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Abstract

Current data models like the NF

2

model and object-oriented models support set-

valued attributes. Hence, it becomes possible to have join predicates based on set

comparison. This paper introduces and evaluates several main memory algorithms

to evaluate e�ciently this kind of join. More speci�cally, we concentrate on the set

equality and the subset predicates.

1 Introduction

Since the invention of relational database systems, tremendous e�ort has been undertaken

in order to develop e�cient join algorithms. Starting from a simple nested-loop join

algorithm, the �rst improvement was the introduction of the merge join [1]. Later, the

hash join [2, 7] and its improvements [19, 22, 28, 39] became alternatives to the merge

join. (For overviews see [27, 37] and for a comparison between the sort-merge and hash

joins see [13, 14].)

A lot of e�ort has also been spent on parallelizing join algorithms based on sorting

[10, 25, 26, 34] and hashing [6, 12, 36]. Another important research area is the development

of index structures that allow to accelerate the evaluation of joins [16, 21, 20, 29, 40, 42].

All of these algorithms concentrate on simple join predicates based on the comparison

of two atomic values. Predominant is the work on equi-joins, i.e., where the join predicate

is based on the equality of atomic values. Only a few articles deal with special issues like

non-equi joins [9], non-equi joins in conjunction with aggregate functions [5], and pointer-

based joins [8, 38]. An area where more complex join predicates occur is that of spatial

database systems. Here, special algorithms to support spatial joins have been developed

[3, 15, 24, 17, 30].

Despite this large body of work on e�cient join processing, the authors are not aware

of any work describing join algorithms for the e�cient computation of the join if the join
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predicate is based on set comparisons like set equality (=) or subsetequal (�). These joins

were irrelevant in the relational context since attribute values had to be atomic. However,

newer data models like NF

2

[32, 35] or object-oriented models like the ODMG-Model ([4])

support set-valued attributes, and many interesting queries require a join based on set

comparison. Consider for example the query for faithful couples. There, we join persons

with persons in condition of the equality of their children attributes. Another example

query is that of job matching. There, we join job o�ers with persons such that the set-

valued attribute required-skills is a subset of the persons' set-valued attribute skills. We

could give plenty of more queries involving joins based on set comparisons but we think

these su�ce for motivation.

The rest of the paper is organized as follows. In the next subsection, we introduce

some basic notions needed in order to develop our join algorithms. Sections 3 and 4

introduce and evaluate several join algorithms where the join predicate is set equality and

subsetequal. Section 5 concludes the paper.

2 Preliminaries

2.1 General Assumptions

For the rest of the paper, we assume the existence of two relations R

1

and R

2

with set-

valued join attributes a and b. We don't care about the exact type of the attributes a

and b{that is whether it is e.g. a relation, a set of strings, or a set of object identi�ers.

We just assume that they are sets and that their elements provide an equality predicate.

The goal of the paper is to compute e�ciently the join expressions

R

1

1

a=b

R

2

and

R

1

1

a�b

R

2

More speci�cally, we introduce join algorithms based on sorting and hashing and compare

their performance with a simple nested-loop strategy. In addition to this, we describe a

tree-based join algorithm and evaluate its performance.

For convenience, we assume that there exists a function m which maps each element

within the sets of R

1

:a and R

2

:b to the domain of integers. The functionm is dependent of

the type of the elements of the set-valued attributes. For integers, the function is identity,

for strings and other types, techniques like folding can be used. From now on, we assume

without loss of generality that the type of the sets is integer. If this is not the case, the

function m has to be applied before we do anything else with the set elements.

2.2 Set Comparison

The costs of comparing two sets by = or � di�er signi�cantly depend on the algorithm

used. Hence, we �rst discuss some of the alternatives for comparing sets. Consider the

case in which we want to evaluate s � t for two sets s and t. We could check whether

each element in s occurs in t. If t is implemented as an array or list, then this algorithm

takes O(jsj � jtj). Set equality can then be implemented by testing s � t and t � s, giving
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rise to a factor of two. For small sets, this might be a reasonable strategy. For large

sets, however, the comparison cost with this simple strategy can be signi�cant. Hence,

we consider further alternatives for set comparison.

One obvious alternative to evaluate e�ciently s � t is to have a search tree or a hash

table representation of t. Since we assume that the representation of set-valued attributes

is not of this kind but instead consists in a list or an array of elements, we abandoned

this solution since the memory consumption and cpu time needed in order to construct

this indexed representations are too expensive in comparison to the methods that follow.

Another alternative to implement set comparison is based on sorting the elements.

Assuming an array representation of the elements of the set, and denoting the i-th element

of a set s by s[i], the following algorithm implements set comparison s = t, if the sets are

sorted:

if(s->setsize != t->setsize)

return false;

for(int i=0; i < setsize; i++) {

if (s[i] != t[i])

return false;

}

return true;

Two comments should to be made. First, note that we introduced a pretest by testing the

cardinality of the sets to be equal. This kind of pretest is used in every set comparison

algorithm we implemented{ also in the above mentioned trivial ones. Second, when

applying this sort-based algorithm for set equality within our join algorithms, we do not

assume that the elements of the set are sorted. Instead, the sort is performed by the join

algorithms explicitly. This way, the comparison with other join algorithms is not biased

by additional assumptions. Note that this algorithm runs in O(jsj). Since we do not

assume that the sets are sorted, we have to add O(jsj log jsj+ jtj log jtj) for sorting s and

t.

A predicate of the form s � t can also take advantage of sorting the sets. Again, we

start with comparing the smallest elements. If s[0] is smaller than t[0], there is no chance

to �nd s[0] somewhere in t. Hence, the result will be false. If s[0] is greater than t[0],

then we compare s[0] with t[1]. In case s[0] = t[0], we can start comparing s[1] with t[1].

