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Abstra
t

Grouping and aggregation are 
onstantly gaining importan
e in the evaluation of queries.

Hen
e, there is a need to improve the exe
ution times of queries 
ontaining these operations.

To a
hieve this goal we propose to extend the relational algebra by new operators that address

di�erent query patterns and that allow for more eÆ
ient implementation than those 
urrently

used. These new operators have to be spe
i�
 enough to allow improved performan
e and

general enough to be of general use. We present three patterns and the 
orresponding

operators and show how these operators 
an be used to speed up query evaluation by a

fa
tor of two.

1 Introdu
tion

One of the main advantages of de
larative query languages su
h as SQL is their optimizabil-

ity. The equivalen
e of 
al
ulus|the formal foundation of a de
larative query language|and

algebra|the language for spe
ifying query exe
ution plans|forms the basis for optimizability.

Moreover, in order to be able to optimize a query, di�erent query evaluation plans must exist

for a given query with di�erent asso
iated 
osts. The set of query evaluation plans equivalent to

the original query de�nes the sear
h spa
e a query optimizer must explore in order to �nd a low


ost plan. There are two fa
tors that imply that the sear
h spa
e 
ontains more than a single

plan: algebrai
 equivalen
es allow to 
onstru
t di�erent plans at the logi
al level and di�erent

implementations of algebrai
 operators allow for further alternatives at the physi
al level.

The tradition has been to provide di�erent implementations for a single logi
al algebrai
 oper-

ator, leading to a one-many relationship between operators and their implementations. For ex-
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ample, the join operator 
omes with many implementation alternatives su
h as nested-loop join,

sort-merge join and hash join [Gra93℄. Our hypothesis is that further eÆ
ien
y improvements


an be gained, if spe
ial implementations for spe
ial 
ases of algebrai
 operators or 
ombinations

thereof are provided. We will identify three spe
ial 
ases, de�ne a

ording algebrai
 operators,

and provide their eÆ
ient implementations. Every 
ase will 
over a spe
ial intent of the user

stating the query. As we will see, this intent is re
e
ted within the query by a 
ertain pattern.

Hen
e, we will refer to su
h spe
ial 
ases as semanti
 query patterns. The �rst two operators


over di�erent semanti
 query patterns of grouping with aggregation. The last operator 
overs

a semanti
 query pattern mat
hing a 
ombination of grouping with aggregation and join.

Of 
ourse, when identifying these semanti
 query patterns, the trade o� between generality and

eÆ
ien
y has to be 
onsidered 
arefully. The more spe
ial a pattern is, the more likely an

eÆ
ient implementation is but the less useful it might be. This is one of the reasons why we


onsider only 
ases that were identi�ed as important by other people, too. All presented 
ases


an be found in the TPC-D ben
hmark [TPC95℄. As a positive side e�e
t, we were able to use

the TPC-D data to evaluate the performan
e of our implementations.

We 
on
entrate on 
ases involving grouping and aggregation sin
e the use of databases for

Data Warehouse and OLAP appli
ations in
reased drasti
ally in re
ent years. Within these

appli
ations, grouping and aggregation play a major role. Witness, again, the TPC-D ben
hmark

[TPC95℄. Out of 17 queries 17 queries 
ontain either grouping or aggregation or both. It is

therefore very useful to improve the exe
ution of these operations.

Grouping and aggregation have quite some history. Klug [Klu82℄ was the �rst who gave pre
ise

de�nitions for aggregate fun
tions and extended relational algebra and 
al
ulus to support these.

Ceri and Gottlob [CG85℄ generalized Klug's aggregate formation operator to allow translation

of SQL to relational algebra. Dayal [Day87℄ gave an implementation of this generalized GAgg

operator and des
ribed ta
ti
s to in
lude aggregation into query optimization. All semanti


query patterns we identify will involve the GAgg operator. Implementation te
hniques for GAgg


an be found in Epstein's Memorandum [Eps79℄, in Dayal's paper [Day87℄, and in Graefe's survey

[Gra93℄. Shatdal and Naughton provide implementation te
hniques for parallel versions [SN95℄.

