
Multi-Object Cooperation in

Distributed Object Bases

D. Kottmann, P. C. Lockemann,

H.-D. Walter

Interner Bericht 16/95

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

Universit�at Karlsruhe

Fakult�at f�ur Informatik

Abstract

It is an emerging trend to build large information systems in a component-based

fashion where the components follow the concept of object. Applications are constructed

by organizing pre-built objects such that they cooperate with each other to perform

some task. However, considerable programming e�ort is required to express multi-object

constraints in terms of the traditional message-passing mechanism. This observation lead

many authors to suggest communication abstractions in object models. One promising

approach is to separate multi-object constraints from the objects and collect them into a

separate construct. We call this construct an alliance.

Unlike other approaches we allow alliances to involve large sets of long-lived objects

which may dynamically vary during the | also potentially long | life-time of the alliance.

Alliances are not only visible at the speci�cation level but are also computational entities

which enforce multi-object constraints at run-time. They do so in an unreliable world,

i.e., we do not assume that objects will always meet their obligations in a cooperation.

Since objects may often be distributed across a network, we demonstrate that alliances

are an ideal place to deal with aspects of distribution in an application-speci�c manner.

We illustrate our thesis by one of the key questions of distributed object management:

where shall objects be located and when shall they migrate to which node? We show that

alliances allow for customized distribution policies which are neither \hardwired" into the

objects nor necessitate a centralized distribution control.

Keywords: cooperation, distribution, object-oriented databases, dynamic constraints

This work was partly supported by the German Research Council (Deutsche Forschungsgemein-

schaft DFG) under grant SFB346.

1

1 Introduction

It is an emerging trend to build large information systems

1

in a component-based fashion

where the components follow the concept of object. Modern standardization e�orts as, e.g.,

OMG's Corba [29], echo this trend. Applications are constructed by organizing pre-built

objects such that they cooperate with each other to perform a given task. An object is

usually described by an identi�er and an explicit interface which is restricted to a set of

unrelated messages through which other objects can interact. Its state and implementation

are hidden.

The cooperation between objects must follow task-speci�c rules that go beyond the rules

which govern the behavior of an individual object. Consider, e.g, a travel scenario where

objects implementing one or more hotels, airlines, and the customer interact to satisfy a

customer's reservation needs. This may require rescheduling of
ight reservations because of

the unavailability of hotels, calling up the hotels in order of preference, or have fully booked

hotels �nd a substitute hotel as a special customer service, and not the least, of course,

inquiries with the customer him/herself to determine whether to continue at all or in the

planned fashion. All this should not just proceed in an arbitrary fashion but obey certain

constraints. Such a set of constraints is often referred to as a protocol.

It has been recognized for several years that considerable programming e�ort is required

to express multi-object constraints such as temporal ordering of messages in terms of the

traditional message-passing mechanism. In essence, expressing the constraints by explicit

message passing \hardwires" the constraints into the object implementation and, for that

matter, spreads them across multiple implementations. If we consider that an object may

participate in a number of tasks which di�er in their constraints, object implementation may

become overloaded, di�cult to understand, and, hence, prone to errors that are extremely

di�cult to dissect and correct. It further obstructs reusability of objects | a strength often

claimed for object-oriented models. A programmer also must anticipate all possible \misbe-

haviors" of cooperation partners. Otherwise, the object state may be left inconsistent. For

instance, in a travel information system hotel objects must provide code to deal with clients

unwilling to pay rented rooms. In complex environments such misbehavior may not always

1

We de�ne an information system by the equation information system = applications + database(s) as in

[8].

2

be predictable at the time the objects are implemented.

In order to overcome these de�ciencies a promising approach seems to separate the con-

straints from the objects into communication abstractions as has been proposed, e.g., in

[2, 3, 13, 21, 22, 33]. A separate construct de�nes a set of communication participants, each

playing a certain role, and a set of constraints regulating the inter-object communication.

We claim that all these approaches are too limited to deal with applications that are part of

a large information system, e.g., a world-wide travel information system. Consequently, we

introduce an extended construct which we call an alliance and which emphasizes the following

aspects:

Support of large and evolving sets of participants The tasks which objects collectively

perform may be complex. Just consider the travel reservation above. Tasks may be long (or

in some cases in�nitely) lasting and may have numerous participants some of which may not

be known at the beginning of the task.

Support of long-lived tasks Both tasks and objects may be long-lived. Further, tasks

may outlast objects, and objects may outlast tasks. Consequently, not only should objects be

persistent but also alliances. Further, persistence of alliances should be treated independently

of that of objects.

Integration with a communication subsystem Objects may be distributed across a

network. Consequently, a considerable part of the communication may take place across

communication lines, with all the associated problems. Since a wealth of supportive high-

level communication protocols [15] and distributed middleware [29] is available, we propose

to view alliances akin to a protocolled communication medium in order to develop a seamless

solution along the lines of a multi-layered architecture [15].

Enforcement of protocols In an object world one observes a large degree of concurrency

both across objects and for the service calls on an individual object. For the latter | local

concurrency | we assume that decisions are strictly the responsibility of the object. For the

former we do not require that local concurrency policies of objects follow a global scheme as,

e.g., in distributed transaction processing environments [23].

3

Rather we propose that alliances will deal with concurrency between objects in a task-

speci�c fashion. Further, alliances will have to enforce constraints on temporal ordering of

messages and constraints on message parameters. They cannot assume that objects will

always meet their obligations in a cooperation, and they will have to initiate compensating

actions in case of constraint violations. Also, since it is impossible to treat all misbehavior

of the underlying hardware generically [24], application-speci�c counter-measures become

necessary. Therefore, alliances also need some kind of \active behavior", a local state to store

some context information, and their own execution model.

Distribution policies Optimization of quality parameters, such as performance or re-

silience to network failures or security, are governed by distribution policies over base mech-

anisms as object migration or replication. We claim that alliances are the ideal place to deal

with those questions because distribution should remain entirely transparent to the objects

and, thus, should be taken largely outside the objects.

Integration with an object model We presume as usual that the majority of information

processing takes place locally which implies that objects remain the carrier of all major actions.

They will initiate alliances and instigate all actions within them. Consequently, at least some

objects need some knowledge about alliances.

On the other side in a large information system a large number of objects will take part in

many di�erent tasks at unknown times and, hence, should be oblivious to their participation

in alliances. In other words, these objects should still be able to call upon the services of

other objects in the classical manner, and observe the existence of multi-object constraints

solely by whether their service calls are successful or not.