The following algorithm implements this idea:

if(s->setsize > t->setsize)

return false;

i=j=0;

while(i < s->setsize && j < t->setsize) {

if(s[i] > t[j]) {

j++;

} else if (s[i] < t[j]) {

return false;

} else { /* (s[i] == t[j]) */

i++;

j++;

}
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}

if(i==s->setsize)

return true;

return false;

Note that the run time of this algorithm is O(jsj + jtj). Again, since we do not assume

that the sets are sorted, we have run time complexity of O(jsj log jsj+ jtj log jtj).

The third alternative we considered for implementing set comparisons is based on

signatures. This algorithm �rst computes the signature of each set-valued attribute and

then compares the signatures before comparing the actual sets using the naive set com-

parison algorithm. This gives rise to a run time complexity of O(jsj + jtj). Signatures

and their computation are the subjects of the next section. Furthermore, the next sec-

tion introduces some basic results that will be needed for tuning some of the hash join

algorithms.

2.3 Signatures

2.3.1 Introduction

A signature is a bit �eld of a certain length b{called the signature length. Signatures are

used to represent or approximate sets. For our application, it su�ces if we set one bit

within the signature for each element of the set whose signature we want to compute.

Assuming a function m

sig

that maps each set element to an integer in the interval [0; b[,

the signature can be computed by successively setting the m

sig

(x)-th bit for each element

x in the set. Based on m

sig

(x) we can now give the algorithm to compute the signature

sig(s) for a set s.

sig = 0;

for(int i=0; i < s.setsize; i++)

sig |= 1 << m_sig(s[i]);

return sig;

Similar to hashing, we cannot assume that the bits set for the elements of a set are

really distinct. But still, the following properties hold:

sig(s) = sig(t) (= s = t

sig(s) � sig(t) (= s � t

where sig(s) � sig(t) is de�ned as

sig(s) � sig(t) := sig(s)&:sig(t) = 0

with & denoting bitwise and and : denoting bitwise complement . Hence, a pretest based

on signatures can be very fast since it involves only bit operations. Again, we do not

assume that the elements of the sets of the relation's tuples contain their signatures, all

the subsequent join algorithms which use signatures have to construct them. Hence, their

cost will highly depend on the algorithm used to implement m

sig

and its quality. Here,

we can measure the quality by the probability that the reverse direction of the above
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implications do not hold. Such a case is called a false drop. The probability of false drops

is calculated in the next subsection.

The function m

sig

can be implemented in several di�erent ways. We investigated two

principle approaches. The �rst approach uses a random number generator whose seed

is the set element. The resulting number gives the bit to be set within the signature.

In our implementation, we used two di�erent random number generators: rand() of the

C-library and DiscreteUniform of the GNU-Library. The second approach just takes the

set element modulo the signature length. The advantage of the former is a reduction of

the false drop probability, the advantage of the latter is a much better run time. This

trade-o� will be investigated experimentally below.

2.3.2 False Drop Probability

Consider two sets s and t and their signatures sig(s) and sig(t). If for a predicate �

sig(s)�sig(t), we call this a drop. If additionally s�t holds, we call this a right drop. If

sig(s)�sig(t) and :(s�t), we call this a false drop. False drops exist, because by hashing

the data elements and superimposing their signatures, it is possible that two di�erent sets

are mapped onto the same signatures.

The false drop probabilities for subset and superset predicates have been studied

[11, 18, 31, 33] and can be approximated by the following general formula [18]:

d

f�

(b; k; r

s

; r

t

) � (1� e

�

k

b

r

t

)

k�r

s

(1)

d

f�

(b; k; r

s

; r

t

) � (1� e

�

k

b

r

s

)

k�r

t

(2)

Here, b denotes the signature length, k the number of bits set per set element (in this

paper, we will assume k = 1), r

t

the size of the set on the right size of the predicate s�t,

and r

s

the size of set on the left side of the predicate.

This leaves it to us to compute the false drop probability d

f=

(b; k; r

s

; r

t

) for set equality.

This is the probability that for any two sets s and t, the signatures sig(s) and sig(t) are

equal, despite the fact that s 6= t:

Pr(sig(s) = sig(t)js 6= t)

Roberts has thoroughly examined the theoretical background of false drop probabilities

[31]. We will use some of his results to derive a formula for d

f=

(b; k; r

t

; r

s

).

The probability p

1

(b; k; r

t

; r

s

) that z speci�c bits are set to `1' (while ignoring the

remaining b� z bits) in a signature can be approximated by [31]:

p

1

(b; k; r

t

; z) � (1� (1�

k

b

)

r

t

)

z

(3)

The probability p

0

(b; k; r

t

; r

s

) that the other b� z speci�c bits are set to `0' (while not

looking at those z bits) in a signature can be estimated by the analogous formula:

p

0

(b; k; r

t

; z) � (1�

k

b

)

r

t

�(b�z)

(4)
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The probability d

f=

(b; k; r

t

; r

s

) that exactly z bits are set to `1' and the other b � z

bits are set to `0' in a signature can now be approximated by

d

f=

(b; k; r

t

; r

s

) � p

0

(b; k; r

t

; w

q

) � p

1

(b; k; r

t

; w

q

) (5)

where w

q

corresponds to the expected weight of r

s

, i.e. the number of bits set in the

signature of the query set. It can be computed as

w

q

= b(1� (1�

k

b

)

r

s

) (6)

This is an upper bound for the false drop probability, because

d

f=

(b; k; r

t

; r

s

) = p

0

(b; k; r

t

; r

s

) � p

1

(b; k; r

t

; r

s

)� p

0

(b; k; r

t

; r

s

) \ p

1

(b; k; r

t

; r

s

):

3 Join Predicates with Set Equality

3.1 Algorithms

This section describes the algorithms we evaluated for implementing a join of the form

R

1

1

a=b

R

2

where R

1

and R

2

are relations with set-valued attributes a of R

1

and b of R

2

.

