(S) of some statement S in terms of the

languages represented by the DFA A(S):

13

Subsequently, let Q denote a sequence of attributes.

31

De�nition A.5 (Computation of gen

�

(S))

gen

�

(S) = f (v

2

 v

1

:�

1;2

; w

S

) : j�

1;2

j = L(A(S); v

1

; v

2

) g

where �

1;2

is a regular expression over the alphabet E and the auxiliary alphabet f j; �; (;) g,

and j�

1;2

j denotes the language represented by �

1;2

. 2

An O(n

3

) algorithm to compute a regular expression � to some DFA A accepting the

regular language L with L = j�j can be found in [Sal69] (where n is the number of states

in A).

Example: Consider the body of the while-statement shown in Fig. 13 (a). The as-

signment rules generated by S

1

;S

2

;S

3

;S

4

are f g

1

 g

2

:X:X; g

2

 g

3

:Y; g

3

 g

2

:X:Z g.

The DFA A(S

1

;S

2

;S

3

;S

4

) of the loop's body is shown in Fig. 13 (c); the initial states

of this DFA are marked by squares, the remaining states by circles. The set gen(S) =

gen

�

(S

1

; S

2

; S

3

; S

4

) is given by

f g

1

 (g

2

(:X:Z:Y)

�

:X:X j g

3

(:Y:X:Z)

�

:Y:X:X)

g

2

 (g

2

(:X:Z:Y)

�

j g

3

(:Y:X:Z)

�

:Y)

g

3

 (g

2

(:X:Z:Y)

�

:X:Z j g

3

(:Y:X:Z)

�

)g

3

S: while e do

S

1

: g

1

:= g

2

:X ;

S

2

: g

2

:= g

3

:Y ;

S

3

: g

3

:= g

1

:Z;

S

4

: g

1

:= g

1

:X ;

end while;

(a) Loop-statement

gen(S

1

;S

2

;S

3

;S

4

) =

f g

2

 g

3

:Y;

g

3

 g

2

:X:Z;

g

1

 g

2

:X:X g

(b) The assignment rules

of gen(S

1

;S

2

;S

3

;S

4

)

g

1

�

��

g

2

g

3

�

�

�

�

��

�
�

X:X

Y X:Z

(c) Corresponding DFA

A(S

1

;S

2

;S

3

;S

4

)

Figure 13: Computation of the loop closure of a sequence of assignments

A.5 Collecting All Path Expressions of an Operation

To compute the set paths(op) containing all weighted path expressions traversed by the

operation op we �rst de�ne for each statement S of op the set paths(S) containing all

paths being traversed by S (or any of its substatements). Then paths(op) equals paths(S

0

)

where S

0

is the body of op. The path expressions occurring in some statement S are

rewritten by the rules of in(S) and multiplied by the weight w

S

� w

op

before they are

inserted into paths(S). If S is a loop statement, in(S) [out(S) is used for rewriting the

path expressions of S because also assignments generated by the execution of the loop's

body may be valid during the next iteration of the loop. The equations of Table 5 de�ne

the set paths(S) for an arbitrary statement S.

32

Statement S Equations for paths(S)

� paths(S) = ;

v := e paths(S) = f p � w

op

j p 2 P(e) �

w

S

in(S)g

return e paths(S) = f p � w

op

j p 2 P(e) �

w

S

in(S)g

if e then S

1

else S

2

paths(S) = f p � w

op

j p 2 P(e) �

w

S

in(S)g] paths(S

1

)] paths(S

2

)

while e do S

1

paths(S) = f p � w

op

j p 2 P(e) �

w

S

(in(S)[out(S))g] paths(S

1

)

S

1

;S

2

paths(S) = paths(S

1

)] paths(S

2

)

Table 5: De�nition of the set paths(S)

B SUN-Benchmark

B.1 De�nition of PartType

persistent type PartType is

body [

oid : int;

to connect : ConnectionListType;

from connect : ConnectionListType;

]

operations

declare PartType : int ! void;

declare access : ! void;

declare traversal fwd : int ! void;

declare traversal bwd : int ! void;

implementation

de�ne PartType(i) is

begin

self.oid := i;

self.to connect.create.persistent;

self.from connect.create.persistent;

self.persistent;

end de�ne PartType;

de�ne access is

var oid : int;

begin

oid := self.oid;

end de�ne access;

de�ne traversal fwd(depth) is

var ii : int;

p : PartType;

pl : PartListType;

dl : IntListType;