However, we 
on
entrate on sequential implementations. Chatziantoniou and Ross des
ribe an
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extension of SQL that allows for easier formulation of some queries 
ontaining grouping and

aggregation. Further they introdu
e the relational operator � that fa
ilitates the sear
h for an

eÆ
ient implementation of the queries 
onsidered [CR96℄. Nevertheless, the des
ribed evaluation

algorithm does lead{if appli
able{to the ususal implementations in the 
ases addressed by our

operators. Applying our spe
ial operators leads to twofold improvements in speed or memory

utilization 
ompared to those found in [Gra93℄.

The rest of the paper is organized as follows. Se
tion 2 
ontains the preliminaries. It reviews the

de�nition of the 
onventional GAgg operator and its implementation. Se
tions 3-5 are devoted

the semanti
 query patterns. Ea
h se
tion introdu
es a pattern by means of an example, de�nes

an a

ording operator, gives its implementation, 
ompares an original query plan with one using

the new operator, and exempli�es performan
e gains. Se
tion 6 
on
ludes the paper.

2 Preliminaries

In SQL, aggregates 
an be formed within or without a grouping 
ontext. As an example of the

latter 
onsider the query

sele
t sum(Salary), max(Salary)

from Employee

where Employee is a relation with s
hema

E = (EmpID : int;Name : string; Salary : de
imal;Dept : string):

The query sums up the salary of all employees and retrieves their maximum salary. Note that a

ve
tor of s
alar aggregate fun
tions is applied to a set of tuples, i.e. a relation. A s
alar aggregate

returns a single number for a given input relation [Eps79℄. Examples thereof are 
ount , sum,

avg et
. A ve
tor of aggregate fun
tions that returns a set (or tuple) of values for a given

input relation is sometimes 
alled aggregate fun
tion [Eps79℄. Within the algebra, we denote

the appli
ation of a ve
tor of s
alar aggregate fun
tions agg by the operator 


agg

(pronoun
ed

small gamma) de�ned below.

As an example for aggregation in the 
ontext of grouping 
onsider the query
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sele
t sum(Salary), max(Salary), Dept

from Employee

group by Dept

Here, a ve
tor of s
alar aggregate fun
tions is applied to every group of employees. Every group


onsists of a set of tuples. The groups themselves are spe
i�ed by the group by 
lause. This


ombination of grouping with a su

essive appli
ation of a ve
tor of s
alar aggregate fun
tions

to ea
h group is 
aptured by the operator �

A;agg

. This operator 
orresponds to generalized

aggregation operator [Day87℄.

In the subsequent de�nitions of these two operators, we use Maier's notation [Mai83℄: lower
ase

letters are used for relations and upper
ase letters are used for attribute-sets and relational

s
hemas, r(R) signi�es that r is a relation with s
hema R. Using these symbols the two operators

are de�ned as follows:

Let r(R) be a relation and agg : P(r)! o be a ve
tor of s
alar aggregate fun
tions returning a

tuple. Then




agg

(r) := fagg(r)g

�

A;agg

(r) := ft(A) Æ a : t 2 r ^ a = agg(fs 2 r : s(A) = t(A)g)g:

Example Suppose e is a relation of employees with s
hema

E = (EmpID : int;Name : string; Salary : de
imal;Dept : string)

and its extent is

e = f (1; \Smith"; 3000:00; \produ
tion"); (2; \Miller"; 2800:00; \produ
tion");

(3; \Clark"; 3300:00; \sales"); (4; \Hill"; 3500:00; \sales");

(5; \Barth"; 3100:00; \sales") g:

If we de�ne agg for all q 2 P(e) as

agg(q) :=

0

�

X

t2q

t:Salary ; max

t2q

(t:Salary)

1

A

;
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we 
an get the sum of all salaries and the maximum salary using the 
-operator:




agg

(e) = f(15700:00; 3500:00)g:

If we want the sum of all salaries and the maximum salary per department we use the �-operator:

�

(Dept);agg

= f(\produ
tion"; 5800:00; 3000:00); (\sales"; 9900:00; 3500:00)g:

