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Abstract

Time of creation is one of the predominant (often implicit) clustering strategies
found not only in Data Warehouse systems: line items are created together with
their corresponding order, objects are created together with their subparts and so
on. The newly created data is then appended to the existing data. We present
a new join algorithm, called Diag-Join, which exploits time-of-creation clustering.
The performance evaluation reveals its superiority over standard join algorithms like
nested-loop join and GRACE hash join. We also present an analytical cost model
for Diag-Join.

1 Introduction

During the evaluation of queries in Data Warehouses, relations containing millions or even
billions of tuples need to be joined. Joins involving fact tables are very costly operations.
Evidently, fast join algorithms are very important in this environment.

The main strategy to lower join cost is to filter out many non-qualifying tuples be-
forehand. Bit-vector indexing is predominantly used for this purpose, like in O’Neil’s
and Graefe’s multi-table join [31]. However, it may not always be possible to filter out a
significant number of tuples. The join attribute may also take on many different values,
leading to huge bit-vectors, so that the overhead of filtering may not pay off. We have
asked ourselves, if properties of relations exist, that can be exploited somehow during a
join operation. During our analysis we made the following observations. When inserting
new tuples into a Data Warehouse, those tuples are usually appended to existing relations
[20, 24]. Therefore time of creation is the predominant—though often implicit—clustering
strategy. Another important observation was that in the context of Data warehousing re-
lations are typically joined on foreign keys [20, 24]. Backed by these observations, we
developed a join algorithm-—called Diag-Join— which takes advantage of these facts. It
exploits time-of-creation clustering for 1:n relationships.

Let us illustrate these two points by an example taken from [24]. All companies selling
products have to ship these products to their customers. Hence, the process of shipping
goods plays an important role. Assume that in the Data Warehouse of such a company



a central fact table Shipments exists, that contains the data on all deliveries made. In a
dimensional table CustomerOrders we store information on all orders that the company
received. See Figure 1 for an illustration. Soon after appending an order from a customer,
we expect the corresponding tuples to be added to Shipments, resulting in clustering by
time-of-creation.

Shipments CustomerOrders
ProductKey Price ShipDate | ShipMode | OrderNo OrderNo | CustomerID | TotalPrice | OrderDale
123 24.00 | 10/12/96 | Mail K-323 K-323 1943 156.00 10/10/96
234 35.00 | 10/13/96 | Air K-323 K-326 432 1751.00 11/20/96
012 97.00 | 10/13/96 | Air K-323 K-351 129 45020.00 | 12/02/96
635 1298.00 | 11/23/96 | Truck K-326 . e . .
534 453.00 | 11/23/96 | Truck K-326
239 20.00 | 12/10/96 | Air K-351
978 10000.00 | 12/18/96 | Rail K-351
174 35000.00 | 12/20/96 | Ship K-351

Figure 1: The relations Shipments and CustomerOrders

The Diag-Join exploits this clustering. In essence, Diag-Join is a sort-merge join
without the sort phase. An important difference, however, is that the merge phase of
Diag-Join does not assume that the tuples of either relation are sorted on the join at-
tributes. Instead, it relies on the physical order created by the (implicit) time-of-creation
clustering strategy. More specifically, Diag-Join joins the two tables by scanning them
simultaneously. The scan on the outer relation proceeds by moving a sliding window of
adjustable size over the relation. Only within this window we search for join partners for
the inner relation. A special mechanism takes care of those tuples of the inner relation
for which no join partner could be found in the window. They are called mishits. Though
simple, this idea proves to be very effective. There are, however, some subtleties that are
addressed later on. These are the buffer management, the window size, the organization
of the window, and the sliding speed of the window.

Diag-Join has two advantages over other join algorithms:

e Even if the relations do not fit into main memory, in many cases Diag-Join will be
able to avoid the creation of large temporary files, unlike the sort-merge join [1], the
hybrid hash join [6, 35], and the GRACE hash join [10, 35].

e Contrary to other join algorithms, output tuples can be produced right away without
a painful interruption of the query evaluation pipeline.