33

begin

pl.create.insert(self);

dl.create.insert(depth);

while (not pl.is empty) begin

depth := dl.remove last � 1;

p := pl.remove last;

if (depth 6= 0) begin

p.access;

ii := 0;

while (ii < p.to connect.length) begin

ii := ii + 1;

dl.append(depth);

pl.append(p.to connect.n th(ii).to);

end while;

end if;

end while;

end Traversal fwd;

de�ne traversal bwd(depth) is

var ii : int;

p : PartType;

pl : PartListType;

dl : IntListType;

begin

pl.create.insert(self);

dl.create.insert(depth);

while (not pl.is empty) begin

depth := dl.remove last � 1;

p := pl.remove last;

if (depth 6= 0) begin

p.access;

ii := 0;

while (ii < p.from connect.length) begin

ii := ii + 1;

dl.append(depth);

pl.append(p.from connect.n th(ii).from);

end while;

end if;

end while;

end Traversal bwd;

end type PartType;

B.2 De�nition of ConnectionType

persistent type ConnectionType is

body [

oid : int;

from, to : PartType;

34

]

operations

declare ConnectionType : PartType, PartType ! void;

implementation

de�ne ConnectionType(from part, to part) is

begin

self.from := from part;

self.to := to part;

self.oid := 0;

self.persistent;

end de�ne ConnectionType;

end type ConnectionType;

B.3 Creation of Database

persistent type PartListType is < PartType >;

persistent type ConnectionListType is < ConnectionType >;

persistent type IntListType is < int >;

persistent var all part objects : PartListType;

persistent var number of parts : int;

persistent var number of connections : int;

declare create db : int,int ! void;

de�ne create db(parts, connections) is

var ii,jj : int;

p,q : PartType;

c : ConnectionType;

index : int;

begin

for (ii := 0; ii < parts; ii := ii + 1) begin

p.create(ii);

all part objects.insert(ii) := p;

end for ;

for (ii := 0; ii < parts; ii := ii + 1) begin

p := all part objects.n th(ii);

for (jj := 0; jj < connections; jj := jj + 1) begin

if (rand
oat > 0.10) begin

index := ii + (rand int % (parts / 100)) � parts / 200;

if (index < (parts / 200)) begin

index := index + parts / 200;

end if ;

if (index > (parts � parts / 200)) begin

35

index := index � parts / 200;

end if ;

end if ;

else begin

index := rand int % number of parts;

end else ;

q := all part objects.n th(index);

c.create(p,q);

p.to connect.insert(jj) := c;

q.from connect.insert(q.from connect.length) := c;

end for ;

end for ;

end de�ne create db;

B.4 The Benchmark

declare benchmark : int,int,int,
oat,
oat,
oat! void;

de�ne benchmark(ops,n look,n trav,P lookup,P traversal fwd,P traversal bwd) is

var p : part type;

r :
oat;

ii,jj : int;

begin

for (ii := 0; ii < ops; ii := ii + 1) begin

r := rand
oat;

if (r � P lookup) begin

for (jj := 0; jj < n look; jj := jj + 1) begin

p := all part objects.n th(rand int % number of parts);

p.access;

end for ;

end if ;

else begin

if ((P lookup < r) and

(r � (P lookup + P traversal fwd))) begin

p := all part objects.n th(rand int % number of parts);

p.traversal fwd(n trav);

end if ;

else begin

if ((P lookup + P traversal fwd < r) and

(r � (P lookup + P traversal fwd + P traversal bwd))) begin

p := all part objects.n th(rand int % number of parts);

p.traversal bwd(n trav);

end if ;

end else ;

end else ;

end for ;

end de�ne benchmark;

36

B.5 Main program

declare main : ! void;

de�ne main is

var ops : int;

n look,n trav : int;

P lookup :
oat;

P traversal fwd :
oat;

P traversal bwd :
oat;

begin

all part objects.create;

print("Enter parts : ");

number of parts := scanInt;

print("Enter connections : ");

number of connections := scanInt;

print("Enter ops : ");

ops := scanInt;

print("Enter n look : ");

n look := scanInt;

print("Enter n trav : ");

n trav := scanInt;

print("Enter P lookup : ");

P lookup := scanReal;

print("Enter P traversal fwd : ");

P traversal fwd := scanReal;

print("Enter P traversal bwd : ");