By necessity, objects that run at di�erent nodes and, hence, in separate processes, have

a large degree of autonomy over their decisions. It seems natural to introduce concurrent

objects or actors [1] (sometimes also referred to as active objects [26] or | nowadays | as

agents [6]) to capture this autonomy [5]. In this way we follow the approach of [2] and assume

autonomous objects as participating objects

2

. Object autonomy implies that we do not make

any assumptions about the computational model of objects.

2

In fact the four notions | concurrent object , actor , active object , and agent | have not an identical

meaning in the literature, for some there is no commonly agreed meaning, or the notion may be misleading.

We do not wish to enter into a discussion on their relative merits and instead use a more neutral term.

4

The remainder of the paper is organized as follows. In Section 2 we compare our work

to related research. In Section 3 we introduce the alliance model. Section 4 discusses how

alliances can support application-speci�c distribution policies. Section 5 deals with the issue

how to integrate alliances into a given object model. In Section 6 we introduce our proto-

type architecture and discuss �rst practical experiences. Section 7 concludes this paper and

suggests topics for further work.

2 Related Work

It has long been recognized that communication abstraction is necessary in object-oriented

models. One class of approaches extends interface descriptions of objects by synchronization

constraints (e.g., [18, 19, 26, 31]) or by a declarative description of object behavior (e.g., by

using �nite state machines as in [33]). In some cases the separation of interface and implemen-

tation was completely abandoned (as e.g., in [34]). All these approaches limit themselves to

object-speci�c synchronization | we called objects with this capability autonomous objects

| but continue to treat objects as islands, and thus do not touch on the problems mentioned

in Section 1.

Active objects in active object-oriented database systems (OODBS), as, e.g., in [7, 9, 10,

11], are able to detect events and to execute | also asynchronously | some prede�ned code

as a reaction. But they are not able to limit method invocations. One can interpret the raising

and detection of an event as a communication between raising object and detecting objects.

Following this interpretation, an object that raises an event \broadcasts" some information

to all objects that are interested in that event | which is speci�ed by an appropriate trigger

as part of the object implementation. Consequently, besides the directed method invocation

active OODBS o�er the anonymous broadcast as a second communication paradigm. Un-

fortunately, this form of communication is largely unregulated and indiscriminate, and any

control over the communication is by purely local condition checking. This is a far way from

our target to allow for arbitrary but controlled multi-party communication patterns.

Today, transactions are the most common means to guarantee multi-object consistency

[12]. Transaction concepts de�ne consistency more or less independent from application se-

mantics. In most cases correctness is based on serializability or some extension of it. There-

fore, all objects must obey a globally de�ned synchronization scheme [23]. Consequently,

5

transaction concepts limit object autonomy and impose a �xed protocol that cannot be

adapted to task-speci�c constraints on temporal orderings of messages in the context of an

activity. These constraints remain hidden in the implementation of the participating ob-

jects. There is a bit more
exibility in script-based approaches (e.g., [27, 32]) that de�ne a

\work-
ow", but they require a rigorous and complete a-priori de�nition of the ordering of

transactions and method invocations, thus denying all evolution. However, transactions can

be expected to play an important role in an implementation of alliances.

Interoperable transactions [25] provide a language based on temporal logic to specify the

temporal ordering of messages between a group of cooperating objects. The participants in an

interoperable transaction are determined at the beginning of a cooperation and cannot change

later on. The approach is exclusively intended for speci�cation and veri�cation of cooperation

protocols. Nothing is said about an implementation of a cooperative application speci�ed in

the proposed language. Consequently, integration with a communication subsystem in a

distributed environment and compensation of protocol violations are not considered.

Similar arguments hold for the concept of connectors [3], a CSP-based formal description

language for software architectures, since this concept is also restricted to the speci�cation

level. Connectors specify interactions between a �xed number of software modules. Con-

sequently, enforcement of protocols at runtime or distribution aspects are not part of this

research.

Closest to the intention of our approach are contracts [13, 14], synchronizers [2], and

adaptors [33]. Each of them collects some aspects of an intended cooperation into a separate

construct which has also a run-time representation. A contract de�nes a set of communicating

participants | which must be completely known at the time of the contract's instantiation

| and their contractual obligations. Contracts are not intended to de�ne multi-object con-

straints but utilize their contexts to describe the behavior of participating objects, i.e. their

methods are required to conform to the contract.

A synchronizer simply limits the invocations accepted by a group of objects. Adaptors

allow for the behavioral composition of two objects, which are functionally but not necessarily

type compatible. In contrast to synchronizers adaptors are not restricted to the limitation

of method invocations but have some limited control over messages as well. For instance,

they can map messages between sender and receiver or they can synthesize a set of messages

6

originating from a sender object into a single one which is actually delivered. Therefore,

adaptors are equipped with their own memory. Adaptors are restricted to two participants.

Synchronizers and adaptors can be integrated with an object model without touching

the object paradigm. Both models support autonomous objects | which is in contrast to

contracts. All three models are restricted to a �xed number of participants which cannot

evolve during a cooperation. None of the models deals with persistence or distribution. [2]

mentions distribution but considers it strictly an implementation issue to be solved, e.g., by

RPC-style calls.

3 Alliances

Object Object

Alliance

msg

req(msg)

ind(msg)event interfaces

Figure 1: Alliances as communication media between objects

In extension of the terminology of the ISO/OSI reference model [15] one may view an alliance

as an \intelligent" communication channel between two or more objects, which must be

established between them before they can communicate. Alliances exceed this metaphor by

allowing multi-object cooperation where all objects may have the same rights (in contrast to

client-server models), may be long-lived, and support a wealth of semantically rich messages.

Figure 1 shows how this metaphor can be carried over into an object world: a one-way

message passing (msg) between two objects is mapped onto two events | message request

(req(msg)) and message indication (ind(msg)). The sender object raises the �rst with the

alliance. The alliances raises the second with the receiver object.

We introduce the details of the alliance model by way of a running example: the cooper-

ation of a client and a hotel in the course of an accommodation. Figure 2 shows an abstract

7

view of a simple cooperation protocol for this example in terms of a state-transition diagram.

The labels of the transitions denote the messages which invoke transition. The general struc-

ture of a transition label is hsenderi: hreceiveri.hmsgi[hparameteri]. `c' stands for client, `h'

for hotel, \CI" for checked in. The diagram expresses what a user might consider a correct

ordering of messages in the course of a hotel accommodation from reservation to checkout.