We discuss several variants of three major approaches. First, we brie
y evaluate three

variants of the nested-loop approach. Subsequently, the sort-merge join and the tree-join

are described. Last, we introduce the hash join variants.

3.1.1 Nested-Loop Joins

The nested-loop join is implemented easily by two nested loops ranging over the tuples of

the inner and outer relation, respectively. We implemented the nested-loop join algorithm

with the above described three di�erent set comparison operations: the naive one, the

one based on sorting the sets, and the comparison based on signatures.

In Figure 1, these three variants are evaluated. The top row shows the results for

varying set sizes, the bottom row gives the results for �xed set sizes. Hence, the pretest

on set sizes only accelerates the set comparison for the top row. In most cases{except for

small relations and varying set sizes{ the fastest comparison is that by signatures. Hence,

we will use this a reference point for comparing subsequent algorithms.

3.1.2 Sort-Merge Join

The main idea of sort-merge join algorithms is to sort the relations to be joined on their

join attributes and to merge subsequently the two sorted relations. If the join attributes

have a simple, ordered domain, this approach is well known. However, ordering set-

valued attributes seems less obvious on the �rst sight. The idea is to use a lexicographical

ordering on sets.

More speci�cally, our sort-merge join sorts the relations in two steps. In a �rst step,

the sets within the join attributes are sorted. In a second step, the relations themselves
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Figure 1: Performance of di�erent nested-loop join algorithms

In the top row, the number of elements per set varies uniformly between 5 and 15 for the left-hand side of the �gure and between 50 and 150 for the

right-hand side of the �gure. In the bottom row, the number of elements is always 10 for the left-hand side �gure and 100 for the right-hand side

�gure. Along the x-axes relation sizes are varied. The y-axes shows the cpu-time in milliseconds necessary for completing the join as measured on

a Sun Sparc Station 20 with 64MB Main Memory. Note the logarithmic scale on both axes.

are sorted on their join attributes. We use a lexicographic ordering for sorting the tuples

according to the set-valued join attributes. For example, the sets

f1; 4; 7g; f1; 5; 7g; f2; 5g

are lexicographically ordered, whereas

f1; 5; 7g; f1; 4; 7g; f2; 5g

are not.

Now, the merge phase proceeds as follows. For the outer relation{say R

1

{exist two

pointers (low and high) to tuples within it. These pointers indicate the lowest and the

7



highest tuples within the sorted relations that are equal. A third pointer (j ) is used to

range over the inner relation{say R

2

. The join attributes of the �rst two tuples t

1

and t

2

of the relations to be joined are compared. If the set a of t

1

precedes lexicographically

the set b of t

2

, then we can advance the low pointer of R

1

. If the set b of t

2

precedes

lexicographically the set a of t

1

, then we advance the pointer (j ) of R

2

. If they are equal, a

result tuple can be built. Further, we have to check subsequent tuples in R

1

whether they

have the same a value. We do so by advancing the second pointer (high) and checking

separately each tuple it points to until we meet a tuple whose a value is unequal to the

according t

2

.b value. If, after such a run of R

1

tuples with equal attributes the next tuple

in R

2

does not match, all these tuples can be skipped.

This idea is easily implemented in the following algorithm:

low=high=j=0;

flag = false;

while(low < R1.size && j < R2.size ) {

while(low < R1.size && j < R2.size &&

R1[low].a != R2[j].b ) {

if(flag) {

flag = false;

low = high;

continue;

}

if(R1[low].a < R2[j].b)

low++;

else if (R1[low].a > R2[j].b)

j++;

}

if(low >= R1.size || j >= R2.size)

break;

/* build result tuple */

high = low + 1;

while(high < R1.size && R1[high].a = R2[j].b) ) {

/* build result tuple */

high++;

}

j++;

flag = true;

}

Since sorting had to be done before the application of this algorithm, the used set com-

parison algorithm is the one based on sorted sets. The performance evaluation of this

algorithms can be found in Section 3.2

3.1.3 Tree Join

The basic idea behind a hash join is to use a temporary index. Instead of a hash table,

other index structures could also be used. In this section, we consider a binary tree as

the temporary index structure for a tree-based join algorithm. Let us �rst introduce the
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data structure by means of an example. Consider a relation containing the following three

tuples with a set-valued attribute A:

1. T1:A = f1; 3; 4g

2. T2:A = f1; 5g

3. T3:A = f2; 3; 4g

The according tree is

1

2 2

3

4

3

45

nomatch match

{2,3,4} {1,5} {1,3,4}

Every node in the tree consists of three pointers and a key. The key contains a set element

found in some of the relation's tuples. For every tuple, if the element occurs in the set

and no further elements are found, a pointer points to a list containing this tuple. If it

contains further elements, a match pointer (to the right) points to a subtree containing

the tuple. If the key element does not occur in the tuple considered, the nomatch pointer

(to the left) points to a subtree containing the tuple.

Before inserting the tuples into the tree, the sets in their set-valued attributes are

sorted. We do not sort the relations as we did for the sort-merge approach. Just the

elements within the set-valued attributes are sorted. Assume that t denotes the tuple to

be inserted. Then, the insertion proceeds as follows:

void insert(Tuple* t) {

TreeNode* place = root;

TreeNode* oneup = 0;

for(int i = 0; i < t->setsize; i++) {

int elem = t->A[i];

while(place->key < elem) { // go down to find the place of insertion

if(place->nomatch == 0) { // can't go down further, insert node

place->nomatch = new TreeNode(elem);

}

oneup = place;

place = place->nomatch;
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}

if( place->key == elem ) { // this is the place to go

if( i == (t->setsize-1) ) {

place->entries = new TreeCollEntry(t,place->entries);

break;

}

if( place->match == 0 ) {

place->match = new TreeNode(t->A[i+1]);

}

oneup = place;

place = place->match;

} else { // the new tuple must be inserted befor this node

// (place->key > elem)

if(place == oneup->nomatch) {

TreeNode* newNode = new TreeNode(elem,0,place);

oneup->nomatch = newNode;

place = newNode;

i--; // to create the match entry

} else {

// (place == oneup->match)

TreeNode* newNode = new TreeNode(elem,0,place);

oneup->match = newNode;

place = newNode;

i--; // to create the match entry

}

}

}

}

The algorithm proceeds as follows: it goes down the tree until it �nds a place where the

key is greater or equal to the next element of the set-valued attribute to be considered.

