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Abstra
t

We introdu
e Natix, an eÆ
ient, native repository for storing, retrieving and managing tree-

stru
tured large obje
ts, preferably XML do
uments. In 
ontrast to traditional large obje
t (LOB)

managers, we do not split at arbitrary byte positions but take the semanti
s of the underlying tree

stru
ture of XML do
uments into a

ount.

Our parameterizable split algorithm dynami
ally maintains physi
al re
ords of size smaller than

a page whi
h 
ontain sets of 
onne
ted tree nodes. This not only improves eÆ
ien
y by 
lustering

subtrees but also fa
ilitates their 
ompa
t representation.

Existing approa
hes to store XML do
uments either use 
at �les or map every single tree node

onto a separate physi
al re
ord. The in
reased 
exibility of our approa
h results in higher eÆ
ien
y.

Performan
e measurements validate this 
laim.

1 Introdu
tion

The 
on
ept of semistru
ured data has gained wide a

eptan
e, espe
ially in the in
arnation of XML

(extensible markup language, [1℄). XML is being adopted as an easy-to-write, easy-to-parse language to

ex
hange semistru
tured data in 
ommer
ial, �nan
ial, medi
al, s
ienti�
 and other appli
ations.

With the advent of standardized APIs for semistru
tured data like the do
ument obje
t model (DOM,

[2℄), the mere ex
hange of textual representations with generating at one end and parsing at the other

will not be suÆ
ient for all appli
ations. Dire
t a

ess to and manipulation of the do
uments' tree

stru
ture and, as a 
onsequen
e, eÆ
ient storage managers for tree-stru
tured data will be required. We

en
ountered the need for eÆ
ient, updateable storage of XML data while designing a data repository for

�
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an ele
troni
 version of the "Bio
hemi
al Pathways Atlas" [3℄, a large 
olle
tion of 
hemi
al rea
tions

annotated with textual des
riptions, WWW referen
es, and multimedia data.

The existing approa
hes to store semistru
tured data or stru
tured do
uments 
an be divided into

three 
ategories:

Flat Streams In this approa
h, trees are serialized into byte streams, for example by means of a markup

language. For large streams, some me
hanism is used to distribute the byte streams on disk pages.

The me
hanism 
an be a �le system, or a BLOB manager in a DBMS.

This method is very fast when storing or retrieving whole do
uments or big 
ontinuous parts of

do
uments. A

essing the do
uments' stru
ture is only possible through parsing [4℄.

A Web server's HTML �le tree, stored in the �le system, is a simple example.

Metamodeling A di�erent method is to model and store the do
uments or data trees using some


onventional DBMS and its data model [5, 6, 7, 8℄.

In this 
ase, the intera
tion with stru
tured databases in the same DBMS is easy. On the other

hand, s
anning a whole do
ument or parts of a do
ument, as needed for example when re
on-

stru
ting a textual representation, is slower as in the previous method; 
reation of just one typi
al

web page from its abstra
t syntax tree requires retrieval of maybe thousands of database obje
ts.

Other representations requires 
omplex mapping operations to reprodu
e a textual representation

[9℄, even dupli
ate elimination may be required [10℄.

In general, this approa
h introdu
es additional layers in the DBMS between the logi
al data and

the physi
al data storage, slowing down query pro
essing.

Mixed There are several attempts to merge the two "pure" methods above.

Redundant To get the best of both worlds, data is held in two redundant repositories, one 
at

and one metamodeled [11℄. Updates are propagated either way, or only allowed in one of the

repositories. This allows for fast retrieval, but leads to slow updates and in
urs signi�
ant

overhead for 
onsisten
y 
ontrol.

Hybrid In hybrid approa
hes, a 
ertain level of detail of the data is 
on�gured as "threshold".

Stru
tures 
oarser than this granularity live in a stru
tured part of the database, �ner stru
-

tures are stored in a "
at obje
t" part of the database [12℄.

Natix, our XML repository at Mannheim University is similar to the hybrid systems, with two

extensions: First, our "
at" parts of the database are not 
ompletely 
at, but 
lustered groups of tree

nodes treated as atomi
 re
ords by the lower levels of Natix. Se
ond, the "threshold" need not be

stati
ally 
on�gured, but 
an be a dynami
 value, adapting to the size and stru
ture of do
uments at
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Figure 1: Natix ar
hite
tural overview

runtime. As subtrees of the do
ument are 
hanged, 
lustered nodes 
an be
ome re
ords of their own

or again be merged into 
lusters. To satisfy spe
ial appli
ation requirements, 
lustering of 
ertain node

types 
an be enfor
ed or forbidden by a 
on�guration matrix.

We 
onsider our enhan
ements to the hybrid systems signi�
ant and introdu
e a new 
ategory: We


all this kind of storage organization Native XML Repository.