BOOKEDREQOPEN CI PAID
c: h.reserve(d) c: h.checkin c: h.pay c: h.checkout

h: c.reject

h: c.ack

Figure 2: Dynamic model of a hotel accommodation

3.1 Alliance Types

Alliances incorporate the description of objects that can play a role in them, a set of states,

the initial participants and the initial state, and a set of communication rules. Alliances with

similar properties, i.e., roles, states, and communication rules, are classi�ed into alliance types

which can dynamically be instantiated at run-time. An example of a complete alliance type

de�nition is given in Figures 3, 4, and 5.

An alliance type has a unique type name. The roles-clause determines which messages

an object can receive () and send (!) in its role as a speci�c participant. For instance, an

object that takes the part of a client in a hotel reservation can send the messages reserve (with

message parameter of type Date), checkin, pay, and checkout and can receive the messages

ack (with message parameter of type Bool) and remind. Roles can either be single-valued

(denoted as []) or set-valued (denoted as f g). At most one object may be bound to a single-

valued role, an arbitrary number of objects may be bound to a set-valued role. Examples for

single-valued roles are given in Figure 3. An example for a set-valued role | the role servers

| is given in Figure 6. We will discuss set-valued roles in more detail in Section 3.4.

The states clause contains typed variables which de�nes the set of possible states. De-

pending on the complexity of a cooperation an alliance may have a large (possibly in�nite)

number of states (see, e.g., Figure 6).

8

alliance HotelAccommodation is

roles

client: [ack(bool); remind];! [reserve(Date); checkin; pay; checkout];

selHotel: [reserve(Date); checkin; pay, checkout]; ! [reply reserve(Bool)];

clock: [def(int); undef]; ! [alarm];

states

progress: enum(OPEN, REQ, BOOKED, CI, PAID);

timer: Timer;

birth (c: client, h: selHotel) is

var h: selHotel;

begin

assoc(client, c); assoc(selHotel, h); assoc(clock, timer.create);

progress:= OPEN; persistent;

end;

rules : : :

end alliance HotelAccommodation;

Figure 3: Speci�cation of alliance type HotelAccommodation

A special parameterized birth operation allows to de�ne the initial state and the initial

set of participants of an alliance. It is automatically executed at instantiation time. Figure 3

shows that both the client- and selHotel-role are initially bound to objects given as parameters.

Note that in the scope of an alliance type role names can be used as both type speci�ers

(as, e.g,. in the formal parameter declaration of birth) and variables (as, e.g., in the assoc-

statements). The clock-role is bound to a newly created object of type Timer

3

. A role is bound

when the operation assoc is executed. The built-in operations assoc and its complement

release are discussed in Section 3.5.

The statement persistent denotes that the newly created alliance is to be made persistent.

This does not imply that all participants of a persistent alliance must be persistent. Thus,

persistence of alliances is treated independently from persistence of objects. In particular, this

allows to include transient objects in an alliance. We will return to the issue of persistence

in Sections 3.6 and 6.

3.2 Communication Rules

Communication rules map message requests (on-clause) guarded by an optional condition

(if-clause) onto a reaction (do-clause). On a �rst glance, communication rules seem to have

3

In order to create an object its real type must be known.

9

rules

var h: Hotel; p: int; d: Date; ok: bool;

on reserve(d)@client.selHotel if progress = OPEN do

begin

reserve(d)@selHotel; progress:= REQ; def(TIMEOUT)@clock;

end;

on reply reserve(ok)@selHotel.client if (progress = REQ and ok) do

begin

ack(ok)@client; progress:= BOOKED; undef@clock;

end;

on reply reserve(ok)@selHotel.client if (progress = REQ and not ok) do

begin

ack(ok)@client; undef@clock; release(clock); timer.delete; terminate;

end;

on checkin@client.selHotel if progress = BOOKED do

begin

checkin@selHotel; progress:= CI;

end;

on pay@client.selHotel if progress = CI do

begin

pay@selHotel; progress:= PAID;

end;

on checkout@client.selHotel if progress = PAID do

begin

checkout@selHotel; terminate;

end;

: : :

Figure 4: Speci�cation of communication rules

much in common with event-condition-action rules of active database systems. But they di�er

in how they are raised, in how they are evaluated, and in the scope of their visibility.

The de�nition of a message request consists of an optionally parameterized message (the

expression before `@') and two role names. The �rst role name denotes the origin of the mes-

sage request, the second role name the receiver of the message. The second role speci�cation

is necessary since there may be more than one role which can receive a certain message in

a multi-party alliance. Message requests are exclusively visible to the alliance to which the

message originator has been bound via the �rst role. In contrast, in active database systems

events usually are globally visible.

A communication rule can only \�re", i.e., the speci�ed reaction is executed, if the given

condition evaluates to true. Thus, the code in the do-clause of the �rst rule in Figure 4 is

only executed when the speci�ed message request of the client has occurred and the variable

10

progress contains the value OPEN. An if-clause is restricted to a boolean expression over state

variables and message parameters given in the on-clause of the same rule.

On detection of a message request an alliance may react by modifying some local state

variables, and/or by indicating messages at roles, and/or by terminating (terminate). Ter-

mination means that the alliance is removed from the system and no further message requests

are handled (the \connection is closed"). In the �rst rule of Figure 4 the alliance indicates a

message reserve(d) at role selHotel in order to deliver the reservation request of the client. In

addition it sets variable progress to REQ and indicates a second message def(TIMEOUT) at

role clock.

Since alliances have their own memory and can indicate arbitrary messages at roles |

provided they are declared in the roles-clause | they can map message requests at sender

roles onto message indications at receiver roles in a manner similar to adaptors [33]. The

second rule of Figure 4 shows a very simple one-to-one mapping: a reply reserve(ok) message

at role selHotel is mapped onto an ack(ok) message at role client. More complex mappings are

possible, too. Additionally, alliances can react to a single message request by indicating an

arbitrary number of new messages and, therefore, can suppress messages, can notify a third

party about a communication without hard-wiring such noti�cation schemes into objects, or

can multicast messages, as we will discuss in more depth in Section 3.4.

The rules-clause may contain local variables as is the case in Figure 4. In contrast to

state variables their bindings are only valid in the scope of one rule execution.