Then, two cases have to be distinguished. First, the key is equal to the element to be

inserted. If so{and if we are at the end of the set{we just insert the tuple into the entries

list. Otherwise we have to go further down the match pointer in order to insert the next

element of the set. If the set element is greater than the key, then this means that the

element had to be inserted before the current node. This is done by creating an according

node and inserting it between the predecessor of the current node and the current node.

From there on, the search for an insertion place restarts.

To �nd for a given tuple all the joining tuples contained within the tree is now an

easy task. We look successively at each element within the sorted set, starting with the

smallest element and entering the tree at the root. If the current element is equal to the

key of the current node, we go down the match branch. If it is not equal to the key of

the current node, we proceed in the nomatch branch. We proceed the same way with

the next element in the set until all elements have been processed. The tuples within the

current entries list are the joining tuples.

10



3.1.4 Hash-Loop Join

The idea of the hash join algorithm is to build a hash table for the inner relation hashed

on its join attribute. For set-valued attribute values, there exist several alternatives for

the hash function. The simplest is to hash the sets by their cardinality. This yields a

good distribution only if the join attribute values consist of sets of varying cardinality. In

this case, a partitioning by set sizes might be useful. However, since in general this is not

applicable, we considered two other alternatives:

1. direct hashing

2. signature hashing

In the �rst alternative, each set is directly mapped to some hash key. Since our assumption

is that the set elements have already been mapped to the integer domain, we add up all

elements in the set. The result is then taken modulo the hash table size to yield the hash

value of the set. Within subsequent �gures, this alternative is labeled by sum. The set

comparison used in this algorithm is the naive one. As a variant of sum, we implemented

one where the set comparison is based on sorting the sets. However, since the collision

chain lengths are always quite short, sorting does not pay for this approach (see below).

The second alternative is based on signatures. Several aspects have to be considered

when using signatures for hashing:

1. choice of the right signature length,

2. allocation of the memory for the signature,

3. computation of signatures, and

4. mapping signatures to hash values.

Signature Length The performance of signatures depends on their size. For a �xed set

size, the larger the signature size, the smaller the false-drop probability. Hence, a large

signature seems to be the best. However, there are two aspects which complicate the

issue. First, the signature must be mapped onto a hash value. The larger the signature,

the more \complex" the mapping becomes. The e�ect is that collisions of hash values

become more likely. Second, computing the signatures just for computing the hash values

seems a waste. If we store them together with the tuples in the hash table, then we are

able to perform a signature comparison as a pretest on the collision chains within the

hash tables. This results in a performance enhancement. If the signatures become too

large, the storage overhead is no further neglectable. Hence, we have a trade-o� between

lowering the false-drop probability on one hand and minimizing storage overhead on the

other hand. Considering the formula for false-drop probabilities in case of set equality as

a comparison predicate, we can use a signature of 32 bits to have a false-drop probability

below 1.4e-06 for up to 60 elements per set. Beyond 60 elements, the false drop probability

increases dramatically. Hence, we use 64 bits for sets containing up to 150 elements. The

resulting false-drop probability is less than 2.1e-09. These probabilities only hold if the

variance of the set size is zero.
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Allocating Memory for the Signature There exist two extreme cases for allocating

memory for signatures. At one end, each tuple provides a couple of bytes (4 or 8) that

are able to contain the signature. At the other end, a signature object can be created dy-

namically and attached to the tuple. Further, the signature bits themselves are allocated

by the signature object. This results in two dynamic memory allocations. An alternative

in the middle would be to allocate the signature object together with the signature bits

at once. We implemented the two extreme situations in order to derive an upper bound

on the performance loss of dynamic signature creation.

Computing Signatures There exist several possibilities to compute the signature.

We investigated the alternatives described in section 2.3. We use the following scheme to

denote the di�erent alternatives:

ran for computing the signatures using the C-library rand() function

dis for computing the signatures using the GNU-library DiscreteUniform function

mod for computing the signatures by simply taking the elements modulo the signature

length.

Mapping Signatures to Hash Values If the signature is within the 32 bit bound of

an integer, it is mapped to a hash value by taking it modulo the hash table size. If it is

longer, we consider two alternatives. In the �rst alternative, we truncate the signature

into 32 bit pieces and fold these pieces by using the bit-wise exclusive or. The second

alternative just considers the lower 32 bits of the signature and ignores the rest. This

part of the signature is then taken modulo the hash table size in order to give the hash

value. This approach will lead to the notion of partial signature (size) that is investigated

thoroughly in the next section (see Sec. 4.3).

To show that the signature length plays a central role for the collision chain length,

consider the following numbers. For each of the alternatives, the maximum collision

chain length for some typical experiments are given. In each experiment, 500 tuples were

inserted into the hash tables. The set sizes were varied.

Set Size sum 32bit sig 64bit sig, fold 64bit sig, 32bit truncate

dis ran mod dis ran mod dis ran mod

10 6 5 6 6 7 7 8 9 7 7

9-11 4 6 6 7 7 7 6 8 8 8

44 5 7 8 7 5 5 6 5 5 5

40-48 6 7 7 7 5 5 5 7 4 5

100 4 119 128 128 7 6 6 8 6 9

90-110 5 109 126 126 7 5 6 8 6 8

Although these are only example experiments and some deviation for other experiments

can be expected, a couple of observations can be made. First, if the signature is too small,

like 32 bits for set sizes of about 100, the collision chain becomes very long. The reason

is that there is a high probability for every bit in the small signature to be set. Second,

the quality of the random number generator plays a minor role for the collision chain

length. On the average, for the examples shown, using a random number generator leads
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to slightly shorter collision chains than using a modulo value to derive the bit to be set.

