Reihe Informatik

11 / 1999

Variations on Grouping and Aggregation

Till Westmann Guido Moerkotte

Variations on Grouping and Aggregation

Till Westmann Guido Moerkotte

Lehrstuhl fiir Praktische Informatik III
Universitat Mannheim
68131 Mannheim
Germany

westmann|moerkotte@informatik.uni-mannheim.de

May 31, 2002

Abstract

Grouping and aggregation are constantly gaining importance in the evaluation of queries.
Hence, there is a need to improve the execution times of queries containing these operations.
To achieve this goal we propose to extend the relational algebra by new operators that address
different query patterns and that allow for more efficient implementation than those currently
used. These new operators have to be specific enough to allow improved performance and
general enough to be of general use. We present three patterns and the corresponding
operators and show how these operators can be used to speed up query evaluation by a
factor of two.

1 Introduction

One of the main advantages of declarative query languages such as SQL is their optimizabil-
ity. The equivalence of calculus—the formal foundation of a declarative query language—and
algebra—the language for specifying query execution plans—forms the basis for optimizability.
Moreover, in order to be able to optimize a query, different query evaluation plans must exist
for a given query with different associated costs. The set of query evaluation plans equivalent to
the original query defines the search space a query optimizer must explore in order to find a low
cost plan. There are two factors that imply that the search space contains more than a single
plan: algebraic equivalences allow to construct different plans at the logical level and different

implementations of algebraic operators allow for further alternatives at the physical level.

The tradition has been to provide different implementations for a single logical algebraic oper-

ator, leading to a one-many relationship between operators and their implementations. For ex-

ample, the join operator comes with many implementation alternatives such as nested-loop join,
sort-merge join and hash join [Gra93]. Our hypothesis is that further efficiency improvements
can be gained, if special implementations for special cases of algebraic operators or combinations
thereof are provided. We will identify three special cases, define according algebraic operators,
and provide their efficient implementations. Every case will cover a special intent of the user
stating the query. As we will see, this intent is reflected within the query by a certain pattern.
Hence, we will refer to such special cases as semantic query patterns. The first two operators
cover different semantic query patterns of grouping with aggregation. The last operator covers

a semantic query pattern matching a combination of grouping with aggregation and join.

Of course, when identifying these semantic query patterns, the trade off between generality and
efficiency has to be considered carefully. The more special a pattern is, the more likely an
efficient implementation is but the less useful it might be. This is one of the reasons why we
consider only cases that were identified as important by other people, too. All presented cases
can be found in the TPC-D benchmark [TPC95]. As a positive side effect, we were able to use

the TPC-D data to evaluate the performance of our implementations.

We concentrate on cases involving grouping and aggregation since the use of databases for
Data Warehouse and OLAP applications increased drastically in recent years. Within these
applications, grouping and aggregation play a major role. Witness, again, the TPC-D benchmark
[TPCY95]. Out of 17 queries 17 queries contain either grouping or aggregation or both. It is

therefore very useful to improve the execution of these operations.

Grouping and aggregation have quite some history. Klug [Klu82] was the first who gave precise
definitions for aggregate functions and extended relational algebra and calculus to support these.
Ceri and Gottlob [CG85] generalized Klug’s aggregate formation operator to allow translation
of SQL to relational algebra. Dayal [Day87] gave an implementation of this generalized GAgyg
operator and described tactics to include aggregation into query optimization. All semantic
query patterns we identify will involve the GAgg operator. Implementation techniques for GAgg
can be found in Epstein’s Memorandum [EpsT79], in Dayal’s paper [Day87], and in Graefe’s survey
[Gra93]. Shatdal and Naughton provide implementation techniques for parallel versions [SN95].

However, we concentrate on sequential implementations. Chatziantoniou and Ross describe an

extension of SQL that allows for easier formulation of some queries containing grouping and
aggregation. Further they introduce the relational operator ® that facilitates the search for an
efficient implementation of the queries considered [CR96]. Nevertheless, the described evaluation
algorithm does lead-if applicable-to the ususal implementations in the cases addressed by our
operators. Applying our special operators leads to twofold improvements in speed or memory

utilization compared to those found in [Gra93].