If we brie
y compare alliances with current active database systems we observe that the

function of alliances must be simulated there by objects. In the alliance model the underlying

execution model recognizes the sending of a message, whereas in active database systems

events are implicitly associated only with begin and end of method execution. Consequently,

the simulating object can at best register the message but has no control over it.

3.3 Handling Constraint Violations

The rules in Figure 4 are a �rst implementation of the dynamic model of the cooperation

given in Figure 2. We mapped the messages reject and ack onto a single parameterized

message reply reservation where the parameter value false indicates a rejection and true an

acknowledgment by the hotel. We left out the iteration between states OPEN and REQ

11

which we will add later.

on reserve(d)@client.selHotel if progress 6= OPEN do;

on reply reserve(ok)@selHotel.client if progress 6= REQ and ok do cancel@selHotel;

on reply reserve(ok)@selHotel.client if progress 6= REQ and not ok do;

on alarm@clock if progress = REQ do

begin

ack(FALSE)@client; release(clock); timer.delete; terminate;

end;

on alarm@clock if progress 6= REQ do;

on checkin@client.selHotel if progress = OPEN or progress = REQ do

signal(\checkin@client.selHotel")@client;

on checkin@client.selHotel if progress = CI or progress = PAID do;

on pay@client.selHotel if progress 6= CI do signal(\pay@client.selHotel");

on checkout@client.selHotel if progress 6= PAID do remind@client;

Figure 5: Communication rules for exception handling

The rules consider only the regular cases. But exceptions may occur as well. For example,

objects may request messages when they are not expected to do so, and, thus, may violate

constraints on temporal ordering of messages. Take as an example a client object who requests

a checkout-message before it sends a pay message. In order to deal with such exceptions one

has to apply additional rules (see Figure 5). These rules can be used to hide errors from

objects. In order to compensate errors an alliance can raise regular message requests at roles.

For instance, in the last rule in Figure 5 the alliance indicates a remind message at role client

in order to compensate the just mentioned error. Note that the erroneous message is not

indicated to the selHotel object. Thus, this is can also serve as an example for a message

suppression. A special kind of compensation is simply to do nothing at all, as is the case for

the �rst rule of Figure 5.

But in cooperative and distributed environments we have not only to deal with unexpected

message requests but also with expected message requests that do not materialize. A well-

known technique from distributed systems which can be applied in these cases are timeouts.

We used this technique in our example to handle the situation that the hotel does not reply

to a reserve message within a prede�ned time (TIMEOUT). The alliance uses an object of

a special built-in type Timer which raises an alarm event to signal a timeout. Timers di�er

from regular objects in that they can raise events directly with alliances, but can be viewed as

normal objects in all other ways. Of course, besides timeouts other well-established techniques

12

like reindicating a message can be implemented.

All exception handling mechanisms considered so far are intended to \repair" an abnormal

situation in the course of a cooperation in a way that is transparent to the objects. If a

designer decides that this transparency may not be appropriate in a certain situation he or

she may resort to signals . Signals are special events which make errors visible to objects.

Some examples are given in Figure 5. Signals will only have an e�ect if objects can detect

them and react to them (cf. Section 5). Note that alliances do not make any assumptions

about the future behavior of objects after a signal has been raised with them.

3.4 Set-Valued Roles

Before a client tries to reserve a hotel he or she normally has to select one from a given set

of hotels. As selection criterion one may choose the price of a room. Such a query normally

consists of a \price"-message to all hotels in the given set and a reply message of all hotels

back to the client. This situation is well-known in both the telecommunications and the

database community. In the �rst such kind of communication pattern is known as multicast.

In the latter one would call it a simple query against a set of objects.

In the alliance model queries are supported by set-valued roles. Figure 6 shows a fragment

of an alliance type which implements the price-query. A single-valued role client communicates

with a set-valued role servers and vice versa. In the case that a message request is directed to

a set-valued role the alliance will indicate the message to all members of the role | provided

the request is legal. The �rst rule in Figure 6 \multicasts" a price-request by a client to all

servers.

The second and third rules of Figure 6 show how to deal with message requests from a

set-valued role. Here we are interested in each single communication. Therefore, a request

event is raised with the alliance every time a member of a set-valued role requests a message.

The from-clause allows to refer to the originator of the message. In Figure 6 the alliance

collects all responses into a state variable prices. It also guarantees that only one reply of each

server object is considered (in our example the �rst reply). After all servers have responded

(third rule in Figure 6) the alliance indicates the result to the client object.

Note that a designer can de�ne arbitrary \query protocols". For instance, the query

protocol of Figure 6 may be extended by timeout mechanisms as we already did with the

13

alliance PriceQuery is

roles

client: [price(f[ANY; int]g)]; ! [price];

!! ANY denotes an arbitrary object, f[]g a set of tuples

servers: fpriceg; ! freply price(int)g;

states

price req: bool; prices: f[ANY; int]g; replied: fANYg; timer: Timer;

birth (c: client, s: servers) is

begin

assoc(client, c); assoc(servers, s); assoc(clock, timer.create);

price req:= FALSE; prices:= EMPTYSET; replied:= EMPTYSET;

end;

rules

var i: ANY; p: int;

on price@client.servers if not price req do

begin

price@servers; price req:= TRUE; def(TIMEOUT)@clock;

end;

on reply price(p)@servers.client from i

if price req and not i in replied and replied.size < servers.size � 1 do

begin

prices.insert([i, p]); replied.insert(i);

end;

on reply price(p)@servers.client from i

if price req and not i in replied and replied.size � servers.size � 1 do

begin

prices.insert([i, p]); price(prices)@client; timer.delete; terminate;

end;

!! communication rules for exception handling

end alliance PriceQuery;

Figure 6: Query implemented as alliance

hotel reservation example. This could be used to indicate partial results of a query when

a prede�ned time limit is exceeded, which might be a better solution in some cases than

indicating nothing until the last object has answered, especially if the set of queried objects

is large and/or distributed over a network.

3.5 Dynamic Role Bindings

The designer of the cooperation protocol given in Figure 2 considered a possible rejection of

a reservation and, therefore, decided to iterate through the states OPEN and REQ as long

as the requested hotel did not acknowledge a reservation. But this iteration only makes sense

if another hotel can be chosen for every request. Consequently, we have to allow that role

14

bindings can change over the life-time of an alliance.