The remainder of the paper is organized as follows. Se
tion 2 des
ribes a tree model of the data we

want to manage and the physi
al organization used to store that data. Se
tion 3 des
ribes the methods

used to dynami
ally maintain this physi
al organization. Se
tion 4 gives some performan
e results.

Se
tion 5 reviews related work and shows how it �ts into our model. Se
tion 6 
on
ludes the paper.

2 Preliminaries

Let us �rst present a a brief Natix ar
hite
tural overview, and des
ribe whi
h part of Natix this paper

is about. The logi
al data model and our model for physi
al storage organization are also detailed in

this se
tion.
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<SPEECH>

<SPEAKER>OTHELLO</SPEAKER>

<LINE>Let me see your eyes;</LINE>

<LINE>Look in my fa
e.</LINE>

</SPEECH>

SPEECH

SPEAKER

OTHELLO

LINE

Let me see your eyes;

LINE

Look in my fa
e.

Figure 2: A fragment of XML with its asso
iated logi
al tree

2.1 Natix Overview

Figure 1 shows the main modules of Natix.

The 
ore of the system is a "
lassi
al" physi
al re
ord manager whi
h is responsible for disk memory

management and bu�ering. It a

esses raw disks or �le system �les and provides a memory spa
e divided

into segments, whi
h are a linear 
olle
tion of equal-sized pages. Pages 
an be as large as 32K. Ea
h

page 
an be a plain page (for indi
es and user-de�ned stru
tures), or holds one or more re
ords. Pages

are organized as slotted pages, re
ords are identi�ed by a pair (pageid; slot) (
alled re
ord ID or RID).

On top of the re
ord manager operates a tree storage manager that, maps the trees used to model

do
uments (see se
tion 2.2 below) into re
ords. The methods used in this tree storage manager are the

topi
 of this paper.

Additional modules of Natix exist, but are not detailed here. They in
lude index management,

the (not yet implemented) query engine, the s
hema manager, and the do
ument manager. The do
-

ument manager allows appli
ation a

ess to do
uments on node and do
ument granularity. It 
he
ks

s
hema 
onsisten
y, 
alled do
ument validation in the XML world, performs ne
essary index updates

and integrates do
ument fragments from other sour
es into a single do
ument view for the user. The

s
hema manager maintains the system 
atalog data needed by the do
ument manager, whi
h in
ludes

the Do
ument Type De�nitions (logi
al XML s
hema information) and physi
al s
hema information and

statisti
s. The system 
atalog itself is stored as a 
olle
tion of XML do
uments inside the system.

2.2 Logi
al Model

A popular and useful model for XML do
uments is the labelled tree [2, 13℄. General graphs, whi
h are

often used to model semistru
tured data, are represented in XML using spe
ial IDREF attributes[1℄, and

XLinks [14℄, for intra- and inter-do
ument referen
es, respe
tively.

We use ordered trees in whi
h ea
h non-leaf node is labelled with a symbol taken from an alphabet

�

DTD

. Leaf nodes 
an also be labelled with arbitrarily long strings over a di�erent alphabet (�

�

). Figure 2

shows an example of an XML fragment and its asso
iated tree. Note that the shown XML do
ument
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is missing the s
hema, 
alled do
ument type de�nition (DTD). Details of XML s
hema des
riptions do

not 
on
ern us here, for our purposes, the DTD is just a way of spe
ifying the node alphabet �

DTD

.

Additionally, the DTD 
an pla
e 
onstraints on how node labels 
an be 
ombined.

Note that our data model is very similar to an abstra
t syntax tree and 
an easily be generated by an

XML parser. It also 
aptures all information present in the textual representation of a do
ument, most

notably the order of 
hild elements.

2.3 Physi
al Model

We now elaborate on our physi
al data model. Besides explaining our own physi
al tree representation,

we hope to provide a general terminology for the des
ription of storage formats for tree-stru
ured data,

whi
h 
an later be used to 
ompare di�erent approa
hes (see se
tion 5).

The logi
al data tree is materialized as a physi
al data tree, whi
h is built from the original logi
al

nodes and additional nodes needed to manage the physi
al stru
ture of large trees. Large trees are trees

that 
annot be stored on a single disk page.

The following se
tions des
ribe three ways to 
lassify the physi
al nodes we use to store the logi
al

tree.

Note that, in the following, we use the terms node and obje
t synonymously. On the other hand, a

re
ord is something di�erent: It may 
ontain a set of nodes/obje
ts, as explained below.

2.3.1 Obje
t Content

One 
lassi�
ation we use for physi
al nodes is based on their 
ontent:

Aggregate nodes are inner nodes of the tree. They 
ontain their respe
tive 
hild nodes.

Literal nodes are leaf nodes 
ontaining an uninterpreted stream of bytes, like text strings, graphi
s, or

audio/video sequen
es.