Today, there exist three basi
 methods to implement the � operator: one based on nested loops,

a se
ond based on sorting and a third based on hashing [Gra93℄. As the nested loop algorithms

show a mu
h weaker performan
e than the other two types and as its spe
i�
 properties are not

needed in normal RDBMS, they are rarely used. A

ording to Graefe [Gra93℄ sorting and hashing

are of nearly equal performan
e so in a RDBMS there is usually one module that implements

grouping, aggregation and dupli
ate removal using one of the latter two approa
hes. Note

that the situation is very similar to the join operator. For a single algebrai
 operator, several

implementations exist. Ea
h implementation implements the full fun
tionality of the operator{

no more and no less. Subsequent se
tions will introdu
e algebrai
 operators for semanti
 query

patterns that 
over spe
ial 
ases of 
, �, and a 
ombination of � and 1.

3 The Max-Operator

This and the following two se
tions 
onsist of �ve parts ea
h. We start with a des
ription of a

semanti
 query pattern, 
ontinue with a de�nition the operator 
apturing the semanti
s of the

pattern. Then, we sket
h a possible implementation of the operator. The fourth part 
ontains

a 
omparison of two query evaluation plans. The �rst is a traditional plan and the se
ond

plan utilizes the newly introdu
ed operator. The �fth part reports experimental results on the

performan
e gains.

All performan
e experiments were 
arried out by integrating the newly proposed operators into

our experimental database management system AODB. The queries were run against the TPC-D

database with a s
aling fa
tor of 1 [TPC95℄. AODB was running on a lightly loaded UltraSpar
2

with 256 MByte main memory running under Solaris 2.6.
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3.1 Semanti
 query pattern

Example Suppose we have a relation Employee with s
hema

Employee(EmpID, Name, Salary, DeptID).

Against this relation, we pose the following query:

Retrieve the employee with the highest salary.

Its translation into SQL yields

sele
t Name

from Employee

where Salary = ( sele
t max(Salary)

from Employee)

Most 
ommer
ial DBMSs (at least all we had a

ess to) take the given SQL-statement quite

literally. The result is generated in two steps. In the �rst step, the subquery is used to �nd the

maximum value for Salary . In the se
ond step all qualifying tuples from the relation Employee

are sele
ted. Both steps 
ould either be done using an index or by s
anning the relation Employee.

In any 
ase the system would have to look at the salaries and the 
orresponding tuples twi
e.

Obviously this is neither desirable nor ne
essary, espe
ially if the number of result tuples is small

and easily �ts into main memory. Furthermore, this will typi
ally be the 
ase. It is even more

undesirable, if the relevant set of tuples is not a base relation but the result of a subquery (e.g.

be
ause Employee is a view). In this 
ase, we de�nitely do not have an index to look up our

tuples and we have to exe
ute the whole subquery twi
e or materialize its result and s
an it.

The general semanti
 query pattern sele
ts

\all tuples exhibiting a maximum value for a given expression."

The following dis
ussion only talks about maximization. Minimization 
an be treated analo-

gously. Hen
e, we 
all this pattern the global extremum pattern.
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3.2 Operator de�nition

This pattern leads dire
tly to the following de�nition of the Max-operator, whi
h is an adaption

of the Max-operator proposed by Cluet and Moerkotte [CM93℄ to the relational 
ontext.

Let r(R) be a relation, X an ordered set of atomi
 values and exp : r ! X an expression that

should be maximized. We de�ne

Max

exp

(r) := ft 2 r : exp(t) = max(exp(r))g

In 
ontrast to this de�nition the operator from [CM93℄ returns a nested result, whi
h is unsuit-

able for our purpose sin
e relations in the traditional relational model are 
at. Further, Cluet

and Moerkotte did not give an implementation.

We propose to use the Max-operator to evaluate queries showing the global extremum pattern.