P traversal bwd := scanReal;

print("nnparts : "); print(number of parts);

print("nnconnections : "); print(number of connections);

print("nnops : "); print(ops);

print("nnn look : "); print(n look);

print("nnn trav : "); print(n trav);

print("nnP lookup : "); print(P lookup);

print("nnP traversal fwd : "); print(P traversal fwd);

print("nnP traversal bwd : "); print(P traversal bwd);

print("nn");

print("nnCreating database ...nn");

create db(number of parts,number of connections);

all part objects.persistent;

number of parts.persistent;

number of connections.persistent;

print("nnStarting benchmark ...nn");

benchmark(ops,n look,n trav,P lookup,P traversal fwd, P traversal bwd);

print("nnnn");

end de�ne main;

37

C GRID-Benchmark

C.1 De�nition of GridType

persistent type GridType is

body [!! total size is 300 Byte, data entries omitted

oid : int;

x,y,x : GridType;

x inv,y inv,x inv : GridType;

random : GridListType;

data : ListType;

]

operations

declare GridType : int ! void;

declare xmove : int ! GridType;

declare ymove : int ! GridType;

declare zmove : int ! GridType;

declare ximove : int ! GridType;

declare yimove : int ! GridType;

declare zimove : int ! GridType;

declare YX

�

move : int ! void;

declare Traversal : int ! void;

declare ShortPaths : ! void;

declare LinearPath : ! void;

declare Y

�

ZZ

inv

move : ! void;

declare next

�

move : ! void;

declare access grid : ! void;

implementation

de�ne GridType(i) is

begin

self.oid := i;

self.x := null(self.x);

self.y := null(self.y);

self.z := null(self.z);

self.x inv := null(self.x inv);

self.y inv := null(self.y inv);

self.z inv := null(self.z inv);

self.random := null(self.random);

self.data := null(self.data);

self.persistent;

end de�ne GridType;

de�ne access grid is

var oid : int;

begin

oid := self.oid;

38

end access grid;

de�ne xmove(n) is

var g : GridType;

begin

g := self;

while ((n := n�1) � 0) begin

if (not is null(g.x)) begin

g := g.x;

end if ;

end while ;

return g;

end xmove;

de�ne ymove(n) is

var g : GridType;

begin

g := self;

while ((n := n�1) � 0) begin

if (not is null(g.y)) begin

g := g.y;

end if ;

end while ;

return g;

end ymove;

de�ne zmove(n) is

var g : GridType;

begin

g := self;

while ((n := n�1) � 0) begin

if (not is null(g.z)) begin

g := g.z;

end if ;

end while ;

return g;

end zmove;

de�ne ximove(n) is

var g : GridType;

begin

g := self;

while ((n := n�1) � 0) begin

if (not is null(g.x inv)) begin

g := g.x inv;

end if ;

end while ;

return g;

end ximove;

39

de�ne yimove(n) is

var g : GridType;

begin

g := self;

while ((n := n�1) � 0) begin

if (not is null(g.y inv)) begin

g := g.y inv;

end if ;

end while ;

return g;

end yimove;

de�ne zimove(n) is

var g : GridType;

begin

g := self;

while ((n := n�1) � 0) begin

if (not is null(g.z inv)) begin

g := g.z inv;

end if ;

end while ;

return g;

end zimove;

de�ne ShortPaths is

begin

self.xmove(1).access grid;

self.ymove(1).access grid;

self.zmove(1).access grid;

self.ximove(1).access grid;

self.yimove(1).access grid;

self.zimove(1).access grid;

end ShortPaths;

de�ne YX

�

move(x) is

begin

self.ymove(1).xmove(x).access grid;

end YX

�

move;

de�ne Traversal(depth) is

var ii : int;

g : GridType;

gl : GridListType;

dl : IntListType;

begin

gl.create.insert(self);

dl.create.insert(depth);

while (not gl.is empty) begin

depth := dl.remove last � 1;

g := gl.remove last;

40

if (depth 6= 0) begin

if (not is null(self.random))) begin

ii := 0;

while (ii < g.random.length) begin

ii := ii + 1;

dl.append(depth);

gl.append(g.random.n th(ii));

end while;

end if;

end if;

else begin

g.data.access list;

end else ;

end while;

end Traversal;

de�ne LinearPath is

begin

self.xmove(1).ymove(1).zmove(1).yimove(1).ximove(1).data.lmove(1).access list;

end LinearPath;

de�ne Y

�

ZZ

inv

move is

var g : GridType;

begin

g := self;

while (not is null(g.y)) begin

g.zmove(1).access grid;

g.zimove(1).access grid;

g := g.ymove(1);

end while ;

g.access grid;

end Y

�

ZZ

inv

move;

de�ne next

�

move is

var l : ListType;

begin

l := self.data;

while (not is null(l.next)) begin

l:= l.lmove(1);

end while ;

l.access list;

end next

�

move;

end type GridType;