The rest of the paper is organized as follows. Section 2 covers related work. We
present the Diag-Join algorithm in Section 3. Section 4 contains performance evaluations
and comparisons with other join algorithms. Section 5 concludes the paper.

2 Related Work

Since the invention of relational database systems, tremendous effort has been undertaken
in order to develop efficient join algorithms. Starting from a simple nested-loop join



algorithm, the first improvement was the introduction of the merge join [1]. Later, the
hash join [2, 6] and its improvements [21, 25, 30, 37] became alternatives to the merge
join. (For overviews see [29, 35] and for a comparison between the sort-merge and hash
joins see [12, 13].) A lot of effort has also been spent on parallelizing join algorithms
based on sorting [9, 27, 28, 33] and hashing [5, 10, 34].

All of these algorithms concentrate on simple join predicates based on the comparison
of two atomic values. Predominant is the work on equi-joins, i.e. where the join predicate
is based on the equality of atomic values. Only a few articles deal with special issues like
non-equi joins [8], non-equi joins in conjunction with aggregate functions [4], and pointer-
based joins [7, 36]. An area where more complex join predicates occur is that of spatial
database systems. Here, special algorithms to support spatial joins have been developed
[3, 14, 19, 26, 32]. Another special join algorithm has been developed for joining objects
on set-valued attributes [18].

Another important research area is the development of index structures that allow to
accelerate the evaluation of joins [16, 22, 23, 31, 39, 40]. However, if there is no selection
prior to a join or the selections exhibit a high selectivity value (i.e. many output tuples are
produced), the performance gain of these algorithms is limited. This is also true for bit-
map join indices [31], that were developed especially for Data Warehouse environments.
Hence, we only incorporated standard join algorithms in our performance benchmarks.

3 The Diag-Join

The first subsection briefly summarizes some preliminaries and notations used throughout
the rest of the paper. We then present a basic version of the Diag-Join explaining the
principle of the algorithm. We proceed by giving an advanced version of the algorithm
illuminating implementation details. The last subsection contains a cost model.

3.1 Preliminaries

For the rest of the paper we use the symbols depicted in Table 1. Given two relations
R, and Ry to be joined, we assume that R; contains the key k, that Ry has as foreign
key attribute(s). That is, a 1:n relationship exists between R; and Ry. |R,| denotes
the cardinality (in number of tuples) of a relation R, (with x € {1, N}), while ||R,||
stands for the size of R, in pages. We further assume, that the tuples in each relation are
(implicitly) numbered by their physical occurrence. The j-th tuple in R, is denoted by
R,[j] with 1 < j < |R,].

Let us assume that a tuple of R; and all matching tuples in Ry are created in the
same transaction and are written to disk at the same time. We can easily figure out the
physical position of the joining tuple in R; for a given tuple in Ry. We call this situation
“perfect” clustering by time-of-creation. In the special case of a 1:n relationships, i.e.
every tuple in Ry joins exactly with one tuple from R;, we expect for each tuple Ry[j]
to find the matching tuple in R; at position [W‘/\Rll} If the number of join partners
of each tuple in R; varies, the calculated position is only an approximation. Figure 2
illuminates a perfect situation. On the x-axis we have the positions of the tuples in Ry,
on the y-axis the expected positions of their join partners in R;. Here, each tuple in Ry



‘ Symbol ‘ Definition
Ry (smaller) relation to be joined
K key of relation R
Ry (larger) relation to be joined (with foreign key k)
|R;| | cardinality of relation R, in number of tuples (z € {1, N})

||R:|| | size of relation R, in number of pages
R.[j] | tuple at position j in relation R,, 1 < j < |R,|
t an arbitrary tuple
my size of buffer/window in number of tuples
my size of buffer/window in number of pages
[ size of array of hash tables