Proxy nodes are nodes whi
h point to di�erent re
ords. They are used in the representation of large

trees, as detailed in se
tion 2.3.3.

2.3.2 Node representation

Instead of storing ea
h tree node in a separate re
ord, we store whole do
uments (or subtrees of do
-

uments) together in one re
ord. This re
ord is treated as atomi
 by the underlying re
ord manager.

Ea
h re
ord 
ontains exa
tly one subtree. The root nodes of ea
h re
ord's subtree are 
alled standalone

obje
ts. Other nodes are 
alled embedded obje
ts. This is a se
ond way of 
lassifying our physi
al nodes.
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Figure 3: One possibility for distribution of logi
al nodes on re
ords

The re
ord size has an upper limit, the page size. This raises opportunities to optimize the subtree

representation inside the re
ords. Sin
e our algorithm and its presentation do not depend on a spe
i�


re
ord representation, we present the low-level details only in Appendix A.

2.3.3 Large Trees

Typi
al data trees may not �t on a single disk page. So our physi
al obje
t model must provide a

me
hanism for distributing data trees over several pages.

One method often used in do
ument management systems is to store a "
at" representation (like

the one des
ribed in Appendix A) as a BLOB (binary large obje
t) and use a me
hanism for managing

large byte 
olle
tions inside the storage manager (see [15, 16, 17℄). We feel that this approa
h wastes the

available stru
tural information about the data, be
ause treating the representation as a BLOB regards

all bytes as equal:

A 
ertain amount of insertions, removals and updates of obje
ts stored in this way would lead to an

unfavorable distribution of the data. Some part of even a small obje
t would reside on one page, and

the remainder on a di�erent page.

To avoid this, we semanti
ally split large obje
ts based on the underlying tree stru
ture. We partition

the data tree into subtrees, and store ea
h subtree in a single re
ord less than a page in size. Conne
ted

subtrees residing in other re
ords are represented by Proxy obje
ts. Proxy obje
ts 
onsist of the RID of

the re
ord whi
h 
ontains the subtree they represent. Substituting all proxies by their respe
tive subtrees

re
onstru
ts the original data tree.

A sample is shown in �gure 3. To store the given logi
al tree (whi
h, say, does not �t on a page), the

physi
al data tree is distributed over three re
ords r

1

; r

2

and r

3

. To a
hieve this, two proxies (p

1

and p

2

)

are used in the top level re
ord. Two helper aggregate obje
ts (h

1

and h

2

) have also been added to the

physi
al obje
t tree. They are needed to group the 
hildren below p

1

and p

2

into re
ords.

This leads to our third 
lassi�
ation dimension: Physi
al obje
ts drawn as dashed ovals like the
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Figure 4: Multiway tree representation of re
ords

proxies p

1

; p

2

and the helper aggregates h

1

; h

2

, needed only for the representation of large data trees, are


alled S
a�olding obje
ts, while obje
ts representing logi
al nodes (f

i

) are 
alled Fa
ade obje
ts.

Note that the sample physi
al tree is only one possibility to store the shown logi
al tree. There

are more, sin
e more of the logi
al tree's edges 
ould be represented by proxies. The 
reation and

maintenan
e of su
h physi
al trees in our XML repository Natix, is des
ribed in the remainder of this

paper.

3 Dynami
 maintenan
e of an eÆ
ient storage organization

We will now present the online algorithm used by our Natix repository for dynami
 maintenan
e of

physi
al trees. The prin
ipal problem adressed is that a re
ord 
ontaining a subtree 
an grow larger than

a page if a node is added or grows.

In this 
ase, the subtree 
ontained in the re
ord has to be partitioned into several subtrees whi
h 
an

subsequently be distributed on one or more additional re
ords and pages. S
a�olding nodes (proxies and

maybe aggregates) have to be introdu
ed into the physi
al tree to link the new re
ords together.

To des
ribe our tree storage manager and our split algorithm, it is useful to view the partitioned tree

as an asso
iative data stru
ture for �nding leaf nodes. We will �rst explain this metaphor, and afterwards

use it to detail our algorithm. Possible extensions to the basi
 algorithm and a 
exible 
on�guration

me
hanism to adapt it to spe
ial appli
ations 
on
lude this se
tion.

3.1 Multiway tree representation of re
ords

A data tree that has been distributed over several re
ords 
an be viewed as a multiway tree with the

re
ords as nodes, ea
h re
ord 
ontaining a small part of the logi
al data tree. In the example in �gure 4,

r

3

is blown up, hinting at the 
at representation of the subtree inside re
ord r

3

. The referen
es to the


hild re
ords are proxy obje
ts.
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1. Determine the re
ord r into whi
h the node has to be inserted.