In order to modify role bindings we provide two built-in operations assoc(hrole namei,

hobject identi�er (oid)i) and release(hrole namei). These operations are applicable to both

single-valued and set-valued roles. assoc assigns the given object to the speci�ed role (in the

case of a set-valued role the object is inserted into the role set), release discards the actual

role binding (in the case of set-valued roles the bindings for the whole set are discarded).

For set-valued roles two additional \overloaded" operations are provided: assoc(hrole namei,

hoid seti) that allows to bind a whole set of objects to a role, and release(hrole namei, hoidi)

which discards the binding of an individual object.

The objects to be bound to a role can be passed to an alliance as parameters of the

birth-operation or as message parameters. Figure 7 shows the modi�cations of the rules of

Figure 4 which are necessary to implement the above mentioned iteration and the replacement

of requested hotels. An additional parameter containing the newly selected hotel has been

added to the message reserve. The object passed as parameter is bound to the role selHotel

on a reserve request, and the binding is discarded on rejection by that hotel.

on reserve(h, d)@client.selHotel if progress = OPEN do

begin

assoc(selHotel, h); progress:= REQ; reserve(d)@selHotel;

end;

on reply reserve(ok) if progress = REQ and not ok do

begin

ack(ok)@client; undef@clock; progress:= OPEN; release(selHotel);

end;

Figure 7: Dynamic role bindings

Assoc establishes a physical connection between an alliance and a newly bound object.

For this the object is localized in the given (potentially heterogeneous) address space and a

so-called association control event assoc is raised with the objects.

Release destroys the physical connection between an object and an alliance. For this, it

raises a second type of association control event | release | with the object whose binding

shall be discarded. Finally, it should be noted that termination of an alliance automatically

releases all participants.

Note that the global universe of objects and alliances may be physically distributed.

15

Consequently, keeping the global structure of objects and alliances consistent

4

may require

updates at several nodes. The association control events indicate when such updates are

necessary.

3.6 Execution Model

This leads us to the question of how communication rules are evaluated. Whenever the

speci�ed message request of a rule has occurred and its condition is satis�ed the speci�ed

action is performed atomically. Atomicity means that either all messages are indicated and

all updates of state variables are executed, or none. Moreover, if an alliance is persistent the

new state will survive potential system failures. Whether the message indications survive the

situation depends on the persistence of objects with which they have been raised.

In order to prevent anomalies caused by intra-alliance concurrency without implementing

expensive synchronization mechanisms, we enforce sequential ordering of actions, i.e., while a

rule is evaluated newly requested messages are bu�ered. This makes sense because an alliance

is not a resource shared by competing partners but a service regulating their interaction. If

an alliance is persistent the messages must be bu�ered on durable storage.

Conceptually, an alliance performs the following steps in an in�nite loop. It determines

the rules for which the speci�ed message request has occurred. If several rules qualify, it inde-

terministically selects one for execution. In the context of one alliance we allow concurrency

between objects bound to di�erent roles but we forbid intra-object concurrency in the context

of a single role. In other words, we assume a total ordering of events at one role, but assume

no ordering of events across di�erent roles. Always the smallest event | with respect to the

aforementioned ordering | in the history of a role is selected (FIFO strategy).

After the execution of the selected rule has terminated the requested message is discarded.

4 Alliances in Distributed Systems

Modern applications are distributed. Consequently, it is only natural to assume that the

objects participating in an alliance are spread across several nodes of a network. A premise

of our work is that distribution should be treated as an add-on feature to object systems,

4

This structural consistency may be termed as referential integrity between objects and alliances.

16

without a�ecting the local behavior of objects. In this section we argue that alliances are

once more the ideal place to embody the necessary application-speci�c regulations governing

distribution [24], provided we can do so transparently to the objects so that the developers

of objects can concentrate on their functionality proper.

4.1 Distribution Policies

For the following we assume that even in a distributed object system each object resides

in its entirety at a physical node in the network. Under this assumption the conventional

object paradigm seems to raise no obstacles to distribution. Because objects encapsulate their

information and, hence, have no state in common they interact solely via message exchanges,

which are easily mapped to the physical messages in a distributed system.

One straightforward solution to the implementation of an alliance in a distributed world

is to maintain it as a physical entity, much like an object, and hence have it reside at a single

node. The necessary support for the execution model of alliances (cf. Section 3.6) must be

replicated at each node, essentially by distributing the event interfaces of Figure 1. Note

that in this solution sending a message from one object to another now could involve up to

three di�erent nodes: the ones hosting the caller, the callee and the intermediary alliance.

This added tra�c may degrade quality parameters like performance or reliability. Distributed

systems can counter such degradation by mechanisms like replication [16] or object migration

[17], and may even add new qualities. Additionally, these mechanisms are the weapons to

counter the anomalies that are the only reason why developing distributed systems is a task

far more complex than realizing equivalent centralized applications.

Putting these mechanisms to good use is the matter of a control policy . Much like a

collaboration policy is expressed by some sort of protocol inside an alliance, the policy of how

to control distribution should be kept strictly a matter of the alliances, invisible to the objects

or, in other words, encapsulated within alliances. As an added bene�t, the code that manages

collaboration contexts and distribution policies is concentrated in one place and thus easier

to develop and maintain.

The remainder of this section will use one of the aforementioned mechanisms to illustrate

the power of alliances for distribution policies. We choose the mechanism of object migration

for three reasons. Firstly, object migration is itself a meaningless concept unless it is ac-

17

companied by a proper policy. Secondly, mobile entities in distributed systems are nowadays

found in numerous systems, as shown in a comparative study [28]. Thirdly, object migration

is technically simple, so that our discussion need not be �lled with extensive discussions on

the trade-o�s of various
avors of the mechanism which would detract from the policy proper.

4.2 Mobile Objects

Since there is no distinction between local and remote object invocations, it is possible to

move objects at runtime among the nodes of a distributed system. Technically, one needs

an additional level of indirection to trap remote invocations and forward them to the current

location of the remote object. One also depends on location-independent object identi�ers

and a mechanism for locating migrated objects. The technical details of these mechanisms

are well understood (see, e.g., [17]) and need no further discussion.

As mentioned before, migration of objects should be subjected to a control policy. Such

a policy depends on what anomaly should be countered. In a distributed world such counter

measures aim at load sharing to take advantage of lightly used computers, at improved com-

munication performance in bringing interacting objects together to reduce the communication

cost or at availability in moving objects to di�erent nodes to provide better failure resilience

5

.