3.3 Operator implementation

A simple, eÆ
ient, but naive implementation for this operator is

MAX(r,exp) /* relation r, expression exp to be maximized */

M := emptyset


hoose m from r

add m to M

forea
h t in r

do

if exp(t) > exp(m)

then

M := emptyset

m := t

add m to M

else if exp(t) = exp(m)

add t to M

done

return M

This implementation tou
hes ea
h tuple 
ontained in r exa
tly on
e and is therefore more eÆ
ient

than the usual \2-step-algorithm". The only problem with this implementation may be the size

of M . There is no problem as long as there is suÆ
ient memory to hold M . But this might not

be the 
ase, even if all result tuples �t into memory. To understand why, imagine the Employee

relation taking the role of r. Assume that every employee has one of three salaries 20k, 200k,
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2000k and that the Employee relation is a

identally sorted on in
reasing salaries. Further, most

of the 10 million employees will exhibit the 20k salary, fewer the 200k salary, and almost none

the 2000k salary. Then, the operator implementation would �rst �ll M with all employees with

20k. As soon as it en
ounters the �rst employee with the 200k salary, it dis
ards the 
urrent

M and initializes it with the �rst employee earning 200k. The same pro
edure starts again.

Hen
e, M is bound in turn to all employees with salary 20k, 200k, and 2000k. If one of these

sets ex
eeds the memory 
apabilities, the algorithm is in trouble. This 
ase should however be

very unlikely but we better prepare for it.

One remedy 
ould be to repeatedly write tuples to disk and delete them, if a new maximum is

found. This is very undesirable as it would lead to writing I/O. There is, however, an easy way

to dynami
ally handle memory shortage with the following slightly modi�ed implementation:

MAX(r,exp) /* relation r, expression exp to be maximized */

M := emptyset


hoose m from r

add m to M

* overflow := false

forea
h t in r

do

if exp(t) > exp(m)

then

M := emptyset

* overflow := false

m := t

add m to M

else if exp(t) = exp(m)

* if M is not full

add t to M

* else

* overflow := true

done

* if(overflow = false)

return M

* else

* 
hoose m from M

* return all tuples t from r with exp(t) = exp(m)

The main idea of this modi�
ation is to fall ba
k to the \2-step-algorithm", if there is not enough

memory. As soon as there are too many tuples inM , the over
ow 
ag is set and no more tuples

are 
olle
ted until a tuple is found that exhibits a higher value for exp. Then, we 
an restart

with a smallM . At the end of the algorithm, we analyze the 
urrent situation and either return

M dire
tly, or|in 
ase of an over
ow|have to perform a se
ond s
an on r. This fall ba
k

te
hnique will be applied to the next operator's implementation as well.
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Figure 1: Exe
ution plans for the (logi
al) Max-operator

3.4 Comparison of query exe
ution plans

In �gure 1 the two possible exe
ution plans are shown. The \2-step-algorithm" 
onsists|when

des
ribed in terms of relational operators|of a 
- and a join-operator. As the smaller input of

the join-operator 
onsists of just one tuple any low-overhead join implementation is well-suited.

Note however, that every tuple from R

I

is a

essed twi
e by the \2-step-algorithm": on
e as

an input to the 
-operator and on
e for the right input of the join-operator. The modi�ed

implementation of the Max-operator needs ea
h tuple on
e or twi
e depending on the size of

the result. As the 
al
ulation of the maximum is 
omputationally very easy, the time used for

the produ
tion of the tuples of R

I

takes usually the predominant part of the total exe
ution

time. Therefore we expe
t a redu
tion of the total exe
ution time for queries exhibiting the

global extremum pattern by 50% if the of Max-operator is applied and the result �ts into main

memory. The latter 
ondition is quite likely to be ful�lled. And even if it is not the 
ase

the modi�ed implementation reverts to the \2-step-algorithm" and is thus not slower than the


onventional plan.

Remark on indi
es Obviously, if there is an index on the Salary attribute, this index 
an

be used to answer the example query. This plan will most likely be more eÆ
ient than our plan.