The rest of the paper is organized as follows. Section 2 contains the preliminaries. It reviews the
definition of the conventional GAgg operator and its implementation. Sections 3-5 are devoted
the semantic query patterns. Each section introduces a pattern by means of an example, defines
an according operator, gives its implementation, compares an original query plan with one using

the new operator, and exemplifies performance gains. Section 6 concludes the paper.

2 Preliminaries

In SQL, aggregates can be formed within or without a grouping context. As an example of the

latter consider the query

select sum(Salary), max(Salary)
from Employee

where Employee is a relation with schema
E = (EmplID : int, Name : string, Salary : decimal, Dept : string).

The query sums up the salary of all employees and retrieves their maximum salary. Note that a
vector of scalar aggregate functions is applied to a set of tuples, i.e. a relation. A scalar aggregate
returns a single number for a given input relation [Eps79]. Examples thereof are count, sum,
avg etc. A vector of aggregate functions that returns a set (or tuple) of values for a given
input relation is sometimes called aggregate function [Eps79]. Within the algebra, we denote
the application of a vector of scalar aggregate functions agg by the operator 7,4, (pronounced

small gamma) defined below.

As an example for aggregation in the context of grouping consider the query

select sum(Salary), max(Salary), Dept
from Employee
group by Dept

Here, a vector of scalar aggregate functions is applied to every group of employees. Every group
consists of a set of tuples. The groups themselves are specified by the group by clause. This
combination of grouping with a successive application of a vector of scalar aggregate functions
to each group is captured by the operator I'4,.4. This operator corresponds to generalized

aggregation operator [Day87].

In the subsequent definitions of these two operators, we use Maier’s notation [Mai83]: lowercase
letters are used for relations and uppercase letters are used for attribute-sets and relational
schemas, r(R) signifies that r is a relation with schema R. Using these symbols the two operators

are defined as follows:

Let 7(R) be a relation and agg : P(r) — o be a vector of scalar aggregate functions returning a

tuple. Then

’Yagg(r) = {agg(r)}
ICaage(r) = {t(A)ca:terNa=agg({ser:s(A)=t(A)})}.

Example Suppose e is a relation of employees with schema
E = (EmplD : int, Name : string, Salary : decimal, Dept : string)

and its extent is

e ={ (1,“Smith”,3000.00, “production”), (2, “Miller”, 2800.00, “production”),
(3, “Clark”, 3300.00, “sales”), (4, “Hill”, 3500.00, “sales”),
(5, “Barth”,3100.00, “sales”) }.

If we define agg for all ¢ € P(e) as

agg(q) == (Z t.Salary , T&x(t.Salary)) ,

teq

we can get the sum of all salaries and the maximum salary using the y-operator:

Yagg(€) = {(15700.00,3500.00)}.

If we want the sum of all salaries and the maximum salary per department we use the I'-operator:

L (Deptyiagg = {(“production”, 5800.00, 3000.00), (“sales”,9900.00, 3500.00)}.

Today, there exist three basic methods to implement the I' operator: one based on nested loops,
a second based on sorting and a third based on hashing [Gra93]. As the nested loop algorithms
show a much weaker performance than the other two types and as its specific properties are not
needed in normal RDBMS, they are rarely used. According to Graefe [Gra93] sorting and hashing
are of nearly equal performance so in a RDBMS there is usually one module that implements
grouping, aggregation and duplicate removal using one of the latter two approaches. Note
that the situation is very similar to the join operator. For a single algebraic operator, several
implementations exist. Each implementation implements the full functionality of the operator—
no more and no less. Subsequent sections will introduce algebraic operators for semantic query

patterns that cover special cases of v, I', and a combination of I' and X.

3 The Max-Operator

This and the following two sections consist of five parts each. We start with a description of a
semantic query pattern, continue with a definition the operator capturing the semantics of the
pattern. Then, we sketch a possible implementation of the operator. The fourth part contains
a comparison of two query evaluation plans. The first is a traditional plan and the second
plan utilizes the newly introduced operator. The fifth part reports experimental results on the

performance gains.