Nevertheless, since this operation is much faster than a random number generator call,

algorithms based on the modulo operation outperform (in terms of run time) those based

on a random number generator (see below). Further, this it is not true in general, that

random number generators lead to shorter collision chains than a simple mod operation.

Third, folding performs slightly better than taking only a portion of the signature and

ignoring the rest. Fourth, the sum alternative seems to perform quite well. This is not

true in general. If the relations become large, the probability of a collision becomes quite

high, resulting in long collision chains.

Implemented Alternatives The following is a list of the implemented alternatives.

The �rst algorithm uses the idea of summing up all elements, all the others are signature-

based. Since the signature length plays a crucial role in performance, we allow for arbitrary

signature length. However, the dynamic allocation of small signatures imposes some

overhead. Hence, we have two further implementations for �xed signature lengths of 32 bit

and 64 bit. The signature can be built using either a random number generator or a simple

modulo operation. We tested two random number generators (rand, DiscreteUniform).

A signature of more than 32 bit is not easily mapped to a table entry number by a simple

modulo function. Hence, we use folding or truncation to map a signature to an 32 bit

unsigned int. Then, from this number we can derive the table entry number by a taking

it modulo the hash table size. These dimensions give rise to numerous alternatives. The

implemented alternatives are summarized in the following list:

sum sum all elements in set

sumS sum all elements in set, sort sets for fast comparison

ran [32] 32 bit signature using rand

dis [32] 32 bit signature using DiscreteUniform

mod [32] 32 bit signature using mod

ran [64x] 64 bit signature using rand , folding (bit exclusive or) to 32 bit

dis [64x] 64 bit signature using DiscreteUniform, folding (bit exclusive or) to 32 bit

mod [64x] 64 bit signature using mod , folding (bit exclusive or) to 32 bit

ran [64t] 64 bit signature using rand , use only lowest 32 bits for hashing (truncate)

dis [64t] 64 bit signature using DiscreteUniform, use only lowest 32 bits for hashing

(truncate)

mod [64t] 64 bit signature using mod , use only lowest 32 bits for hashing (truncate)

ZF [nn,32] arbitrary signature lengh, mod for building signature, folding (bit exclusive

or) to 32 bit, nn denotes the actual signature length

ZT [nn,32] arbitrary signature length, mod for building signature, use only lowest 32

bits for hashing (truncate), nn denotes the actual signature length

13



Evaluation of Alternatives We ran several experiments in order to evaluate the per-

formance of the di�erent alternatives. Thereby we had several goals in mind:

1. verify that sorting for fast set comparison does not pay;

2. take a look at the collision chain length of the variants;

3. select the right approach to generate the signatures;

4. quantify the di�erence between folding and truncation;

5. quantify the overhead for dynamic signature allocation, and

6. select the best algorithm(s) to compare them with non hash-based algorithms, i.e.,

reduce the number of alternatives.

During all the experiments, the hash table size was chosen to be equal to the number of

tuples. This is not necessary, since also much smaller hash table sizes result in similar

performance, but for us it had the advantage that the average collision chain length is

always equal to 1. Hence, the experiments on the hash tables are normalized and we only

need to discuss the maximal collision chain length.

Figure 2 suggests to use no sorting of the sets for fast set comparisons, at least as long

as the collision chain lengths remain small. As we will see (Fig. 3), this is not true for the

sum alternative. This is the reason why the alternative where set comparison is based on

sorting comes close to the alternative without sorting. For the other hash join variants,

sorting clearly does not pay.

Figure 3 shows the collision chain length of the di�erent hash tables. The maximum

collision chain length is 20 for all but the sum alternative, even if the relations become

very large. Hence, the signature-based variants proof to be superior. The �gure on the

right-hand side shows that folding is superior to truncation. For us this is bad news, since

this will be the variant that has to be used for the � join predicate. Fortunately, the

signature sizes used for this �gure are untuned. Using a better signature size leads to in

much shorter collision chain lengths (see Fig. 10).

Figure 4 shows the performance of the 32 bit and 64 bit signature algorithms for

the di�erent alternatives to produce the signature. As expected, although their collision

chains are typically shorter, the alternatives using random number generators need much

more time than the mod alternative. Hence, this overhead does not pay in a main memory

environment.

Figure 5 concentrates on 64 bit signatures where either folding or truncation is used.

Given the shorter collision chains, folding is superior to truncation. This is due to the

much shorter collision chains. However, as mentioned above, the truncation can be tuned.

Figure 6 quanti�es the overhead of a dynamic versus a static implementation of sig-

natures. As expected, there is an overhead for dynamic signature creation. The only

question that remains is how big it is. The answer can now be given easily. For small

sets{and, hence, a small signature size{the overhead is about a factor of 2-3. For larger

sets, the overhead becomes neglectable (< 10%) since the computation of the signatures

consumes much more cpu time than their creation.

Figure 7 shows the performance of the most interesting alternatives. For small sets,

the mod variant with static memory allocation performs best. For large sets, the sum
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Figure 2: Sort-based versus naive set comparison

variant might be an alternative. However, we do not recommend its usage due to its

possible degradation. Note that we also included the curves for those alternatives that

build on dynamic signature allocation. Even if we have to join two relations with 10,000

tuples each and within every single tuple the set-valued attribute contains 100 elements,

we can perform the join within one or two seconds, depending on the memory allocation

strategy. A comparison with other approaches like nested-loop and sorting is discussed in

the next section.