However, we 
an not expe
t to have an index on every attribute. Furthermore there are two


ases in whi
h we de�nitely do not have an index: (1) if the relation 
onsidered is produ
ed by

a subquery instead of a base relation and (2) if we do not want to maximize a mere attribute

but a more 
omplex expression.
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plan total CPU

time time

\2-step-algorithm" 39 s 9.0 s

Max-operator 19 s 5.7 s

Table 1: Exe
ution times for the Max-operator

Remark on optimization If the query exhibits the global extremum pattern, the query

evaluation performan
e is never deteriorated by using the Max-operator. Therefore we 
an

introdu
e the Max-operator into the evaluation plan during the rewrite-phase before alternative

plans are generated. So the introdu
tion of the Max-operator does not lead to an in
reased size

of the optimizer's sear
h spa
e.

3.5 Experimental Result

To show that the Max-operator 
an deliver the promised performan
e gain we exe
uted the

following query twi
e|on
e using the \2-step-algorithm" and on
e using our implementation of

the Max-operator.

sele
t O Clerk, O TotalPri
e

from Order

where O TotalPri
e = (sele
t max(O TotalPri
e)

from Order)

The results presented in table 1 show the expe
ted improvement of 50%.

4 The �

max

-Operator

4.1 Semanti
 query pattern

Example Consider the following query:

For every department retrieve the employees that within this department have the

highest salary.
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Using the relation Employee(EmpID, Name, Salary, DeptID) from the last se
tion the appro-

priate SQL statement is:

sele
t e1.Name, e1.DeptID

from Employee e1

where e1.Salary = (sele
t max(e2.Salary)

from Employee e2

where e1.DeptID = e2.DeptID).

Depending on the quality of the optimizer there are two possibilities how this query 
an be

evaluated by a 
urrent DBMS. The �rst possibility is to a
tually exe
ute the nested query on
e

for ea
h tuple from Employee. This is obviously extremely slow, regardless if there are indi
es

on Employee or not. The se
ond possibility is to evaluate the query in two steps similarly to the

algorithm used in the last se
tion. The �rst step is to use GAgg to group Employee by DeptID

and to 
al
ulate max(Salary) for ea
h group. The se
ond step is to join the result of the GAgg

operator with Employee on DeptID and Salary.

The general semanti
 query pattern is similar to the pattern in the last se
tion. It sele
ts

\all tuples exhibiting a maximum value for a given expression and a given group."

Again, minimization 
an be handled analogously, so we 
all this pattern the lo
al extremum

pattern.

4.2 Operator de�nition

We de�ne the �

max

-operator as follows:

Let r(R) be a relation, X an ordered set of atomi
 values and exp : r ! X an expression that

should be maximized. We de�ne

�

max

A;exp

(r) := f t 2 r :

exp(t) = max(exp(fs 2 r : s(A) = t(A)g)) g

The �

max

-operator 
al
ulates for every group de�ned by the attributes in A the set of tuples

that within their group maximize the value of the expression exp. Hen
e, the operator de�nition

dire
tly re
e
ts the semanti
s of the lo
al extremum pattern.
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4.3 Operator implementation

The implementation for this operator is an extension of the implementation of the Max-operator.

Instead of one global set of maximal tuples this implementation uses one set of maximal tuples

per group. So ea
h tuple has to be asso
iated to a group before it is pro
essed in the same way

as for the Max-operator. The resulting implementation is:

GAMMAMAX(r,exp,A) /* relation r, expression exp to be */

/* maximized, A set of grouping 
olumns */

forea
h t in r

do

if a group for t exists

then

M := set of maximal elements for the group of t


hoose m from M

if exp(t) > exp(m)

then

M := emptyset

add t to M

else if exp(t) = exp(m)

add t to M

else


reate a new group with the set M

M := emptyset

add t to M

done

return the sets of all groups

A less detailed version of this implemenation was already des
ribed by Chatziantoniou and Ross

in [CR96℄. However, they gave it as an example of a further improvement of their implementation

and they did not 
onsider over
ow handling.

To handle over
ow for this operator we have to use two destaging levels. First, we 
an also use

over
ow 
ags to dynami
ally revert to the 
onventional plan. It is advisable to use one over
ow


ag per group, so only those groups for whi
h an over
ow a
tually o

urred have to be joined.

However if the number of groups is too large to be kept in main memory we have to destage

another level and revert to hybrid hashing [GBC98℄.