All performance experiments were carried out by integrating the newly proposed operators into
our experimental database management system AODB. The queries were run against the TPC-D
database with a scaling factor of 1 [TPC95]. AODB was running on a lightly loaded UltraSparc2

with 256 MByte main memory running under Solaris 2.6.

3.1 Semantic query pattern

Example Suppose we have a relation Employee with schema

Employee(EmpID, Name, Salary, DeptID).

Against this relation, we pose the following query:

Retrieve the employee with the highest salary.

Its translation into SQL yields

select Name

from Employee

where Salary = (select max(Salary)
from Employee)

Most commercial DBMSs (at least all we had access to) take the given SQL-statement quite
literally. The result is generated in two steps. In the first step, the subquery is used to find the
maximum value for Salary. In the second step all qualifying tuples from the relation Employee
are selected. Both steps could either be done using an index or by scanning the relation Employee.
In any case the system would have to look at the salaries and the corresponding tuples twice.
Obviously this is neither desirable nor necessary, especially if the number of result tuples is small
and easily fits into main memory. Furthermore, this will typically be the case. It is even more
undesirable, if the relevant set of tuples is not a base relation but the result of a subquery (e.g.
because Employee is a view). In this case, we definitely do not have an index to look up our

tuples and we have to execute the whole subquery twice or materialize its result and scan it.

The general semantic query pattern selects

“all tuples exhibiting a maximum value for a given expression.”

The following discussion only talks about maximization. Minimization can be treated analo-

gously. Hence, we call this pattern the global extremum pattern.

3.2 Operator definition

This pattern leads directly to the following definition of the Max-operator, which is an adaption

of the Max-operator proposed by Cluet and Moerkotte [CM93] to the relational context.

Let r(R) be a relation, X an ordered set of atomic values and exp : r — X an expression that

should be maximized. We define

Maxea:p('r) = {t (S exp(t) = max(emp(r))}

In contrast to this definition the operator from [CM93] returns a nested result, which is unsuit-
able for our purpose since relations in the traditional relational model are flat. Further, Cluet

and Moerkotte did not give an implementation.

We propose to use the Max-operator to evaluate queries showing the global extremum pattern.

3.3 Operator implementation

A simple, efficient, but naive implementation for this operator is

MAX(r,exp) /* relation r, expression exp to be maximized */
M := emptyset
choose m from r
add m to M
foreach t in r
do
if exp(t) > exp(m)
then
M := emptyset
m:=t
add m to M
else if exp(t) = exp(m)
add t to M
done
return M

This implementation touches each tuple contained in r exactly once and is therefore more efficient
than the usual “2-step-algorithm”. The only problem with this implementation may be the size
of M. There is no problem as long as there is sufficient memory to hold M. But this might not
be the case, even if all result tuples fit into memory. To understand why, imagine the Employee

relation taking the role of r. Assume that every employee has one of three salaries 20k, 200k,

2000k and that the Employee relation is accidentally sorted on increasing salaries. Further, most
of the 10 million employees will exhibit the 20k salary, fewer the 200k salary, and almost none
the 2000k salary. Then, the operator implementation would first fill M with all employees with
20k. As soon as it encounters the first employee with the 200k salary, it discards the current
M and initializes it with the first employee earning 200k. The same procedure starts again.
Hence, M is bound in turn to all employees with salary 20k, 200k, and 2000k. If one of these
sets exceeds the memory capabilities, the algorithm is in trouble. This case should however be

very unlikely but we better prepare for it.