C.2 De�nition of ListType

persistent type ListType is

body [!! total size is 300 Byte, data entries omitted

41

oid : int;

next : ListType;

]

operations

declare ListType : int ! void;

declare create list : int ! void;

declare lmove : int ! ListType;

declare access list : ! void;

implementation

de�ne ListType(i) is

begin

self.oid := i;

self.next := null(self.next);

self.persistent;

end de�ne ListType;

de�ne create list is

var l : ListType;

begin

l := self;

while ((i := i�1) � 0) begin

l.next.create(l.oid);

l := l.next;

end while ;

end create list;

de�ne lmove(n) is

var l : ListType;

begin

l:= self;

while ((n := n�1) � 0) begin

if (not is null(g.x)) begin

l := l.next;

end if ;

end while ;

return l;

end lmove;

de�ne access list is

var oid : int;

begin

oid := self.oid;

end access list;

end type ListType;

42

C.3 Creation of Database

persistent type GridListType is < grid type >;

declare create grid node : ! GridType;

declare create x grid : int ! GridType;

declare create xy grid : int,int ! GridType;

declare create xyz grid : int,int,int ! GridType;

declare create grid db : int,int,int ! void;

persistent var all grid objects : GridListType;

persistent var root grid objects : GridListType;

persistent var number of objects : int;

persistent var number of grids : int;

persistent var number of lists : int;

persistent var x dim,y dim,z dim : int;

de�ne create grid node is

var o : GridType;

begin

o.create(number of objects);

all grid objects.insert(number of objects) := o;

number of objects := number of objects + 1;

return o;

end create grid node;

de�ne create x grid(no x) is

var root,o1,o2 : GridType;

xx : int;

begin

o1 := create grid node;

root := o1;

for (xx := 2; xx � no x; xx:= xx + 1) begin

o2 := create grid node;

o1.x := o2;

o2.x inv := o1;

o1 := o2;

end for ;

return root;

end de�ne create x grid;

de�ne create xy grid(no x,no y) is

var root,o1,o2 : GridType;

y hold : GridType;

xx,yy : int;

begin

o1 := create x grid(no x);

root := o1;

43

for (yy := 2; yy � no y; yy:= yy + 1) begin

o2 := create x grid(no x);

y hold := o2;

for (xx := 1; xx � no x; xx:= xx + 1) begin

o1.y := o2;

o2.y inv := o1;

o1 := o1.x;

o2 := o2.x;

end for ;

o1 := y hold;

end for ;

return root;

end de�ne create xy grid;

de�ne create xyz grid(no x,no y,no z) is

var root,o1,o2 : GridType;

y hold1,y hold2,z hold : GridType;

xx,yy,zz : int;

begin

o1 := create xy grid(no x,no y);

root := o1;

for (zz := 2; zz � no z; zz:= zz + 1) begin

o2 := create xy grid(no x,no y);

z hold := o2;

for (yy := 1; yy � no y; yy:= yy + 1) begin

y hold1 := o1;

y hold2 := o2;

for (xx := 1; xx � no x; xx:= xx + 1) begin

o1.z := o2;

o2.z inv := o1;

o1 := o1.x;

o2 := o2.x;

end for ;

o1 := y hold1.y;

o2 := y hold2.y;

end for ;

o1 := z hold;

end for ;

return root;

end de�ne create xyz grid;

de�ne create grid db(no x,no y,no z) is

var candidate : GridType;

r :
oat;

ii,jj : int;

oid : int;

nr,count : int;

begin

for (ii := 0; ii < number of grids; ii := ii + 1) begin

root grid objects.insert(ii) := create xyz grid(no x,no y,no z);

44

end for ;

/* create random */

for (jj := 0; jj < number of objects; jj := jj + 1) begin

candidate := all grid objects.n th(jj);