P hash table size in pages (= %)
selPred | selection predicate

Table 1: Used symbols

joins with exactly two tuples from Ry. Hence, the join partner of Ry[5] is Ry[3], because
(5] =3
a71]

Joining R1 with RN
T T

T T
matching tuples o
approx. line —---

expected position of matching tuple in R1

. . .
4 5 6 7 8 9
position of tuple in RN

Figure 2: Expected positions of matching tuples



Diag-Join(R_1, R_N, m_t)

{

/* phase 1 */

ratio

IR_N| / IR_11;

curTup = m_t/2;
fill buffer with R_1[1] to R_1[curTup];
for(j = 1; j <= |R_N|; j++)

{

if (tuple t in buffer matches R_N[j])

{
join t with R_N[j];
output result;
}
else
{
write R_N[j] to tmpfile;
}
if(j % ratio == 0)
{
curTup++;
if (space left in buffer)
{
add R_1[curTup] to buffer;
}
else
{
replace tuple with lowest position with R_1[curTup];
}
}

/* phase 2 */

join R_1 with tmpfile using standard join algorithm;

Figure 3: Basic Diag-Join algorithm



3.2 Basic Diag-Join

If the tuples in the relations are perfectly clustered, then a simple merge phase suffices
to join the two relations. However, in reality this is not always the case. There may be
some exceptions, because the number of join partners for each tuple in R; varies, the
tuples are not inserted simultaneously into R; and Ry, or they are reorganized later (e.g.
deletion of tuples, insertion of additional tuples, replacements). Hence we do not just look
at one tuple of Ry at a time, but hold m; tuples—those in the vicinity of the expected
position—in a buffer. We call the part of Ry held in the buffer a window on R;.

The basic Diag-Join algorithm works as follows. We initialize the window with [%1

tuples from Ry[1] to Rl[[%“ We expect the matching tuple for Ry[1] to be at Ry[1] or

in the range from R;[— [%J] to Rl[[%“ Since there are no negative positions in Ry,
this part is cut off. Then Ry is scanned sequentially starting with Ry[1]. No buffering
is applied to Ry, except for the current tuple. For every tuple Ry[j] we search the
window for a matching tuple from R;. If the lookup is successful (we call this a hit), we
immediately produce an output tuple. If the lookup fails (called mishit), then Ry[j] is
written into a temporary file. Whenever |Ry|/|R;| tuples from Ry have been processed,
we add the next tuple from R; to the window. If there is no free space left in the window,
we replace the tuple with the lowest position. When we have finished scanning Ry, we
join the tuples in the temporary file (which should be much smaller than ||Ry||) with
R, using some standard join algorithm. Figure 3 gives a summary of the basic Diag-Join
algorithm.

Before presenting a more elaborate version of Diag-Join, let us briefly highlight some
problems of the basic version. First, the algorithm is not very efficient, because it uses
a tuple-oriented buffer, while most DBMSs use page-oriented structures. Second, the
organization of the window is also crucial for the efficiency and needs to be discussed.
Third, the algorithm only works on base relation, i.e. no selections prior to the join are
possible. We resolve these problems in the next section.

3.3 Advanced Diag-Join

We kept the algorithm in the last section very simple, because we intended to illustrate
the basic principle of the algorithm. The implementation details are presented in this
section.

We change from a tuple-oriented buffer to a page-oriented buffer. We do not read
single tuples into the window, but all tuples on the next p pages. As a consequence, if
the window buffer is full we replace p pages. Reading the tuples blockwise is much more
efficient. We call p the step size of Diag-Join. Obviously, we replace tuples in the window
whenever p - ||Ry||/||R1|| pages have been scanned in Ry.

Searching the window sequentially for matching tuples is too expensive, therefore we
use hash tables to look up join partners in the window. There are two alternatives. We
can use one large hash table with a size of m, pages or an array of | hash tables with a
size of % pages each. Using only a single hash table is disadvantageous. If we apply a
step size p equal to the window size m,, we also replace a part of the vicinity inserted
during the last step that is needed in the current step. If we apply a step size p smaller
than the window size m,, we must delete many tuples from the hash table individually.