4.4 Comparison of query exe
ution plans

We do not dis
uss the �rst des
ribed alternative, a nested exe
ution, be
ause it needs jR

I

j+ 1

s
ans of R

I

and therefore shows una

eptable performan
e for almost every size of R

I

. The
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Figure 2: Exe
ution plans for the (logi
al) �

max

-operator

remaining two exe
ution plans are shown in �gure 2. The 
onventional plan 
onsists of a �- and

a join-operator. As already noted for the \2-step-algorithm" in the last se
tion, this 
onventional

plan also a

esses ea
h tuple in R

I

twi
e, whereas the �

max

-operator needs to a

ess the tuples

a se
ond time only if the result does not �t into main memory. As the sear
h for a group does

not add mu
h 
omplexity to the 
al
ulation of the maximum, the time used for the produ
tion

of the tuples of R

I

still takes the predominant part of the total exe
ution time. Therefore we


an a
hieve the same speedup as for the Max -operator (50%), but it is less likely to happen

as the probability that the result �ts into main memory degrades. However, even in the worst


ase, there won't be a loss 
ompared to the 
onventional plan as the �

max

operator is able to

gra
efully degrade to the 
onventional plan.

Remark on indi
es Using indexes here, is not as straightforward as in the previous 
ase.

Before we dis
uss a plan exploiting an index, we 
onsider an alternative implementation of the

�

max

operator. Assume that the relation is sorted on both, the grouping attributes and the

attributes whi
h are to be maximized. Then, an eÆ
ient implementation of the �

max

operator


ould simply iterate through the sorted (intermediate) relation and sele
t the �rst tuples that

exhibit the maximum possible value within ea
h group (determined solely by the grouping

attributes). Note that this implementation of �

max

does not need any intermediate bu�er. The

main overhead is sorting the relation (see table 2). However, if we have a 
lustered multi-

attribute index on the grouping attributes and the attributes to be maximized, then sorting 
an

be repla
ed by an index s
an. If only the grouping attributes are indexed (again 
lustered), then

a simpler sort that only performs sorting within a single group 
an repla
e the original sort.
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Remark on optimization If the query exhibits the lo
al extremum pattern, the situation is

similar to the situation of a query exhibiting the global extremum pattern. So we 
an introdu
e

the �

max

-operator during rewrite as well, also without enlarging the optimizer's sear
h spa
e.

4.5 Experimental Result

To show the performan
e of the �

max

-operator we modi�ed the query of se
tion 3 to produ
e

the 
lerk together with the amount for the order with the highest turnover per year.

sele
t o1.O Clerk, year(o1.O Orderdate) as year, o1.O TotalPri
e

from Order o1

where o1.O TotalPri
e = (sele
t max(o2.O TotalPri
e)

from Order o2

where year(o1.O Orderdate) = year(o2.O Orderdate))

We exe
uted this query three times, on
e with a 
onventional plan, on
e using the hash-

implementation of the �

max

-operator and on
e using a sort-implementation of the �

max

-operator.

Con
erning the 
omparison of the 
onventional plan with the hash-implementation of the �

max

-

operator, the results in table 2 show two things. First, the expe
ted improvement of 50% 
an

a
tually be a
hieved and se
ond, the added 
omputational 
omplexity that was 
aused by the

grouping is less than 25% and therefore does not impa
t on the total running time (
ompare

with table 1). Con
erning the evaluation of the sort-implementation of the �

max

-operator there

also two fa
ts worth mentioning. First this implementation is mu
h slower even than the 
on-

ventional plan, and se
ond the higher 
ost is mainly due to the 
ost of sorting. As we already

gave the system enough main memory to perform the whole sorting operation in main memory,

it seems that the use of sorting is only reasonable, if no sort operation is ne
essary (e.g. be
ause

we 
an get sorted tuples from a 
lustered index).

5 The �

add-in

-operator

5.1 Semanti
 query pattern

Example The introdu
tory query for our third pattern is:
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plan total CPU

time time


onventional plan 39 s 10.9 s

�

max

-operator 19 s 7.4 s

�

max

with sorting 80 s 67 s

just sorting 78 s 65 s

Table 2: Exe
ution times for the �

max

-operator

For ea
h department, retrieve the average salary of the department.