2. If there is not enough spa
e on the page, try to move r. If the re
ord still does not �t, split the re
ord:

(a) Determine the separator by re
ursively des
ending into the r's subtree

(b) Distribute the resulting partitions onto re
ords

(
) Insert the separator into the parent re
ord, re
ursively 
alling this pro
edure

3. Insert the new node

Figure 5: The Tree Growth Pro
edure

If viewed this way, our partitioned tree resembles a B-Tree-stru
ture, as often used by traditional

large obje
t managers, with the parti
ularity that the "keys" are not taken from a simple domain like

integers or strings. Instead, they are based on stru
tural features of the data tree.

This analogy gives us a familiar framework with whi
h we 
an des
ribe the algorithms used to maintain

the 
lustering of our re
ords.

3.2 Algorithm for Tree Growth

Figure 5 shows the basi
 stru
ture of our algorithm for adding nodes to a tree. The following subse
tions

will explain the steps in detail.

3.2.1 Determining the Insertion Lo
ation

In order to insert a new node f

n

into the logi
al data tree as a 
hild node of f

1

, it must be de
ided

where in the physi
al tree the insert should take pla
e. In the presen
e of s
a�olding nodes, there may

exist several possibilities, as shown by the dashed lines in �gure 6 (the nodes drawn as dashed ovals are

s
a�olding nodes); the new node f

n


an be inserted into r

a

, r

b

, or r




. In our system, this 
hoi
e may be

f
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p

b

h
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f
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f
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f

n

p




h




f
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f

4

f

5

r

a
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Figure 6: Possibilities to insert a new node f

n

into the physi
al tree
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Figure 7: A re
ord's subtree before a split o

urs

determined by a 
on�guration parameter, as explained in se
tion 3.3.

3.2.2 Splitting a re
ord

Having de
ided on an insertion lo
ation, it is possible that the designated re
ord's disk page is full. In

this 
ase, the system tries to move the re
ord to a page with more free spa
e. If this is not possible,

be
ause the re
ord as su
h ex
eeds the net page 
apa
ity, the re
ord has to be split.

Determining the separator Suppose that, in �gure 6 we want to add f

n

to re
ord r

b

, whi
h 
annot

grow. Hen
e, r

b

must be split into at least two re
ords r

0

b

and r

00

b

, and instead of p

b

in the parent re
ord

r

a

, we need a separator with proxies pointing to the new re
ords to indi
ate where whi
h part of the old

re
ord was moved.

In B-Trees, a median key that partitions the data elements into two subsets is 
hosen as separator. In

our tree storage manager, the data in the re
ords is not one-dimensional, but tree-stru
tured. It follows

that our separator has to be tree-stru
tured as well.

In fa
t our algorithm sli
es a small subtree o� the old re
ord's root. This small subtree then servers

as as separator. The remaining forest of subtrees is the data that has to be distributed onto the new

re
ords.

Figure 7 shows the subtree of one re
ord just before a split. It is partitioned into a left partition L

and a right partition R, and the separator S. This separator will be moved up to the parent re
ord,

where it indi
ates into whi
h re
ords the des
endant nodes were moved as a result of the split operation.

Already a single node d uniquely determines this partitioning (in the example, d = f

7

): The separator

S 
onsists of all the nodes on the path from d to the subtree's root (in the example, S = ff

1

; f

6

g),

ex
luding d. The subtree below d, the subtrees of d's right siblings, and all subtrees below nodes that

are right siblings of nodes in S 
omprise the right partition (in the example, R = ff

7

; f

8

; : : : ; f

14

g), the

remaining nodes 
omprise the left partition (in the example, L = f

2

; : : : ; f

5

).

Hen
e, our split algorithm must �nd a node d, su
h that the resulting L and R are of equal size.
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Figure 8: Re
ord assembly for the subtree from �gure 7

A
tually, the desired ratio between the sizes of L and R is a 
on�guration parameter (the split target),

whi
h 
an, for example, be set to a
hieve very small R partitions to prevent degeneration of the tree if

insertion is mainly on the right side (as when 
reating a tree in pre-order from left to right). Another


on�guration parameter available for �ne-tuning is the split toleran
e, whi
h states how mu
h the al-

gorithm may deviate from this ratio. Essentially, the split toleran
e spe
i�es a minimum size for the

subtree of d. Subtrees smaller than this value are not split, but 
ompletely moved into one partition to

prevent fragmentation.

To determine d, the algorithm starts at the subtree's root and re
ursively des
ends into the 
hild

whose subtree 
ontains the physi
al "middle" (or the 
on�gured split target) of the re
ord. It stops when

it rea
hes a leaf, or when the subtree size in whi
h it is about to des
end is smaller than allowed by the

split toleran
e parameter.