Therefore we allocate an array of [ hash tables. Each hash table has a size equal to %
We equate the hash table size with the step size, hence p = ? Then in each step we
free an entire hash table, which is much cheaper than deleting individual entries. Figure
4 depicts the window organization. The window size is six pages, organized into three
chunks of two pages each. Therefore the step size is also equal to two pages. The broken

lines indicate, how the pages are replaced when no free buffer space is left.

Window size: my= 6 pages
Step size: p =2pages

| | | ] | Hash table directories

Figure 4: Window organization for Diag-Join

After describing the organization of the window let us now look at the algorithm.
Sliding the window is done as follows. Whenever p-||Ry||/||R1|| pages have been scanned
in Ry, the least recently loaded hash table is cleared and from R; the next p pages are
loaded into this hash table. How do we look up matching tuples in the hash table array?
First of all we search the middle table at position [%1 in the array. If Ry and Ry are
perfectly clustered, we expect to find the matchinf tuple in this table. If we are not able

to find it there, we search the table at position [% + 1. On failure the tables at positions

[é} -1, [%1 + 2, [%1 — 2, and so on are searched. We call this technique zig-zag search.
This is the best technique, when the deviation of the relations from perfect clustering can
be described by a normal distribution. If the matching tuple is found, then we join the
tuples immediately and output the result. Otherwise the tuple from Ry is written into a
temporary file. To speed up the algorithm, we could hold the mishits in a main memory
buffer. Only if this buffer overflows we begin to start writing the mishits to disk. Also we
recommend to use an uneven number for [, so that the searching range for the lookups is
symmetrical.

We have to be careful when filtering out certain tuples with a selection prior to the
join operation. If we feed the resulting tuples of the selection operators straight into the
join operator, this may destroy the synchronization, i.e. we may slide the window at
the wrong time. Therefore Diag-Join has to be synchronized with the scans on the base
relations. We do this by using the Observer pattern described in [11]. The scan on the
base relation Ry notifies Diag-Join, whenever p - ||Ry/||/||R1|| pages have been scanned,
so that Diag-Join slides the window at the right time.

The algorithm is summarized in Figure 5. Please note that the current middle table
is not always at position [%1, because we reuse the hash tables in the array.



Diag-Join(R_1, R_N, m_p, 1, selPred)

{

/* phase 1 */

ratio = |R_N| / IR_1l;
allocate array arr[1l] of hash tables;
fill arr[1] to arr[1/2] with tuples from R_1;

do

{

get next tuple from R_N satisfying selPred;
zig-zag search hash tables for matching tuple;
if (matching tuple found)

{
join tuples;
output results;
}
else
{
write R_N[j] to tmpBuf;
}
if (notified from scan on base relation R_N)
{
if (space left in arr)
{
load next p pages from R_1 into next free hash table;
}
else
{
clear least recently loaded hash table;
load next p pages from R_1 into cleared hash table;
}
}

} while (tuples from R_N remain);

/* phase 2 */

join R_1 with tmpBuf using standard join algorithm;

Figure 5: Advanced Diag-Join algorithm



‘ Symbol ‘ Definition
Crjo | cost for transferring pages between disk and memory
B, arbitrary buffer
Ty sum of average seek and latency time
T; time for transfer of one page
T. time for hashing a tuple
T; time for finding the join partner of a tuple

Table 2: Additional parameters for cost model

3.4 Cost model

Our cost model for Diag-Join is based on the cost models presented in [17]. Addi-
tional parameters needed for the cost model are presented in Table 2. The cost Cf/o for
transferring a set of || R, || pages from disk to memory, or vice versa, through a buffer size
B, is given by

|12 ||
B,

Crjo = (IRl B,) = [ } T+ IR T, 1)

where T} is composed of the sum of the average seek and latency time and 7; is the
cost for transferring a page between disk and memory. The costs for Diag-Join consist of
the costs for the first phase and the costs for the second phase.