In 
ontrast to the last se
tion we do not only want the DeptID but also the name. With

Employee(EmpID, Name, Salary, DeptID) and Department(DeptID, Name)

the query reads in SQL:

sele
t d.Name, d.DeptID, avg(e.Salary)

from Department d, Employee e

where d.DeptID = e.DeptID

group by d.Name, d.DeptID

As was already noted by Yan and Larson [YL94, YL95℄ and several other authors (for example

Chaudhuri and Shim [CS94℄ and Gupta, Harinarayan and Quass [GHQ95℄) the exe
ution time

for this query 
an be signi�
antly redu
ed by grouping Employee by DeptID �rst and joining

the result of the aggregation with Department in the se
ond step, in other words by pushing

group-by in front of the join. When using hash-based operators for grouping and joining the

following happens: we �rst build a hash table for grouping with e.DeptID as hash key and then

we build another hash table for joining with e.DeptID as hash key. So we are building two hash

tables with identi
al 
ontent and identi
al stru
ture. We 
an obviously do better by using just

one hash table for both tasks. Graefe, Bunker and Cooper also reused hash tables for \hash

teams" [GBC98℄. However in their presentation it seems that for a hash team 
onsisting of a

join and a grouping-operator the grouping-operator has to be exe
uted last. Furthermore they

require the grouping 
olumns and the join 
olumns to be identi
al whi
h is not ne
essary for

our �

add-in

-operator. More spe
i�
ally, we only require the existen
e of at least a single 
ommon


olumn.

The general problem we are looking at here are queries that

17



\allow pushing the grouping operation and have 
ommon grouping and join 
olumns".

We 
all this the 
ommon grouping and join 
olumns pattern.

5.2 Operator de�nition

We propose to introdu
e the �

add-in

-operator to be used for su
h queries. It is de�ned as follows:

Let r(R); q(Q); p(P ) be relations and agg : P(r) ! p be a ve
tor of s
alar aggregate fun
tions,

then we de�ne

�

add-in

A;agg;B

(r; q) := �

A;agg

(r) 1

B

q

= ft(A) Æ a Æ u : t 2 r^

a = agg(fs 2 r : s(A) = t(A)g)^

u 2 q ^ (t(A) Æ a)(B) = u(B)g:

While this de�nition is quite general, the desired eÆ
ient implementation is only possible if

A\B 6= ;. If this 
ondition holds a hash table using A\B as hash key 
an be used for grouping

and join. This is obviously a stri
t 
ondition but it 
overs a number of interesting queries, as in

Data-Warehouse-appli
ations both joins and groupings on foreign keys are quite 
ommon (for

example in the TPC-D-ben
hmark [TPC95℄).

5.3 Operator implementation

A simple implementation of this operator 
ould look like this:
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GAMMAADDIN(r, s, A, agg, B) /* relation r is grouped by the set of */

/* 
olumns A and aggregation fun
tion */

/* agg is applied, then the result is */

/* joined with relation s on the set */

/* of 
olumns B */

forea
h t in r

do

if a group for t exists

then

add t to this group

else


reate a new group

initialize the new group with values from t

done

finalize all groups

forea
h t in s

do

if a group that mat
hes t exists

then

join t with this group

add the joined tuples to the result

done

In the �rst loop the sear
h for a group is done using a hash table whose hash value is 
al
ulated

using only the 
olumns from A\B. The 
omparison for group equality however uses all 
olumns

from A. After the �rst loop the groups are �nalized, whi
h is ne
essary for some aggregate

fun
tions like for example avg. In the se
ond loop the sear
h is done in the same hash table|

again using only the 
olumns from A\B to 
al
ulate the hash value|but now all 
olumns from

B are used in the 
omparison for join equality.

The problem of over
ow handling is orthogonal to the prin
iple of the implementation and 
an

therefore be solved using the usual me
hanisms like hybrid hashing. The important improvement

is that the tuples of the se
ond (ungrouped) input relation are probed in the hash table that

was built in the grouping step.