In the example in �gure 7, the size of the subtree below f

7

was smaller than the split toleran
e,

otherwise, the algorithm had des
ended further and made f

7

part of the separator.

Distributing the nodes on re
ords After determining the partitioning, the 
ontents of the re
ord

has to be distributed onto new re
ords.

Consider a partitioning as implied by node d = f

7

in �gure 7. The separator is removed from the old

re
ord's subtree, as in �gure 8(a). In the resulting forest of subtrees, root nodes in the same partition

10



that were siblings in the original tree are grouped under one s
a�olding aggregate. In �gure 8(
), this

happened at nodes h

1

and h

2

. Ea
h resulting subtree is then stored in its own re
ord. These new re
ords

(r

1

; : : : ; r

4

) are 
alled partition re
ords.

Inserting the separator The separator is moved to the parent re
ord and inserted instead of the

proxy whi
h referred to the old, unsplit re
ord, �gure 8(b). The edges 
onne
ted to the nodes in the

partition re
ords are repla
ed by proxies p

i

. Sin
e 
hildren with the same parent are grouped in one

s
a�olding aggregate, for ea
h level of the separator a maximum of three nodes is needed, one proxy for

the left partition re
ord, one proxy for the right partition re
ord, and one separator node.

To avoid unne
essary s
a�olding re
ords, the algorithm 
onsiders two spe
ial 
ases: First, if a partition

re
ord would 
onsist of just one proxy, the re
ord is not 
reated and the proxy is inserted dire
tly into

the separator. Se
ond, if the root node of the separator is a s
a�olding aggregate, it is disregarded, and

the 
hildren of the separator root are inserted in the parent re
ord instead.

To ensure that the parent re
ord 
ontains enough spa
e to hold the separator, the insertion pro
edure

is re
ursively 
alled for the parent re
ord using the separator as the node to be inserted. If the old re
ord

had no parent re
ord, a new root re
ord for the tree is 
reated whi
h 
ontains just the separator.

3.2.3 Inserting the New Node

Finally, the new node is inserted into its designated partition re
ord.

The splitting pro
ess operates as if the new node had already been inserted into the old re
ord's

subtree, for two reasons. First, this ensures enough free spa
e on the disk page of the new node's re
ord.

Se
ond, it also results in a preferable partitioning sin
e it takes the spa
e needed by the new node into

a

ount when determining the separator.

3.3 The Split Matrix

When designing the storage manager for the bio
hemistry database mentioned in the introdu
tion, it

qui
kly be
ame evident that it is not always desirable to leave full 
ontrol over data distribution to the

algorithm. Spe
ial appli
ation requirements had to be 
onsidered. In general, it should be possible to

bene�t from knowledge about the appli
ation's a

ess patterns.

If parent-
hild navigation from one type of node to another type is frequent in an appli
ation, we

want to prevent the split algorithm from storing them in separate re
ords. In other 
ontexts, we want


ertain kinds of subtrees always to be stored in a separate re
ord, for example to 
olle
t some kinds of

information in their own physi
al database area.

To express preferen
es regarding the 
lustering of a node type and its parent node type, we introdu
e

a Split Matrix as parameter to our algorithm:
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The Split Matrix S 
onsists of elements s

ij

; i; j 2 �

DTD

. The elements express the desired 
lustering

behaviour of a node x with label j as 
hildren of a node y with label i:

s

ij

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0 x is always kept as a standalone

re
ord and never 
lustered with y

1 x is kept as long as possible

in the same re
ord with y

other the algorithm may de
ide

The algorithm as des
ribed in se
tion 3.2 a
ts as if all elements of the Split Matrix were set to the

value other. It is easily modi�ed to respe
t the Split Matrix:

When moving the separator to the parent, all nodes x with label j under a parent y with label i are


onsidered part of the separator if s

ij

=1, and thus moved to the parent. If s

ij

= 0, su
h nodes x are

always 
reated as standalone obje
t and a proxy is inserted into y. In this 
ase, x is never moved into

its parent as part of the separator, and treated for splitting purposes like the root re
ord.

We also use the Split Matrix as the 
on�guration parameter for determining the insertion lo
ation of

a new node (see se
tion 3.2.1): When a new node x (label j) shall be inserted as a 
hild of node y (label

i), then if s

ij

=1, x is inserted into the same re
ord y. If s

ij

= other, then the node is inserted on the

same re
ord as one of its designated siblings (wherever there is more free spa
e). If s

ij

= 0, x is stored

as a standalone node and treated as des
ribed above.

In the future, we plan to enri
h the semanti
s of the Split Matrix to support even more adaptable

algorithms. For example, the other values 
ould 
ontain traversal frequen
ies gathered from pro�le

tra
es.