Cprac(Ry, Rn) = Cphaser + Crhase2 (2)

In the first phase we have to read Ry and Ry, hash all tuples of Ry, look for matching
tuples and join them or write the mishits to disk.

CPhasel = CRead Ry + CCreateHash + CRead Ry + C1Joz'n + CWrite (3)

The components of Cppqse1 are defined as follows:

oo

CRead Ry, = CI/O(| | R, mp) (4)
Ccreateriash = |Ri| - Te (5)
Cread Ry = Crjo(||Rn||,1) (6)
Croin = |Rn|-T} (7)

(8)

Cwrite = Crjo(||tmpFilel|,1)

The costs in the second phase depend on the join algorithm used. In our case we
applied GRACE hash join in the second phase (for cost models of GRACE hash join see
[15, 17]), hence

Cphase2 = Carace(R1, tmpFile) (9)



‘ Symbol ‘ Definition

N(a,b, p,0) | normal distribution
n(z,u,0) | density function of normal distribution
Wi, starting position of window
Wh; ending position of window
Mio starting position of middle hash table (w;,, < my,)
M ending position of middle hash table (my; < wy;)
hy average number of tuples per hash table

Table 3: Parameters for calculation of mishit probability

3.5 Calculating the mishit probability

In this section we derive the formula for calculating the mishit probability, that is the
probability that an arbitrary tuple from Ry turns out to be a mishit. With the help of
this probability the size of the temporary file can be estimated. Table 3 summarizes the
needed parameters.

As already mentioned, we assume that the derivation of the relations from perfect
clustering can be described by a normal distribution. The normal distribution n(x, u, o)
with mean g and standard deviation o is defined as follows.

1w
e (10)

n(z, 1, 0) =
o\ 2w
We also need to know the probability that x is in the range between a and b. This
can be calculated by the distribution N(a, b, u, o).

b
N(a,bp,o) = [ niz,p.0)de (11
Let us illustrate what it means that the tuples are distributed normally among the
relations. For the tuple Ry[i] at position 7 (1 < i < |Ry|) in relation Ry, we expect to
find the matching tuple at position j =i - g}lﬂ in relation Ry, if the relations are perfectly
clustered. There may be some deviation, however, as indicated by the bell-shaped curve
in Figure 6. The curve indicates the probability that the matching tuple can be found
at position j = ¢ - ‘g}lv” in Ry. w, and wy; are the smallest and largest positions of the
elements found in the window, respectively. The middle hash table in the window starts
at position m;, and ends at position my;.
The probability that Ry[i] turns out to be a mishit is the probality that the matching
tuple is not inside the window:

Pr(Ry[i] is a mishit) = 1 — N(wjo, wpi, J, 0) (12)

When scanning through Ry this probability changes, because 7 moves through the
middle hash table from m;, to my;. Whenever j reaches my; the index slides down by the

10



Figure 6: Normally distributed tuples

specified step size and j starts at the beginning of the next new middle hash table again.
Hence, the average mishit probability Pr,,, as j moves through the middle hash table of
a given window with boundaries w;, and wy; can be calculated by

. . |Rn| . _ |Rn| & 1= N(wio, Whi, J, 0)
Pr,,.(Rx|?] is a mishit (for My <1< —— -my;)) = 13
9( N[] ( |R1| [ |R1| h)) j:Zmlo M — Mig ( )

As mentioned in Table 1 a window consists of [ hash tables and holds m; tuples. That
means we can reformulate the mishit probability for the general case as follows:

et ]+
Proy(Ryli]) is a mishit (for 1 <i < |Ry|)) = )

i=he| 5]
where h; = % is the average number of tuples per hash table.

It would be interesting to know how large the window has to be chosen in order
to achieve a mishit probability below a certain value pgecepr, Which is still acceptable.