3.2 Evaluation

Figure 8 shows the performance �gures of the best nested-loop variant using set compari-

son based on signatures, the sort-merge join, the tree join, and the sum and mod variants

of the hash-join. For the latter, we used the variant with static signature allocation. This

is quite reasonable, since the query optimizer already determines the query evaluation
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Figure 3: Maximal collision chain lengths of di�erent hashing schemes

plan and hence �xes the join algorithm. Further, given that a signature hash join is to

be performed, some space for the signature can easily be allocated in the tuples repre-

senting the intermediate relation. This then saves the dynamic memory allocation for the

signatures. Remember also, that the overhead for dynamic signature allocation was quite

small for larger sets.

The conclusion that can be drawn from Figure 8 and previous �gures is that the mod

variant is the method of choice. It performs best (or close to best) in all cases. Only for

large sets, the sum alternatives prove to be superior. However, as mentioned above, the

chance of degradation still remains. The nested-loop variant seems to be an alternative

for small relations only. This is not surprising due to its complexity. If for some reason a

hash-based alternative is not applicable within a given application, the sort-merge join and

the tree join remain reasonable alternatives. From a run time perspective, the tree join

performs slightly better for large relations and small sets. However, one should not neglect

its tremendous storage overhead. Hence, the sort-merge join remains the alternative of

choice if hash-based algorithms are not applicable.

For us, the most important conclusion was that there exist algorithms which are much

more e�cient than the nested-loop variant. Further, the e�ciency of the alternative

algorithms is surprisingly good. Joining two relations with 10,000 tuples each based on

the equality of their set-valued attributes consisting of 100 elements within a second or

two seems to be a reasonable result, especially when we consider that the best nested-loop

variant needs almost one and a half minute for the same task.

4 Join Predicates with �

This section discusses algorithms to compute

R

1

1

R

1

:a�R

2

:b

R

2
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Figure 4: Alternative approaches to generate the signature
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will also be useful for computing joins like R
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. For the latter two only slight modi�cations are necessary. This section

is organized as follows: the next subsection contains a description of the algorithms. It

starts with the nested-loop algorithm. Then, the sort-merge join and the tree join follow.

Finally, the hash join is discussed. The last subsection contains the evaluation of the

di�erent join algorithm for �.

4.1 Algorithms

4.1.1 Nested-Loop Joins

There are again three di�erent possible implementations of the nested-loop join. Each

alternative is based on a di�erent implementation of the � predicate. The �rst alternative
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Figure 5: Folding and truncation

applies the naive implementation, the second applies the implementation based on sorting,

and the third alternative utilizes signatures. For details on the di�erent implementations

for � see Sec. 2.2.

Figure 9 shows the performance �gures for the di�erent nested-loop variants. Again,

the signature-based set comparison performs best and the naive implementation of �

performs worst. Hence, the signature-based variant will be used for further comparison

with other �-join algorithms.

4.1.2 Sort-Merge Join

The situation here is very similar to the one encountered when performing a merge join

for a � predicate. There is no way for a simple merge of the two sorted relations su�ces.

The only thing we can do is break early the inner loop ranging over the second relation

R

2

. Assume that we want to �nd all those tuples in relation R

2

with an attribute value

less than a. Then, as soon as we found the �rst tuple whose attribute value is greater

than a, we can break the loop on R

2

, since all subsequent attribute values will be even

higher. For this, it does not make sense to sort the �rst relation R

1

.

Similar situations occur when evaluating a join with the � predicate. Let us assume

that we want to �nd all matching tuples for a set s. Further assume that R

2

is sorted

lexicographically. As soon as the smallest element in s is smaller than the smallest element

in the attribute of a tuple in R

2

, we can stop the loop, since this element will not be

contained in any subsequent sets of tuples of R

2

. A similar argument applies to the

maximum element of s. All the tuples in R

2

, whose maximum is smaller than that of s

can be skipped. This idea is captured in the subsequent code fragment.

// R1->sort(); sorting the first relation doesn't make much sense

for(int i=0; i < relsize; i++) { // instead we just sort the sets

R1[i]->sort();

}
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Figure 6: Overhead of dynamic signature creation

R2->sort(); // the second relation is sorted, includes sorting the sets

for(int t1=0; t1 < R1->relsize; t1++) {

for(int t2=0; t2 < R2->relsize; t2++) {

if( R1[t1]->A[0] < R2[t2]->A[0] )

break; // break if minimum in t2 is too big

if( R1[t1]->A[ R1[t1]->setsize - 1 ] > R2[t2]->A[ R2[t2]->setsize - 1] )

continue; // skip if maximum in T2 is too small

if( R1[t1]->subseteqsorted(r->R[t2]) ) {

// build result tuple

}

}}

return res;

Unlike for the set equality join, there is no gain in the complexity of the run time of this
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Figure 7: Comparison of the best alternatives

algorithm. It is still O(n

2

). Nevertheless, there is one new simple pretest (the continue

case) which eliminates some evaluations of the expensive subseteqsorted predicate, which

in turn is cheaper than the naive evaluation of �. Further, the break case implies that the

inner loop has to be evaluated on only half of R

2

on the average. Hence, this alternative

looks worthwhile to evaluate.

4.2 Tree Join

The tree join for set equality can easily be adapted to the subset predicate. We only have

to change the retrieval algorithm. In order to �nd all the subsets of a given set within

the tree, we advance simultaneously through the set and the tree. The retrieve procedure

takes a tuple t, an index i indicating how far we proceeded already through its set-valued

attribute and a tree node. If we are at the end of the tree, nothing has to be done.