5.4 Comparison of query exe
ution plans

The three possible plans for the implementation of the �

add-in

-operator are shown in �gure 3.

The traditional plan joins R

I

and R

J

before grouping. Pushing the grouping operation in front

of the join usually redu
es the size of one join input and therefore redu
es the time needed

to pro
ess this operation [YL94℄. Espe
ially if R

I

is too large to be kept in main memory

this 
an also lead to a redu
tion in I/O-
osts. Two additional bene�ts 
an be a
hieved by

19



traditional plan

�
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R

I

R

J

�

��

6

6

pushed grouping

1

�

R
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J

6

�

��

6

�

add-in

�

AddIn
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I

R

J

�

�

�

�

�� 6

Figure 3: Exe
ution plans for the (logi
al) �

add-in

-operator

using the �

add-in

-operator. At �rst there is no need to 
opy the tuples from one hash table

to another, so some CPU-
ost 
an be saved. The se
ond and more important bene�t is that

during the exe
ution only half of the memory 
ompared to the use of 
onventional operators

is needed. Therefore it is also possible to save on I/O-
osts if hybrid hashing is used for the

implementation.

Remark on optimization The optimization of queries that 
an bene�t from the �

add-in

-

operator is a little bit di�erent from the �rst two 
ases. As the operator 
an be seen as an

improved implementation of the 
ombination of a pushed grouping and a join, our optimizer

repla
es these 
ombinations by the �

add-in

-operator in a se
ond rewrite-phase. This se
ond

rewrite-phase is performed after alternative plans have been generated and an optimal plan has

been 
hosen. At this point we are sure that the use of the �

add-in

-operator improves performan
e.

As in the previous two 
ases the size of the optimizer's sear
h spa
e does not in
rease by the

introdu
tion of this operator.

5.5 Experimental Result

To show the performan
e improvements due to the use of the �

add-in

-operator we used this query:

sele
t P Partkey, P Mfgr, P Brand, P Type, P Retailpri
e,

avg(PS Supply
ost) as avg supply
ost

from Part, Partsupp

where P Partkey = PS Partkey

group by P Partkey, P Mfgr, P Brand, P Type, P Retailpri
e

having avg(PS Supply
ost) > 0.9 * P Retailpri
e
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plan total CPU memory for

time time hash tables

traditional plan 20 s 10.4 s 21.6 MB

pushed grouping 20 s 6.4 s 16.3 MB

�

add-in

20 s 5.4 s 10.7 MB

Table 3: Exe
ution times for the �

add-in

-operator

It returns all parts for whi
h the average supply 
ost a

ounts for more than 90% of the retail

pri
e. Due to the fa
t that the system was I/O-bound during the exe
ution of all three plans

we 
an see no improvement in the total running times in table 3. However there is a substantial

redu
tion of CPU-
ost (48% 
ompared to the traditional plan and 16% 
ompared to the pushed

grouping) and memory usage (51% 
ompared to the traditional plan and 34% 
ompared to the

pushed grouping). The reason why the pushed grouping needs less memory than the traditional

plan is, that an additional proje
tion be
ame possible.

6 Con
lusion

We introdu
ed the notion of semanti
 query pattern and identi�ed three of them in the realm

of grouping and aggregation. For these patterns we derived spe
i�
ally tailored operators and

gave implementations of them. We elaborated on the reasons why these implementations are an

improvement over today's implementations and veri�ed the 
orre
tness of our 
laims in pra
ti
e

using our experimental database management system AODB.

The main result however is, that improvements in the eÆ
ient evaluation of queries 
an not

only be a
hieved by new implementations of well known algebrai
 operators|as it has been

done until now|but also by extending the algebra. This approa
h o�ers a new optimization

potential. Without realizing it at that time we already exploited this potential with the Diag-

Join-operator, that gains its eÆ
ien
y by exploiting time-of-
reation ordering and by restri
ting

itself to 1:n-relationships [HWM98℄.

We hope that future resear
h will identify more 
ases that are spe
ial enough to allow for

improvement through new operators and yet general enough to justify the in
lusion of these

operators into a database management system.
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