1— N(0,m; — 1,7,0)
hy

(14)

11



That means, given pgecepr, We want to calculate the corresponding value for m, using the
expanded version of (14):

(L%J+1)% 1— fomt_l 1 ) (z—3)
paccept 2 Z a-mfr (15)
=Lz 2

This formula is very impractical as the integral can only be estimated numerically
and we still lack a way to determine o precisely. Therefore we recommend using his-
tograms. Histograms can be built in a single scan through R, and Ry with as large a
buffer as possible. For each tuple in Ry the absolute value of the difference between the
expected position and the actual position of the matching tuple in R; is inserted into the
corresponding bucket of the histogram. Mishits are counted separately. The resulting
histogram (for an example see Figure 7) can be used to approximate the window size for
a given probability paccept-

Deviation from perfect clustering
900000 T T T

800000 |

700000 |

600000 |

500000 |

400000

Number of tuples

300000

200000

100000

1 1 1 1
0-500 500-1000 1000-1500 1500-2000 2000-2500 beyond 2500 (Mishits)
Deviation of matching tuple in R_1 from expected position (in pages)

Figure 7: Histograms for measuring deviation from perfect clustering

4 Benchmarks

This section is composed of two parts. Within the first part we describe the benchmark
environment and how the benchmarks were run. In the second part we present the results
and analyze them.

4.1 Benchmark description

The benchmarks were executed on a lightly loaded UltraSparc 1 (143 MHz) with 288
MByte main memory running under Solaris 2.5.1. The data we worked with were gen-
erated for a TPC-D benchmark with a scaling factor of 1 [38]. We joined the relation
Order and Lineitem (see Figure 4 for the schemes). The relation Order was sorted on the
attribute orderdate, Lineitem was sorted on shipdate. Note that this does not result in

12



Order Lineitem
orderkey orderkey
custkey partkey
orderstatus suppkey
totalprice linenumber
orderdate quantity
orderpriority extendedprice
clerk discount
shippriority tax
comment returnflag
linestatus
shipdate
commitdate
receiptdate
shipinstruct
shipmode
comment

Table 4: Relations Order and Lineitem from TPC-D

an ordering on the join attribute orderkey in the relations, but it nicely models clustering
by time of creation.

The algorithm was implemented in C++ using the Sun C++ Compiler Version 4.1. Tt
was integrated into our experimental Data Warehouse Management System AODB. We
buffered one page of mishits in main memory. For the standard join algorithm in the
second phase of Diag-Join we used GRACE hash join [10, 35].

In a first step we optimized some parameters of Diag Join, e.g. finding the optimal
number of hash tables. Then we compared the total costs, CPU-based costs and I/O based
costs of Diag Join with blockwise nested-loop join and GRACE hash join for different
buffer sizes. We do not look at hybrid hash join, because for large relations relative to
the size of main memory, GRACE hash join performs as well as hybrid hash join [17, 35].
As Table 5 shows, that summarizes the parameters for the benchmarks, the size of the
buffer we used is at most % of the size of the relations. This is a realistic assumption for
Data Warehouses in which huge relations can be found.

4.2 Benchmark results
4.2.1 Tuning the Diag-Join algorithm

When joining relations with Diag-Join, we have to choose the right step size and
window size. Two effects have to be considered. If we use a large number of hash tables
(small step size), we avoid cutting off matching tuples in the vicinity of the expected
positions. However, the more hash tables we use, the longer the zig-zag search will take.
For small buffer sizes the step size plays almost no role, because the number of mishits
caused by a large step size is small compared to the total number of mishits. For large

13



Parameter ‘ Value

Page Size 4 KByte
Size of Order 44,475 pages
Cardinality of Order 1,500,000 tuples
Size of Lineitem 189,635 pages
Cardinality of Lineitem 6,001,215 tuples
Window size for Diag-Join 300 - 4000 pages