Otherwise, if we processed all the elements of a set, we can build the result tuples from
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Figure 8: Performance of di�erent join algorithms

the entries in the current node and all the nodes reachable from this node. If we are not

yet done{that is, did not consider all elements of the set{we take a look at the key of the

current node. If this key matches the current set element, we can advance our pointer i

into the set and go into the match-branch of the current node. If the key is less than the

current set element, we continue by investigating the match and nomatch branch. If the

key is greater than the current set element, we certainly will not �nd any qualifying tuple

below the current node and can quit the retrieve procedure. The code for this procedure

is

retrieve(Tuple* t, int i, TreeNode* place) {

if(place == 0)

return;

if(i == t->setsize) {

// build result tuples from current node and subnodes

21



1

10

100

1000

10000

100000

1e+06

100 1000 10000

tim
e 

(m
s)

Relation Size

Subseteq (5-15 elements)

nested loop (naive)
nested loop (sort)
nested loop (sig)

1

10

100

1000

10000

100000

1e+06

100 1000 10000

tim
e 

(m
s)

Relation Size

Subseteq (50-150 elements)

nested loop (naive)
nested loop (sort)
nested loop (sig)

1

10

100

1000

10000

100000

1e+06

100 1000 10000

tim
e 

(m
s)

Relation Size

Subseteq (10 elements)

nested loop (naive)
nested loop (sort)
nested loop (sig)

1

10

100

1000

10000

100000

1e+06

1e+07

100 1000 10000

tim
e 

(m
s)

Relation Size

Subseteq (100 elements)

nested loop (naive)
nested loop (sort)
nested loop (sig)

Figure 9: Performance of di�erent nested-loop join algorithms

}

if( place->key < t->A[i] ) {

if(place->match != 0)

retrieve(t, i, place->match);

if(place->nomatch != 0)

retrieve(t, i, place->nomatch);

return;

} else if( place->key == t->A[i] ) {

if( i == (t->setsize - 1) ) {

// build result tuples from current node and all successor nodes

// in the match branch.

} else {

return retrieve(t, i+1, place->match);
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}

} else {

return;

}

}

It is important to note that the retrieve procedure investigates more than one branch

within the tree. The complete join algorithm proceeds as follows: �rst, the tree is built

for the inner relation. Then, for each tuple in the outer relation, the retrieve procedure

is used to construct the joining tuples. For both relations, the set-valued attributes are

sorted before hand. Sorting the relations themselves according to some lexicographical

ordering is not necessary.

4.3 Signature-Hash Join

Using signatures to hash sets seems easy for evaluating joins based on set equality. For

subset predicates this is not so obvious. In principle, two di�erent approaches exist. First,

one could insert redundantly every tuple with a set-valued attribute a for every possible

subset of a into the hash table. Since this results in an exponential storage overhead,

we abandoned this solution. The second approach inserts every tuple once into the hash

table. Now, the problem is to retrieve for a given tuple all those tuples whose set-valued

attribute is a subset of the given tuple. More speci�cally, given a signature of the set-

valued attribute of a tuple, the question is how to generate the hash keys for all subsets?

Assuming it to be possible, this generation results in an exponential runtime in the length

of the signature. Hence, for small signatures, this approach seems reasonable whereas for

large signatures it is unfeasible. Since the signature depends on the size of the sets, and

30 and more bits for a signature are common, generating all the signatures of possible

subsets is unfeasible. This problem can be avoided by using only part of the signature.

In order to derive a hash join for the subsetequal predicate, we proceed in several steps:

1. building the hash table (including the computation of the hash values)

2. tuning the parameters

3. the actual join algorithm

4. �ne tuning of the algorithm

Building the hash table In the direct approach, we consider a signature of length b,

but take only the lowest d bits as a direct pointer into the hash table. (The reasons for

this become obvious in the next step.) From this it follows that the hash table must have

a size of 2

d

. Let us denote the lowest d bits of the signature of a set-valued attribute a

of some tuple t by partsig(t).

1

We call this the partial signature. This corresponds to the

�xed pre�x/su�x partitioning technique for signatures [23], except that we neglect the

other part. Every tuple t of the relation to be hashed is now inserted into the hash table

at address partsig(t).

1

For computing the signature and the partial signature, we consider only the modulo approach, since

the approaches using random number generators are too slow.
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Figure 10: Tuning partial signature sizes

Tuning the parameters The signature size b and the partial signature size d are crucial

tuning parameters since they determine via the collision chain lengths and via another

factor (see the next step) the run time of the join algorithm. If b becomes very small,

that is much smaller than the set size, then we can expect that every bit is set. Hence,

many collisions occur. If b becomes very large, say 1,000 times the set size, we can expect

that almost none of the d bits of the partial signature is set, if d is in a reasonable range

from 6-16. Again, many collisions occur. The problem is now to determine the optimal

value of b. Our partial signature contains the most information content possible, if on

the average d=2 bits are set. Since we assume that the bits which are set are distributed

uniformly over the signature, this amounts to determine the partial signature size so that

half of the bits are set in the full signature.

In section 2.3.2, we gave the formula to determine the number of bits set as

w = b(1� (1�

1

b

)

r

)

where b is the signature size and r is the (average) set size. For a given set size, the

problem is now to determine the optimal value for b. This b can be derived analytically

as

b

opt

=

1

1� (

1

2

)

1

r

(7)

(See the appendix for a formal derivation.)

Hence, if we determine b

opt

by this formula, we can expect that half of our d bits in

the partial signature will be set and that the collision chain length is minimal. Let us

give at least the results of one experiment validating this analytical �nding. For a set

size of 100, the optimal value of b can be computed as b

opt

= 144:77. Figure 10 gives the

experimental results. On the left-hand side, the number of bits set in the partial signature

depending on the signature size is given. Each curve corresponds to a di�erent partial
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signature size d. It follows that the according hash table has 2

d

entries. For d = 8, we

�nd that for some number a little smaller to 150, 4 bits are set. This is exactly what we

expect after our analysis. On the right-hand side, the maximum collision chain lengths

for di�erent partial signature lengths are given. We �nd that for values around 145, the

collision chain lengths become minimal. Hence, we can use formula 7 to tune our hash

tables. Further, we �nd that the accurate value for the partial signature size is not too

important. In order to be very close to the minimum collision chain length, a value from

130-200 will do.