It should be noted that, the Split Matrix is an optional tuning parameter: It is not needed to store

XML do
uments, it only provides a way to make 
ertain a

ess patterns of the aplli
ation known to the

storage manager. The "default" split matrix used when nothing else has been spe
i�ed is the one with

all entries set to the value other.

As a side e�e
t, other approa
hes to store XML and semistru
tured data 
an be viewed as instan
es

of our algorithm with a 
ertain form of the Split Matrix, as des
ribed in se
tion 5.

4 Performan
e Results

In this se
tion we will present some results 
on
erning the storage and retrieval of a large do
ument


olle
tion with Natix' tree storage manager.

12



4.1 Environment and test data

The implementation of the re
ord and tree storage managers was done in C++. Measurements were

taken on a Pentium-II 333Mhz ma
hine with 128MB RAM under Windows NT 4.0, using an IBM DCAS

34330W disk. Dire
t disk a

ess and no operating system bu�ering was used by the re
ord manager. As

do
ument 
olle
tion served an XML markup version of Shakespeare's plays [18℄. The total size of the

do
uments is about 8 MB, their tree representations 
ontain about 320000 nodes total.

4.2 Con�guration

We 
ompare two 
on�gurations of our system: First, we 
on�gure the Split Matrix with all elements set

to s

ij

= 0. This emulates the approa
h of storing ea
h tree node in a separate re
ord together with a

list of 
hild referen
es. In this 
ase, re
ords are never split, unless the list of 
hildren does not �t onto a

single page. The re
ord manager was told to store parent with 
hildren and sibling nodes on the same

page if possible. In the following se
tions, this 
on�guration is 
alled the 1:1 
on�guration.

Se
ond, we set all elements of the Split Matrix s

ij

to the value other, giving our algorithm full 
ontrol

over the distribution of the nodes on re
ords. In the following se
tions, this 
on�guration is 
alled the

1:n, or native XML 
on�guration.

Note that, a "one re
ord" 
on�guration with all matrix elements set to 1 does not work be
ause we


ould not store any do
ument larger than a page.

In both 
ases, the split target was set to

1

2

to produ
e two partitions of equal size in ea
h split. The

split toleran
e was set to

1

10

th of a page. The bu�er size was 2 MB, enough to hold at least one do
ument

in any representation. The page size was varied between 2K and 32K. The bu�er was 
leared at the start

of ea
h operation.

4.3 Operations Measured

For storage, we used an XML parser written in C and inserted the do
ument tree in two di�erent

insertion orders. First, in pre-order, to represent a "bulkload" of or 
onse
utive appends to a textual

representation. Se
ond, we traversed the binary tree representation of the do
ument tree (in whi
h ea
h

node has its �rst 
hild as left binary 
hild and next sibling as right binary 
hild [19℄) with breadth-�rst

sear
h to insert the nodes, resulting in an in
remental update pattern where inserts o

ur distributed

over the whole do
ument.

Four kinds of retrieval operations were performed: A full pre-order tree traversal, and three pattern

mat
hing queries. The �rst query retrieves all speakers in the third a
t and se
ond s
ene of every play,

whi
h means it a

esses all leaf nodes of a 
ertain type in one sele
ted subtree of the do
ument. The

se
ond query re
reates the textual representation of the 
omplete �rst spee
h in every s
ene, hen
e

13
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Figure 9: Insertion

reading a lot of small 
ontinguous fragments of ea
h do
ument. Last, a simple path query was evaluated

by reading only the opening spee
h of ea
h play.

4.4 Results

Figures 9 to 14 show the results. The operation times result form averaged series of measurements and

are given in millise
onds, and are shown as a fun
tion of the page size; it 
an be seen that page size has

a signi�
ant in
uen
e on performan
e.

4.4.1 Update

Update is faster when the algorithm has full 
ontrol over the distribution of nodes on re
ords. If updates

are s
attered all over the data, the di�eren
e 
an be almost an order of magnitude. This is probably a

result of the very lo
alized a

ess pattern when nodes are grouped into re
ords, both in terms of main

and se
ondary memory.

Interestingly, our approa
h bene�ts from larger page sizes, while the "traditional" approa
h of storing

ea
h node in a separate re
ord performs best when using "traditional" small 2-4K pages.
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Figure 10: Full tree traversal

Note that, the best result (4K pages) of the "1:1"-approa
h is more than 50% slower than the best

result (32K pages) of the native format when using pre-order insert.

To permit better resolution for the faster runs, the update times for in
remental updates and 1:1

format are only shown for pages up to 6K in size. After that, they in
rease almost linearly to above

1000000ms for 32K pages. Hen
e, in
remental updates are faster by at least a fa
tor of three when using

the native format.

4.4.2 Full tree traversal

When traversing the full tree in preorder, again the best result is a
hieved by using the native format

with a large page size. It is faster by 20% than the best result for the single re
ord approa
h. In this


ase, large page sizes are good for everyone, be
ause all data has to be read anyway, and loading large


ontinguous 
hunks is faster than loading small ones.