(1.17 MByte - 15.62 MByte)
Step size (Window size/5) 60 - 800 pages
Buffer size for Nested-loop join 300 - 4000 pages

(1.17 MByte - 15.62 MByte)
Buffer size for GRACE join 300 - 4000 pages

(1.17 MByte - 15.62 MByte)

Table 5: Parameters used for benchmarks

Diag-Join of Order with Lineitem diag join of line item with order
T T T T T

sw
358
83888
BBEE ]
aaee
355
2838
oo
ggg
8555
3353

ftH

o
— i
08 | 2000 pagés buffer

3000 pages buffer

E]

2000 pages buffer - 4000 pages buffer,

2500 pages buffer -2 - 1000 pages buffer (theory) -
800 3000 pages buffer »— 4 2000 pages buffer (theory) -
3500 pages buffer -a--
4000 pages bu! %

ote

06 4000 pages buffer (theory) - _|

elapsed time in sec
percentage of mishits

6 8 10 15
no of hashtables no of hashtables

Figure 8: Diag Join

buffer sizes, however, the number of mishits is relatively small and the step size has a
noticeable effect. The break-even points can be clearly seen on the left-hand side of
Figure 8. Very small step sizes, on the other hand, do not improve the mishit ratio
significantly. The run-time is dominated by the search time for the zig-zag search in this
case. For our benchmarks we divided the window into five hash tables. This turned out
to be a good compromise between optimizing the step size and the search time.

On the right-hand side of Figure 8 the percentage of mishits in the relation Lineitem
is depicted. The results of these benchmarks are straightforward. The more buffer we
allocate, the lower is the probability that a tuple from Lineitem will be a mishit, because
the probability to find the matching tuple in a hash table increases. For large buffer sizes
the effect of a large step size can be clearly seen as the percentage of mishits rises for a
low number of hash tables.

14



4.2.2 Comparison with other join algorithms

comparison of join algorithms
T . T

T T
blockwise nested loop —<—

10000 grace hash —+— o
diag &—

1000

e,

total elapsed time in sec

A——

100

10

. . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
size of buffer in pages

e of

Figure 9: Total runtime of join algorithms

In this section we compare Diag Join with blockwise nested-loop join and GRACE
hash join. The results for total runtime of all algorithms for joining the relations Order
and Lineitem on the attribute orderkey are shown in Figure 9.

Joining order with lineitem
T T

T T
total number of tuples —
mis-hits ----

number of tuples

L L
2500 3000 3500 4000

. . . .
500 1000 1500 2000
size of buffer

Figure 10: Total number of mishits

Blockwise nested-loop join performs worst. This comes as no great surprise, because
the ratio between the buffer size and the relations’ sizes is very unfavorable. For sufficiently
large buffer sizes (>3000 pages or 6% of ||R:||) Diag Join outperforms GRACE hash join,
because in this case all tuples are joined in the first phase of Diag Join and no additional
phase for joining the mishits is needed. For very small buffer sizes (<1000 pages or 2%
of ||Ry||) GRACE hash join is only slightly faster than Diag Join. What are the reasons
for this? The first phase of Diag Join has a relatively low overhead, but is still able to
join a certain number of tuples (see Figure 10). This takes at least some of the load off
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GRACE hash join in the second phase of Diag Join. The difference between the overhead
for the first phase of Diag Join and the performance gain of GRACE hash join in the
second phase is not as large as one might expect.

comparison of join algorithms comparison of join algorithms
T . T T : T

10000 10000

T T T T
blockwise nested loop —<— blockwise nested loop —
grace hash —+— grace hash ——

diag -5— diag =—

1000 1000 [

elapsed CPU time in sec
elapsed 1/O time in sec

100 |

. . . . . . . 10 . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 [ 500 1000 1500 2000 2500 3000 3500 4000
size of buffer in pages size of buffer in pages