The signature-hash join After having build hash tables with reasonably short colli-

sion chains, we come to the problem of computing the join R

1

1

R

1

:a�R

2

:b

R

2

. We �rst

transform this problem into computing the join of R

2

1

R

2

:b�R

1

:a

R

1

. Then, the hash table

is constructed for R

1

. The last step consists in �nding all the joining tuples of R

1

for each

tuple in R

2

. For a given tuple t

2

2 R

2

, we have to �nd all the tuples t

1

in R

1

such that

t

2

� t

1

. We do so by generating all the partial signatures for all subsets of t

2

and look

for these partial signatures within the hash table. For all tuples found, we (1) perform a

comparison of the full signature and, if necessary, (2) an explicit set comparison to take

care of false drops.

The partial signatures are exactly those bit patterns that have at most the bits of the

signature of t

2

set. As an example consider that t

2

has the partial signature 0101. Then,

we look up the entries 0000, 0100, 0001 and 0101 within the hash table. The generation of

these partial signatures for subsets is done by using the idea of Vance and Maier [41]. IfM

is the partial signature of t

2

, then the partial signatures S of all subsets can be generated

by performing S = M&(S �M) until all partial signatures have been generated. (For

further details see [41].)

We refer to the approach where the hash table size is 2

d

for a given partial signature

size by the direct approach since the signatures are directly used as hash keys. However,

we did not want to be bound to hash table sizes of 2

d

only. Hence, we added a modulo

computation in order to allow for arbitrary hash table sizes. Let n be the chosen hash

table size. Then, the tuples t are inserted into the hash table at address partsig(t) mod

n. For retrieving the joining tuples, we apply also the mod n to the partial signatures S

of the subsets. We refer to this indirect approach by mod and to the direct approach by

dir .

Fine tuning Let us now have a closer look at the tuning parameters. Obviously, the

signature length and the partial signature length heavily in
uence the performance of the

hash join. The shorter the partial signature, the longer are the collision chains (witness

Fig. 10). The longer the partial signature, the more bits are set within it. Hence, the

more hash table entries have to be checked for each tuple. On the average, 2

d

2

entries have

to be checked if we set the signature length to b

opt

. Hence, a large d gives small collision

chains but results in many hash table lookups.

Let us illustrate this point by some experiments. Figure 11 gives the performance for

several values for d{the partial signature length. As we see, for every relation size there

seems to exist another optimal value for d. In general, the partial signature length should

be the largest d such that 2

d

is less than or equal to the cardinality of the hashed relation.

For relations sizes larger than 1,000 we have to add an extra bit. (Adding one bit or not
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Figure 11: Performance of the hash join depending on the partial signature size

is not really crucial, since the performance increase is about 10%.) Given this fact, the

indirect approach does not make much sense anymore, since a hash table size in the order

of the relation size seems feasible.

The same factor, that is the number of hash table entries that have to be looked up in

order to �nd all the joining tuples for a given tuple, makes it worth to consider deviations

from b

opt

. If we chose a signature length larger than b

opt

, then the average number of

bits set within the partial signature decreases. Though more collisions may occur, the

number of lookups decreases. Experiments show that adding about 30% results in a better

performance of at least 30% and at most a factor of 2.

4.4 Evaluation

Figure 12 shows the performance evaluation of our join algorithms. More speci�cally, it

contains the run time of the nested-loop algorithm with signature-based set comparison,

the sort-merge and the tree join, as well as the hash join with the tuning parameters set

according to the above considerations for the signature length and the partial signature

length. The hash join allocates dynamically a signature object for each tuple to be

hashed. This signature object then allocates the signature bit vector dynamically. Only

one signature is allocated for all tuples of the outer relations. It is cleared before reusage.
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Figure 12: Performance of di�erent join algorithms for �

This makes sense since clearing is less expensive than dynamic allocation. If the signatures

are allocated statically, we can gain a factor of three, as shown before. Obviously, for

larger relation sizes, the hash join algorithm performs best. Otherwise, the nested-loop

algorithm is superior. However, the advantage of the hash join is not as big as might be

expected after the results for set equality. This is due to the exponential number of hash

table lookups. Nevertheless for relations containing 10.000 tuples, the hash join saves a

factor of up to 10 for small sets and a factor of up to 5-6 for large sets.

The reason why the speed up for large sets is smaller than for small sets is that

the signature comparison becomes more expensive with growing signatures. Since the

signature comparison is executed only a quadratic number of times in the signature-

based nested-loop join but an exponential number of times in the signature-hash join, the

performance of the latter degrades more severe.
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5 Conclusion

For the �rst time, this paper investigates join algorithms for join predicates based on set

comparisons. More speci�cally, this paper treats the set equality and subset predicates.

It has been shown that much more e�cient algorithms exist than a naive nested-loop

join. Even the signature nested-loop join results in an order of magnitude improvement

over the naive nested-loop join. For set equality, the hash join gives two more orders

of magnitude over the signature hash join resulting in very good performance. For the

subsetequal predicate, the performance of the signature nested-loop join still yields an

order of magnitude improvement. However, the hash join for the subsetequal predicate

improves over the signature hash join only a factor of 5-10 depending on various param-

eters. Although this is a result that is not to be neglected, the question arises whether a

better alternative exists. This is one issue for future research but there are more. First,

join algorithms where the join predicate is based on non-empty intersection have to be

developed. Second, all the algorithms presented are main memory algorithms. Hence,

variants for secondary storage have to be developed. Third, parallelizing these algorithms

is an interesting issue by itself.
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A Optimizing the parameters for the false drop prob-

ability

In this section we show, how the calculation of the optimal value for the number of bits

in a signature can be derived.

When joining two relations, we do not distinguish between a query set (having r

s

members on the average) and the sets in the database (having r

t

members on the average).

We assume, that all sets participating in the join contain r

t

elements on the average.
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with t being the average number of bits set in a signature:
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> 0 and 0 < k < b:
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This means for the optimal values for k and b:
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