4.4.3 Query 1

When retrieving leaf nodes of a 
ertain type in a sele
ted subtree of ea
h do
ument, the best behaviour is

again shown by the native format after in
remental updates. In
remental updates do not produ
e a good


lustering for the single-re
ord approa
h. The resulting random a

ess pattern slows query evaluation
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Figure 11: Sele
tion on leaf nodes of do
ument subtree (Query1)

after in
remental updates.

The native format after pre-order insert also does not perform well, be
ause the physi
al tree is linearly

degenerated. To rea
h the spe
i�ed nodes, nearly the whole do
ument data is loaded into memory.

4.4.4 Query 2

In this query, small 
ontiguous fragments of the do
uments are retrieved. Hen
e, small pages result in

better a

ess times for all storage formats. In the native format after in
remental updates, the nodes

belonging to ea
h fragment usually are 
lustered within the same re
ord, so query time is halved 
ompared

to the other formats.

4.4.5 Query 3

In this query, again the balan
ed tree after in
remental updates on the native format results in the best

performan
e. The physi
al re
ord tree has only a depth of 2, so just two disk a

esses are needed to

rea
h ea
h requested spee
h.

The degenerated tree after pre-order insert again leads to unne
essary reads for the native format.
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Figure 12: Small 
ontinguous fragments (Query2)

4.4.6 Spa
e Requirements

The spa
e requirements given is the total number of bytes on disk used to store the do
uments.

As expe
ted, the native format has a mu
h better spa
e utilization due to the 
ompa
t subtree

representation inside the re
ords (Appendix A). The single re
ords for ea
h node 
arry a lot of overhead,

most notably big parent and 
hild referen
es, and slot information for ea
h re
ord.

The spa
e utilization is better for larger pages, sin
e less per-page administration spa
e is needed.

For the native format, less splits and proxies are needed for large pages, whi
h further redu
es the spa
e

overhead.

The redu
ed spa
e requirements give an additional opportunity for faster query pro
essing: If the

logi
al stru
ture and order of the nodes is irrelevant for a query (e.g. s
an all elements of a given type),

a simple s
an of the do
uments requires time proportional to the amount of I/O required, whi
h is

signi�
antly less if the native format is used.
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Figure 13: Single path for ea
h do
ument (Query3)

5 Related Work

Other work on eÆ
ient storage for (binary) large obje
ts [15, 16, 17℄ also uses trees to organize the

physi
al distribution of the data, but does not exploit the internal semanti
 stru
ture of large obje
ts.

Obje
ts are split at arbitrary byte positions.

Not mu
h work on eÆ
ient storage organization for semistru
tured data 
urrently exists. There are

other proposed repositories for semistru
tured data, not fo
ussing on storage organization, as detailed

in the following.

Flat �les are studied 
losely by Abiteboul et al. [4℄. There, a parser is used to gain a

ess to the

do
ument stru
ture and evaluate queries.

Metamodeled systems in the 
ategorization of se
tion 1 are already 
ommer
ially available. POET

(POET Content Management system [6℄) and Obje
tDesign (Ex
elon [8℄) ea
h use their obje
t-oriented

database systems (POET Server and Obje
tStore, respe
tively) to store and model SGML/XML do
-

uments as trees. They use a separate re
ord for ea
h tree node, whi
h in the terminology of se
tion 2

means that ea
h fa
ade node is a standalone node, and all aggregates 
ontain ex
lusively proxies. This is

equivalent to a 
on�guration of our algorithm with all elements of the Split Matrix set to 0 as evaluated
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e requirements

in se
tion 4.

The Lightweight Obje
t REpository (LORE, [5℄) uses a graph model as well. Like POET and Ex
elon,

it stores ea
h node in its own re
ord, although the system is not developed on top an existing OODBMS.

Their fo
us is on query pro
essing.

A di�erent metamodeling approa
h to store XML is STORED [10℄. For a 
lass of do
uments, a

relational s
hema is automati
ally 
reated and the do
uments are stored in any existing RDBMS. This

automati
 s
hema 
reation is a 
omplex operation, needed every time a new do
ument type is en
oun-

tered. Storing XML do
uments requires pattern mat
hing to map the graph data to relational data,

another 
omplex operation, needed every time a do
ument is stored. In
remental updates to the XML

tree, and the ordering of elements inside a do
ument are not 
onsidered. Retrieving do
uments requires

dupli
ate elimination, sin
e a single XML node 
an be stored in more than one tuple. To enable lossless

storage of do
uments that do not �t into the s
hema, an 'over
ow store' is needed. The fun
tionality

required from this over
ow store is the same as for a full-
edged XML repository.