Even though this is a small list, one can clearly identify con
icts among the goals. Note, for

example, that availability calls for dislocating objects, while performance calls for colocating

them. What primary goal is to be followed is subject to the stated policy.

4.2.1 Controlling Migration | the Conventional Approach

Linguistic support for mobile objects normally comprises means to �x() objects to nodes,

to migrate() objects directly to a target node or target object, and to keep communicating

objects permanently a�xed to one another by issuing an attach() among them. All those

primitives are based on two implicit assumptions:

Objects know their future communication patterns. If this assumption does not hold,

there is no basis for any migration decision. Hence, an object should know its commu-

nication partners and how the cooperation with them will develop.

5

A more comprehensive discussion of possible goals could be found in [17]. We selected the items which are

commonly regarded as being of general importance.

18

Primitive Semantic

migrate(O

1

, O

2

) Migrates O

1

to the current location of O

2

location of(O) Returns a node object denoting the current location of O

is resident(O) Returns true if O is at the local node

attach(O

1

, O

2

) A{transitively A{assigns O

1

to O

2

together with a simultaneous migrate(O

1

, O

2

)

detach(O

1

, O

2

) Break an attachment

Figure 8: Primitives to express policies inside alliances.

All objects are trusted. Any object may call for arbitrary attachments or �xings of other

objects. Hence, no object can exert sole control over what other objects it is attached

to or whether it is �xed at the moment. In order to make sure that all policies expressed

by individual objects sum up to a sensible behavior, all objects are assumed to behave

in a reasonably fair way.

These assumptions appear enforceable for monolithic distributed applications that are set

up by a single programmer or a small, closely-knit design team. In a world of autonomously

developed objects which cooperate only on a case-by-case basis such a condition may not hold

any longer. For example, objects will underestimate the e�ect of an attach as they are not

informed about the transitive attachments of other objects.

4.2.2 Expressing control policies through alliances

If we wish to entrust alliances with responsibility for distribution, the aforementioned lin-

guistic primitives must come under their sole control. Figure 8 shows the primitives to be

used by alliances to control migration. The semantic of the primitives needs some modi�ca-

tion from the conventional approach, though, because the should exploit the knowledge what

objects are working together on a common task and the knowledge when the common task

ends. Hence, attach() is de�ned in terms of two properties, A{transitive and A{assigns.

A{transitive means that transitive attachment is de�ned only within a given alliance, i.e.,

that attachments de�ned by di�erent alliances are never combined. Thus, alliances have a

full understanding of the consequences of their attachments. A{assigns limits the attachment

to the lifetime of the alliance. As soon as an alliance terminates, all attachments de�ned

by it are dissolved. is resident() has been included although its functionality could also be

19

expressed via the location of() primitive. The reason is that the test whether an object

resides on the same node as the alliance or not can always be computed solely on the basis

of local information, whereas one generally depends on remote information to enquire the

current location of an object. Further, no �x() primitive is de�ned because its e�ect can be

obtained by combining a location of() that returns a node object NO with a subsequent

attach(O, NO) primitive. In this way the more limited A{transitive semantics of attach is

enforced for the �xing.

birth(c: client; h: selHotel) is

var h: selHotel;

begin

assoc(client, c); assoc(selHotel, h); progress:= OPEN;

attach(self, c); persistent;

end;

: : :

on checkin(d)@client.selHotel if progress = BOOKED do

begin

attach(client, selHotel); attach(self, selHotel);

checkin(d)@selHotel; progress:= CI;

end;

Figure 9: Expressing distribution policies through alliances

Alliances allow full control of a cooperation and distribution policy including their interde-

pendencies, without a�ecting other cooperations and with no in
uence by other cooperations.

In addition, alliances are a tool to cope with con
ict resolution between contradictory attach-

ment requests. Without any knowledge of the various collaborations that gave rise to the

con
icts the underlying system has no way to weigh them in order to resolve them. Given

the alliances, the system may now associate con
icts with collaborations, and �ne-tune its

resolution strategies. For example, since the scope of attachments is limited by the lifetime of

the alliances it may impose an order on con
icting attachment requests. Alternatively, it may

collect statistical data on the activities associated with an alliance in order to estimate future

behavior, and use the predictions for more sophisticated decisions; e.g. to give privileges to

a request issued by a collaboration that currently accounts for the biggest part of the overall

activity.

Figure 9 modi�es the birth operation and communication rules of Figure 4 to realize a

simple distribution policy for our hotel example. At instantiation time the alliance is attached

20

to the client object, as each communication rule encompasses a message to or from the client.

When the client performs a checkin on the hotel both client object and alliance migrate to

the hotel object.

Again the discussion clearly demonstrates the superiority of the alliance approach over a

world composed of objects only. In the latter all migration strategies are spread across the

encapsulated method implementations of numerous objects, so that it is di�cult to see how

con
icts can be recognized, let alone be dealt with according to
exibly varying strategies.

5 Integration with an Object Model

Alliances enforce the collective behavior of a collection of objects in a distributed environment.

Objects are the instigators of all actions within alliances, and in the vast majority of cases

they are also the carriers of all major actions if we presume as usual that the majority of

information processing takes place locally. As an example object model we brie
y introduce

our model of autonomous objects which is based on preliminary work [19] and show how

alliances can be integrated with it.

An autonomous object has all the qualities of a traditional object, i.e., a logical object

identity, an interface which de�nes a set of messages it can receive, and an implementation

which consists of a structure, i.e., a set of attributes, and operations that implement the

reaction to messages. In addition, an autonomous object possesses a set of guards which

implement its synchronization constraints. Once an autonomous object has been created, it

has its own thread-of-control to evaluate the guards according to a system-de�ned execution

model (we omit the details because they are not important in the context of this paper).

As is standard, autonomous objects communicate with each other by message passing.

However, since in cooperative environments each object may take the initiative for a com-

munication, and an object may be involved in more than one cooperation simultaneously,

we presume an asynchronous message transfer instead the traditional synchronous message

passing corresponding to a procedure call. (This explains the one-way communication of

Figure 1).

Questions we have to answer from an objects' viewpoint are how alliances are created,

how inter-object messages are mapped onto events at roles, how the context of a received

message, i.e., a role, could be derived in order to allow objects to control concurrent alliances,

21

and how association control events and signals a�ect objects.