Figure 11: CPU and I/O costs of join algorithms

Let us now have a look at the CPU-based costs of the join algorithms (see left-hand
side of Figure 11). The more available memory we have, the lower the costs of the
blockwise nested-loop join are. This is obvious as the number of necessary loops decreases
with increasing buffer size. As long as it is sufficiently large, the size of the hash table
directories is irrelevant for the CPU-based costs of GRACE hash join. The CPU-based
costs for GRACE hash join are composed of the costs for hashing all tuples of Order,
hashing all tuples of Lineitem, hashing all tuples of Order again during the merge phase,
and do |Lineitem| lookups on this hash table. This leads to nearly constant costs. The
CPU-based costs for Diag Join for the first phase are almost constant regardless of buffer
size, because Order and Lineitem are simply scanned (see Figure 12). The slight increase
is caused by the costs for joining the tuples. The more available buffer there is in the first
phase, the more tuples will find a join partner in this phase. (We did not write mishits
to disk while measuring the CPU-based costs for the first phase.) The total decreasing
CPU-based costs for Diag-Join are caused by falling costs of GRACE hash join in the
second phase as the number of tuples in the temporary file steadily decreases.

The 1/O-based costs are displayed on the right-hand side of Figure 11. For the block-
wise nested-loop join we have the same behavior as for the CPU-based costs. The larger
the buffer size, the smaller the number of loops, the lower the costs. For GRACE hash
join the I/O-based costs decrease with increasing buffer size. Beyond a certain buffer
size, however, the seek and latency time become small and the costs for transferring the
data dominate. As Order and Lineitem are always read twice and written once, more
buffer does not change the transfer costs. Therefore the I/O-based costs level out. When
allocating large buffers (> 3000 pages, which corresponds to about 6% of the size of Or-
der) for Diag Join all we have to do is to read Order and Lineitem once and we have
finished. Hence we have small I/O-based costs in this case. For small buffers (< 3000
pages) all tuples of Order and Lineitem are read once in the first phase. Additionally,
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Figure 12: CPU-based costs for the first phase of Diag Join

part of Lineitem is written into a temporary file, which is then joined with Order. When
we decrease the buffer size, the temporary file will increase (because of a larger number
of mishits) leading to higher join costs for GRACE hash join in the second phase.

4.3 Summary of Benchmarks

If we have a clustering of relations by time of creation, Diag Join performs very well (up
to two and a half times faster than GRACE hash join and up to 28 times faster than
blockwise nested-loop join). Diag Join needs sufficient memory (about 6% of ||Ry|| in our
benchmark) to achieve the best case, but even for small buffer sizes the performance is
still satisfactory.

Obviously, when joining relations that are not clustered by time of creation, i.e. rela-
tions with randomly placed tuples, Diag Join will fail. In this case we expect a high rate
of mishits as on average only %rlsme - Ry of the tuples in Ry will find the matching
tuple in the first phase.

5 Conclusion

We developed a join algorithm, called Diag-Join, for Data Warehouse environments in
which joining very large relations is not unusual. We take advantage of the fact that in
Data Warehouses new incoming data is appended at the end of relations, resulting in a
clustering of the tuples by time of creation. When this is the case, often a single merge
phase suffices to join these large relations. This results in lower join costs than the costs
for any other join algorithm.

We implemented Diag-Join and integrated it into our experimental Data Warehouse
Management, System AODB. There we ran benchmarks based on the TPC-D relations
Order and Lineitem. A careful analysis of the behavior of Diag-Join and the comparison
to blockwise nested-loop join and GRACE hash join revealed the impressive performance
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of our join algorithm. It ran up to two and a half times faster than GRACE hash join
(the latter being on equal grounds with hybrid hash join in our case) and up to 28 times
faster than blockwise nested-loop join. However, we recommend that Diag-Join should
only be used for at least loosely clustered relations, because for non-clustered relations
the results are less favorable, as we have the overhead of the first phase, but still almost,
all tuples have to be joined in the second phase by a standard join algorithm.
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