Another relational approa
h is taken in the Monet database[7℄, where XML data is de
omposed into

binary relations. These relations, one for ea
h tag name, 
ontain the edges of the tree representation. This

is similar to the approa
h of a separate re
ord per node, although eÆ
ient main-memory representations

19



for small relations are used. As in STORED, in
remental updates to the XML tree, and the ordering of

elements inside a do
ument are not 
onsidered. The latter is of importan
e when trying to re
reate a

textual do
ument representation.

The hybrid HyperStorM system by Neuhold et al. [12℄ bears the most similarity to our approa
h.

In HyperStorM, the upper levels of the do
ument tree are stored as standalone nodes with proxies as

in POET, Ex
elon and LORE. Certain node types are stati
ally 
on�gured to be "
at", whi
h in our

terminology means they 
ontain only embedded nodes. Embedded nodes are stored as markup strings

and have to be parsed to a

ess the stru
ture. Proxies do not exist, whi
h means that, in the subtree

below an embedded node, only more embedded nodes 
an exist. This is equivalent to our algorithm with

a Split Matrix whi
h 
ontains only 0 and1 elements and no elements of value other. The 
on�guration

of HyperStorM is stati
 and done one the type level, while our system dynami
ally makes splitting

de
isions and allows 
on�guration not only based on node type, but based on 
ombinations of node type

and parent node type. They do not address the problem of splitting large "
at" obje
ts, but leave this

to the underlying storage manager, an OODBMS.

6 Con
lusion and Future Work

We have presented a method to dynami
ally maintain eÆ
ient physi
al storage for large tree-stru
tured

obje
ts. A 
exible model to des
ribe physi
al storage formats for trees was used to des
ribe our algorithm

and related approa
hes.

In 
ontrast to traditional large obje
t managers or �le systems, our storage manager Natix uses

the semanti
 stru
ture of large obje
ts to make better splitting de
isions. Our splitting algorithm is


on�gurable to a degree that allows to simulate other storage formats already in use for tree-stru
tured

data. First measurements performed with XML data show the strengths of our approa
h. Updates and

queries 
an be sped up by a fa
tor of two or more. Spa
e utilization is also better, by a fa
tor of nearly

two 
ompared with other approa
hes.

In the future, besides studying and extending the e�e
t of 
on�guration parameters on the splitting

algorithm, query pro
essing operators and index stru
tures that support our storage stru
ture will play

a dominant role in our resear
h.
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Figure 15: The tree from �gure 2 represented as one re
ord

A Re
ord representation

This se
tion explains the format used to store subtrees in 
at re
ords. As a result of the limited page size,

we 
an materialize the parent-
hild-relationships rather eÆ
iently, saving referen
es pointing to nodes

outside the re
ord.

Inside ea
h re
ord, the nodes are stored within their respe
tive parent aggregate obje
ts, so the


omplete subtree rooted at any given obje
t 
onsists of all the obje
ts re
ursively 
ontained in it. An

example for the tree from �gure 2 is shown in �gure 15.

Ea
h re
ord 
ontains exa
tly one root node whi
h 
ontains all the other obje
ts in the re
ord (the

SPEECH node in the example above). As explained in se
tion 2.3.2, su
h obje
ts are 
alled standalone

obje
ts, while obje
ts stored within other obje
ts are 
alled embedded obje
ts.

The physi
al representation of obje
ts on disk starts with a header des
ribing the 
ontent type (ag-

gregate, literal or proxy) and the logi
al type (e.g. the tag or attribute name for Fa
ade obje
ts), the

size of the obje
t and a parent pointer. Literals are typed, 
urrently either string literals, 8/16/32/64-Bit

integer literals, 
oat, or URI (Uniform Resour
e Identi�er) literals.

Sin
e on ea
h page typi
ally only a limited set of (
ontent type, logi
al type) 
ombinations o

ur, this

information is stored in the obje
t header as 2 byte o�set into a node type table whi
h is maintained on

ea
h page.

Pointers needed to materialize the relationships for the embedded nodes within one re
ord only need

2 bytes, sin
e a page is less than 64K in size. Sin
e the embedded parent pointers are stored as o�sets, the

byte representation of subtrees in re
ords is lo
ation-independent, so that re
ords 
an be moved around

on the page without modi�
ation.

Our layout results in a header of only 6 bytes for embedded obje
ts, minimizing the overhead for

storing the tree stru
ture. Note that, for example, storing vanilla XML markup with only a 1-
hara
ter

tag name already needs 7 bytes (< X > : : : < =X >)!

Standalone obje
ts 
ontain their parent re
ord as RID (8 bytes). The size of the obje
t, whi
h is

equal to the size of the re
ord, 
an be obtained from the slot information. Together with the type index,

a standalone header usually 
onsumes 10 bytes.
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