An object can create an alliance explicitly by calling the birth-operation. It can pass

initial participants as parameters (cf. Section 3). The birth-operation returns a handle to

the newly created alliance. The object may store it in its local state. For future message

sendings the object can refer to this handle together with a role speci�er in order to address

the message receiver (e.g.,myAccommodation(\selHotel").reserve(d), wheremyAccommodation

is a variable containing the handle to an alliance of type HotelAccommodation). Alliance

handles can be interpreted as generalization of reference variables (i.e., attributes that point

to objects).

Since we allow that one object can be bound to more than one role of an alliance, it

is sometimes necessary to specify a second role to unambiguously identify the location of a

message request (e.g., myAccommodation(\selHotel").reserve(d) as client).

In order to allow a receiver of a message to identify its context each message is provided

with pre-de�ned parameters that contain the necessary context information, i.e., handle to

alliance, role where the message has been indicated, and role of the sender object. These

context parameters need not explicitly be declared.

All message requests along the execution of an operation are by default associated to the

role where the message which caused the execution of this operation has been indicated unlike

the object's implementation speci�es it otherwise. For instance, when a hotel object h receives

a reserve(d) message as selHotel in an alliance a, all messages that h requests throughout the

operation which is executed as reaction on this message are by default raised at selHotel of

the same alliance a.

An object need not concern about association control events. If | for some reasons | an

object need to know whether it is actually bound to a certain role or not it can dynamically

check its actual role bindings

6

.

Objects can \catch" signals in the same way they receive regular messages. Of course, no

sender object is provided.

So far we have sketched a solution which allows objects to exploit knowledge about their

participation in alliances, particularly, to synchronize concurrent messages if they do so in

several ones simultaneously, and to establish new ones. Although objects refer to alliances

6

Such a check can be compared to a NULL- or nil-test in classical object models.

22

explicitly there remains much leeway for a designer to specify or adapt customized proto-

cols without necessitating reimplementation of objects. Consider, as an example, the query

protocol in Section 3.4.

On the other side this solution does not meet our requirement in Section 1 on objects

which can remain completely oblivious in t he participation in an alliance. Hence, as part of

our ongoing work we investigate under which conditions message control across alliances can

unambiguously be derived from the conventional format of message requests.

6 Prototypical Architecture

Distribution-
Aware-API

Common-
API

Dist.-
Services Net-

OS

Persistence-
Services

Trans-
actions

Buffer

Local
OS

Figure 10: Prototype Architecture

Our current prototypical architecture is depicted in Figure 10. It is built around services

on each node, which comprise persistence, capabilities of both a local and a network op-

erating system, and specialized distribution mechanisms. Objects (circles in Figures 10)

and alliances (ovals in Figures 10) rely on two APIs to use those services. The �rst one

is the Common{API that provides persistent memory, transactions, local input/output and

distribution-independent message passing between objects. The second one, the Distribution{

Aware{API , realizes the distribution mechanisms subject to the distribution policies that are

coded inside the alliances. Hence, alliances use both APIs, while objects are only mapped

onto the Common{API. Even though objects cannot use distribution mechanisms directly,

they are subject to distribution policies. As an example, the location-independent communi-

cation has to work regardless of the current location to which objects have migrated via the

23

Distribution{Aware{API.

Currently, we have built two prototypes to validate our approach. The �rst one was

integrated with ObjectStore [20] as a provider of persistence services, but without putting

the system into a distributed world. All communication is performed via a global object

base, i.e., all objects and alliances are database objects which must be modi�ed to request

and indicate messages along actions which are executed as transactions. This is an easy-to-

implement but ine�cient solution for both intra-node and inter-node communication between

objects and alliances.

The second one was used to look into our approach of specifying distribution policies

inside alliances and bases on OSF/DCE as the net{OS and on DC++ [30] as the provider

of distribution mechanisms, in particular the capability to migrate objects dynamically. One

major problem with this second prototype is to preserve the ordering of causally dependent

events between an object and an alliance at one role. This could trivially be achieved in the

�rst, transaction based prototype | at the cost of performance.

The architecture does not impose severe restrictions on how to map objects and alliances

onto runtime{incarnations. If we used a base system that allows for replication or other spe-

cialized distribution services, it might have been sensible to map an object or alliance onto

multiple incarnations. Consider as an example the use of virtual synchronity, provided by the

ISIS ABCAST mechanism [4] as the communication base, added with aggressive replication of

the alliance on the node of each object bound to the alliance. All those alternative approaches

allow for optimizations based on the speci�c capabilities of the underlying distribution ser-

vices, and o�er possibilities similar to those discussed for migration in Section 4.

The foremost objective of our prototypes is to demonstrate the utility of our approach for

a number of applications. One is simultaneous engineering. A second scenario with a much

larger degree of distribution that recently has become available to us, distributed truck
eet

control, is based on a project from distributed arti�cial intelligence.

7 Conclusion and Outlook

In order to meet the requirement for communication abstractions in object-oriented models

we have introduced alliances which allow for the separation of cooperation and distribution

aspects from the objects, and concentrate them in a separate construct.

24

The participants of alliances are autonomous objects which cannot always be expected

to meet their obligations in a cooperation. Alliances can compensate protocol violations by

indication of compensating messages with objects. Alliances describe long-lived cooperations

between a large set of objects and with changing participants. For this we allow alliances

to be persistent with persistence of alliances treated independently from that of objects. We

further introduced set-valued roles which support customized query protocols in a cooperative

environment, and dynamic role bindings which allow to dynamically associate objects with

alliances and release them if they are not needed any longer.

We further assumed that cooperation takes place in a distributed environment. We demon-

strated how alliances can be used to implement customized distribution policies, using object

migration as an example. Those policies need neither to be \hard-wired" into objects nor

had we to rely on global information which is rarely available in large information systems.

We �nally showed how alliances can be integrated with an object model and outlined our

prototypical architecture.

By going beyond similar recent approaches, and in particular by adding persistence as an

issue central to object bases, we moved into uncharted waters, thus raising a good number of

novel questions. We mention two of them.

In order to understand a cooperation protocol a more abstract way of speci�cation seems

appropriate. It should be restricted to a declarative speci�cation of multi-object constraints

and should not embody the speci�cation of how these constraints are enforced. Several ap-

proaches propose some kind of temporal logic for this purpose (e.g., [25]). We presently

investigate how temporal-logic-based speci�cations can be mapped onto alliances in a sys-

tematic manner and how alliances types can be veri�ed against those speci�cations. The

second question arises from the relegation of distribution policies to alliances. Since alliances

may share objects distribution policies of di�erent alliances may lead to con
icts. We have

begun to develop a simulation model for alliances in order to experiment with various con
ict

resolution strategies.