/* simple implementation of a histd-function */

r := rand
oat;

if (r � 0.20) begin

nr := 0;

end if ;

if ((r > 0.20) and (r � 0.40)) begin

nr := 1;

end if ;

if ((r > 0.40) and (r � 0.60)) begin

nr := 2;

end if ;

if ((r > 0.60) and (r � 0.80)) begin

nr := 3;

end if ;

if (r > 0.80) begin

nr := 4;

end if ;

if (nr > 0) begin

candidate.random.create.persistent;

for (ii := 0; ii < nr; ii := ii + 1) begin

oid := rand int % number of objects;

candidate.random.insert(ii) := all grid objects.n th(oid);

end for ;

end if ;

candidate.data.create(jj);

candidate.data.create list(number of lists � 1);

end for ;

end de�ne create grid db;

C.4 The Benchmark

declare create access list : GridListType,int,
oat ! void;

declare benchmark : GridListType,int,
oat,
oat,
oat,
oat,
oat,
oat,
oat ! void;

de�ne create access list(access,ops,P root) is

var ii : int;

begin

for (ii := 0; ii < ops; ii := ii + 1) begin

if (rand
oat � P root) begin

access.insert(ii) := root grid objects.n th(rand int % number of grids);

end if ;

else begin

access.insert(ii) := all grid objects.n th(rand int % number of objects);

end else ;

end for ;

45

end de�ne create access list;

de�ne benchmark(access,ops,P gobble,P jump,P run,P ramble,P visit,P scan) is

var g : GridType;

ii : int;

r :
oat;

x,y,z : int;

begin

x := x dim;

y := y dim;

z := z dim;

for (ii := 0; ii < ops; ii := ii + 1) begin

g := access.n th(ii);

r := rand
oat;

if (r � P ramble) begin

g.LinearPath;

end if ;

else begin

if ((P ramble < r) and (r � (P ramble + P gobble))) begin

g.ShortPaths;

end if ;

else begin

if (((P ramble + P gobble) < r) and

(r � (P ramble + P gobble + P jump))) begin

g.Traversal(2);

end if ;

else begin

if (((P ramble + P gobble + P jump) < r) and

(r � (P ramble + P gobble + P jump + P run))) begin

g.YX

�

move(x);

end if ;

else begin

if (((P ramble + P gobble + P jump + P run) < r) and

(r � (P ramble + P gobble + P jump + P run + P scan))) begin

g.next

�

move;

end if ;

else begin

g.Y

�

ZZ

inv

move;

end else ;

end else ;

end else ;

end else ;

end else ;

end for ;

end de�ne benchmark;

C.5 Main program

declare main : ! void;

46

de�ne main is

var access list : GridListType;

ops : int;

rd : int;

P gobble, P run, P jump, P ramble, P visit, P scan, P root :
oat;

ii : int;

begin print("nn");

access list.create;

root grid objects.create;

all grid objects.create;

number of objects := 0;

print("Enter grids : "); number of grids := scanInt;

print("Enter lists : "); number of lists := scanInt;

print("Enter x dimension : "); x dim := scanInt;

print("Enter y dimension : "); y dim := scanInt;

print("Enter z dimension : "); z dim := scanInt;

print("Enter operations : "); ops := scanInt;

print("Enter srand : "); rd := scanInt;

print("Enter P root : "); P root := scanReal;

print("Enter P gobble : "); P gobble := scanReal;

print("Enter P jump : "); P jump := scanReal;

print("Enter P run : "); P run := scanReal;

print("Enter P ramble : "); P ramble := scanReal;

print("Enter P visit : "); P visit := scanReal;

print("Enter P scan : "); P scan := scanReal;

print("nn");

print("nngrids : "); print(number of grids);

print("nnlists : "); print(number of lists);

print("nnx dim : "); print(x dim);

print("nny dim : "); print(y dim);

print("nnz dim : "); print(z dim);

print("nnops : "); print(ops);

print("nnsrand : "); print(rd);

print("nnP root : "); print(P root);

print("nnP gobble: "); print(P gobble);

print("nnP jump : "); print(P jump);

print("nnP run : "); print(P run);

print("nnP ramble: "); print(P ramble);

print("nnP visit : "); print(P visit);

print("nnP scan : "); print(P scan);

print("nnnnCreating database ...nn");

create db(x dim,y dim,z dim);

set rand(rd);

47

print("nnCreating access list ...nn");

create access list(access list,ops,P root);

all grid objects.persistent;

root grid objects.persistent;

number of objects.persistent;

number of grids.persistent;

number of lists.persistent;

x dim.persistent;

y dim.persistent;

z dim.persistent;

print("nnStarting benchmark ...nn");

benchmark(access list,ops,P gobble,P jump,P run, P ramble,P visit,P scan);

end de�ne main;

48