One remedy could be to repeatedly write tuples to disk and delete them, if a new maximum is

found. This is very undesirable as it would lead to writing I/O. There is, however, an easy way

to dynamically handle memory shortage with the following slightly modified implementation:
MAX (r,exp) /* relation r, expression exp to be maximized */

M := emptyset
choose m from r

add m to M
* overflow := false
foreach t in r
do
if exp(t) > exp(m)
then
M := emptyset
* overflow := false
m :=t
add m to M
else if exp(t) = exp(m)
* if M is not full
add t to M
* else
overflow := true
done
* if (overflow = false)
return M
* else

* choose m from M
* return all tuples t from r with exp(t) = exp(m)

The main idea of this modification is to fall back to the “2-step-algorithm”, if there is not enough
memory. As soon as there are too many tuples in M, the overflow flag is set and no more tuples
are collected until a tuple is found that exhibits a higher value for ezp. Then, we can restart
with a small M. At the end of the algorithm, we analyze the current situation and either return
M directly, or—in case of an overflow—have to perform a second scan on r. This fall back

technique will be applied to the next operator’s implementation as well.

10

2-step-algorithm physical Max-operator

X Max

/
AN

R[RI

Figure 1: Execution plans for the (logical) Max-operator

3.4 Comparison of query execution plans

In figure 1 the two possible execution plans are shown. The “2-step-algorithm” consists—when
described in terms of relational operators—of a - and a join-operator. As the smaller input of
the join-operator consists of just one tuple any low-overhead join implementation is well-suited.
Note however, that every tuple from Rj is accessed twice by the “2-step-algorithm”: once as
an input to the y-operator and once for the right input of the join-operator. The modified
implementation of the Max-operator needs each tuple once or twice depending on the size of
the result. As the calculation of the maximum is computationally very easy, the time used for
the production of the tuples of R; takes usually the predominant part of the total execution
time. Therefore we expect a reduction of the total execution time for queries exhibiting the
global extremum pattern by 50% if the of Max-operator is applied and the result fits into main
memory. The latter condition is quite likely to be fulfilled. And even if it is not the case
the modified implementation reverts to the “2-step-algorithm” and is thus not slower than the

conventional plan.

Remark on indices Obviously, if there is an index on the Salary attribute, this index can
be used to answer the example query. This plan will most likely be more efficient than our plan.
However, we can not expect to have an index on every attribute. Furthermore there are two
cases in which we definitely do not have an index: (1) if the relation considered is produced by
a subquery instead of a base relation and (2) if we do not want to maximize a mere attribute

but a more complex expression.

11

plan total | CPU

time | time
“2-step-algorithm” | 39s | 9.0s
Max-operator 19s | 5.7s

Table 1: Execution times for the Max-operator

Remark on optimization If the query exhibits the global extremum pattern, the query
evaluation performance is never deteriorated by using the Max-operator.
introduce the Max-operator into the evaluation plan during the rewrite-phase before alternative

plans are generated. So the introduction of the Max-operator does not lead to an increased size

of the optimizer’s search space.

3.5 Experimental Result

To show that the Max-operator can deliver the promised performance gain we executed the

following query twice—once using the “2-step-algorithm” and once using our implementation of

the Max-operator.

select O_Clerk, O_TotalPrice
from Order

where O_TotalPrice = (select max(O_TotalPrice)
from Order)

The results presented in table 1 show the expected improvement of 50%.

4 The ['*>*-Operator

4.1 Semantic query pattern

Example Consider the following query:

For every department retrieve the employees that within this department have the

highest salary.

12

Therefore we can

Using the relation Employee(EmpID, Name, Salary, DeptID) from the last section the appro-

priate SQL statement is:

select el.Name, el.DeptID
from Employee el
where el.Salary = (select max(e2.Salary)
from Employee e2
where el.DeptID = e2.DeptID).

Depending on the quality of the optimizer there are two possibilities how this query can be
evaluated by a current DBMS. The first possibility is to actually execute the nested query once
for each tuple from Employee. This is obviously extremely slow, regardless if there are indices
on Employee or not. The second possibility is to evaluate the query in two steps similarly to the
algorithm used in the last section. The first step is to use GAgg to group Employee by DeptID
and to calculate maz(Salary) for each group. The second step is to join the result of the GAgg

operator with Employee on DeptID and Salary.

The general semantic query pattern is similar to the pattern in the last section. It selects
“all tuples exhibiting a maximum value for a given expression and a given group.”

Again, minimization can be handled analogously, so we call this pattern the local extremum

pattern.