References

[1] G. Agha. Concurrent object-oriented programming. Communications of the ACM,

33(9):125{141, Sep 1990.

25

[2] G. Agha, S. Fr�lund, W. Kim, R. Panwar, A. Patterson, and D. Sturman. Abstraction

and modularity mechanisms for concurrent computing. In G. Agha, P. Wegner, and

A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented Programming,

pages 3{21. MIT Press, 1993.

[3] R. Allen and D. Garlan. Formalizing architectural connection. In Proc. of 16th

Intl. Conf. on Software Engineering, pages 71{80, Sorrento, Italy, May 1994. IEEE.

[4] K. P. Birman. The process group approach to reliable distributed computing. Commu-

nications of the ACM, 36(12):36{53, Dec. 1993.

[5] A. P. Buchmann. Modeling heterogeneous systems as an active object space. In Proc. of

4th Int'l. Workshop on Persistent Object Systems, Martha's Vineyard, Sep 1990.

[6] Intelligent agents. Special Edition of Communications of the ACM, July 1994.

[7] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for

active databases: Semantics, contexts and detection. In Proc. of The Conf. on Very

Large Data Bases (VLDB), Santiago de Chile, Chile, Sep 1994.

[8] U. Dayal, H. Garcia-Molina, M. Hsu, B. Kao, and M.-C. Shan. Third generation tp mon-

itors: A database challenge. In Proc. of the ACM SIGMOD Intl. Conf. on Management

of Data, pages 393{397, Washington DC, May 1993.

[9] O. Diaz, N. Paton, and P. Gray. Rule management in object oriented databases: A

uniform approach. In Proc. of The Conf. on Very Large Data Bases (VLDB), Barcelona,

Spain, 1991.

[10] S. Gatziu and K. R. Dittrich. Samos: An active object-oriented database system. IEEE

Quarterly Bulletin on Data Engineering, Jan. 1993.

[11] N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers.

In Proc. of The Conf. on Very Large Data Bases (VLDB), pages 327{336, 1991.

[12] J. Gray and A. Reuter. Transaction Processing: Concept und Techniques. Morgan

Kaufmann, New York, 1993.

[13] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioral com-

positions in object-oriented systems. In Proc. of ECOOP/OOPSLA, pages 169{180,

1990.

[14] I. M. Holland. Specifying reusable components using contracts. In O. Lehrmann Madsen,

editor, Proc. ECOOP'92, LNCS 615, pages 287{308, Utrecht, The Netherlands, 1992.

Springer-Verlag.

[15] International Organization for Standardization (ISO). Information Processing Systems

| Open Systems Interconnection | Reference Model, 1984.

[16] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood Cli�s, 1994.

[17] E. H. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the emerald

system. ACM Trans. Comput. Syst., 6(1):109{133, Feb. 1988.

26

[18] D. G. Kafura and K. H. Lee. Inheritance in actor based concurrent object-oriented

languages. In S. Cook, editor, Proc. ECOOP'89, British Computer Society Workshop

Series. Cambridge University Press, 1989.

[19] A. Kemper, P. C. Lockemann, G. Moerkotte, and H.-D. Walter. Autonomous objects:

A natural model for complex applications. Journal of Intelligent Information Systems,

3(2):133{150, 1994.

[20] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore database system.

Communications of the ACM, 34(10):50{63, Oct 1991.

[21] L. Liu and R. Meersman. Activity model: Declarative approach for capturing communi-

cation behaviour in object-oriented databases. In 18th International Conference on Very

Large Data Bases, pages 481{493, 1992.

[22] P.C. Lockemann and H.-D. Walter. Activities in object bases. In N.W. Paton and M. H.

Williams, editors, Rules in Database Systems (Proc. of the 1st Int. Workshop on Rules

in Database Systems), Workshops in Computing, pages 3{22. Springer Verlag, Sep. 1993.

[23] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kauf-

mann, 1994.

[24] Nancy A. Lynch. A hundred impossibility proofs for distributed computing. In Proc. 8th

Annual ACM Symposium on Principles of Distributed Computing, pages 1{27, Edmon-

ton, Alberta, Canada, August 1989.

[25] A. HH. Ngu, R. Meersman, and H. Weigand. Speci�cation and veri�cation of commu-

nication constraints for interoperable transactions. International Journal of Intelligent

and Cooperative Information Systems, 3(1):47{65, 1994.

[26] O. Nierstrasz. Regular types for active objects. In Proc. of the ACM Conf. on Object-

Oriented Programming Systems and Languages (OOPSLA), volume 28 of ACM Sigplan

Notices, October 1993.

[27] M. H. Nodine, N. Nakos, and S. B. Zdonik. Specifying
exible tasks in a multidatabase. In

Proc. of 2nd Int. Conference on Cooperative Information Systems, pages 3{14, Toronto,

Canada, May 1994.

[28] M. Nuttall. Survey of systems providing process or object migration. Technical Report

Imperial College Research Report DoC 94/10, Imperial College, London, UK, 1994.

[29] The Object Management Group Inc. The Common Object Request Broker: Architecture

and Speci�cation, OMG document no. 93.12.1. revision 1.2 edition, 1993.

[30] A. B. Schill and M. U. Mock. Dc++: Distributed object{oriented system support on

top of osf dce. Distributed Systems Engineering Journal, 1(2), 1993.

[31] J. van den Bos and C. La�ra. Procol: A parallel object language with protocols. ACM

SIGPLAN Notices, Proceedings OOPSLA'89, 24(10):95{102, Oct. 1989.

[32] H. W�achter and A. Reuter. The contract model. In A. K. Elmagarmid, editor, Database

Transaction Models for Advanced Applications, pages 219{264. Morgan Kaufmann, 1992.

27

[33] D. M. Yellin and R. E. Strom. Interfaces, protocols, and the semi-automatic construc-

tion of software adaptors. In Proc. of the ACM Conf. on Object-Oriented Programming

Systems and Languages (OOPSLA), pages 176{190, Portland, Oregon, USA, Oct. 1994.

[34] A. Yonezawa, editor. ABCL|An Object-Oriented Concurrent System. The MIT Press,

1990.

28