4.2 Operator definition

We define the ['™2#*-gperator as follows:

Let r(R) be a relation, X an ordered set of atomic values and exp : r — X an expression that

should be maximized. We define

Hexp(r) ={ ter:
exp(t) = max(exp({s € r: s(A) =t(A)})) }

The I'#-operator calculates for every group defined by the attributes in A the set of tuples
that within their group maximize the value of the expression exzp. Hence, the operator definition

directly reflects the semantics of the local extremum pattern.

13

4.3 Operator implementation

The implementation for this operator is an extension of the implementation of the Max-operator.
Instead of one global set of maximal tuples this implementation uses one set of maximal tuples
per group. So each tuple has to be associated to a group before it is processed in the same way

as for the Max-operator. The resulting implementation is:

GAMMAMAX (r,exp,A) /* relation r, expression exp to be x/
/* maximized, A set of grouping columns */
foreach t in r
do
if a group for t exists
then
M := set of maximal elements for the group of t
choose m from M
if exp(t) > exp(m)
then
M := emptyset
add t to M
else if exp(t) = exp(m)
add t to M
else
create a new group with the set M
M := emptyset
add t to M
done
return the sets of all groups

A less detailed version of this implemenation was already described by Chatziantoniou and Ross
in [CRY96]. However, they gave it as an example of a further improvement of their implementation

and they did not consider overflow handling.

To handle overflow for this operator we have to use two destaging levels. First, we can also use
overflow flags to dynamically revert to the conventional plan. It is advisable to use one overflow
flag per group, so only those groups for which an overflow actually occurred have to be joined.
However if the number of groups is too large to be kept in main memory we have to destage

another level and revert to hybrid hashing [GBC98].

4.4 Comparison of query execution plans

We do not discuss the first described alternative, a nested execution, because it needs |Ry| + 1

scans of Ry and therefore shows unacceptable performance for almost every size of R;. The

14

Fma,x

conventional plan -operator

X FMa,x

/

r

N

R[RI

I‘HlaX

Figure 2: Execution plans for the (logical) -operator

remaining two execution plans are shown in figure 2. The conventional plan consists of a I'- and
a join-operator. As already noted for the “2-step-algorithm” in the last section, this conventional
plan also accesses each tuple in R; twice, whereas the '™ -operator needs to access the tuples
a second time only if the result does not fit into main memory. As the search for a group does
not add much complexity to the calculation of the maximum, the time used for the production
of the tuples of R; still takes the predominant part of the total execution time. Therefore we
can achieve the same speedup as for the Maz-operator (50%), but it is less likely to happen
as the probability that the result fits into main memory degrades. However, even in the worst
case, there won’t be a loss compared to the conventional plan as the ['™2* operator is able to

gracefully degrade to the conventional plan.

Remark on indices Using indexes here, is not as straightforward as in the previous case.
Before we discuss a plan exploiting an index, we consider an alternative implementation of the

['max operator. Assume that the relation is sorted on both, the grouping attributes and the

attributes which are to be maximized. Then, an efficient implementation of the I'™#%

operator
could simply iterate through the sorted (intermediate) relation and select the first tuples that
exhibit the maximum possible value within each group (determined solely by the grouping
attributes). Note that this implementation of I'™#* does not need any intermediate buffer. The
main overhead is sorting the relation (see table 2). However, if we have a clustered multi-
attribute index on the grouping attributes and the attributes to be maximized, then sorting can

be replaced by an index scan. If only the grouping attributes are indexed (again clustered), then

a simpler sort that only performs sorting within a single group can replace the original sort.

15

Remark on optimization If the query exhibits the local extremum pattern, the situation is
similar to the situation of a query exhibiting the global extremum pattern. So we can introduce

the ™3 -operator during rewrite as well, also without enlarging the optimizer’s search space.

4.5 Experimental Result

To show the performance of the I'™#*-operator we modified the query of section 3 to produce
the clerk together with the amount for the order with the highest turnover per year.

select 01.0_Clerk, year(ol.0_Orderdate) as year, 01.0_TotalPrice

from Order ol

where 01.0_TotalPrice = (select max(02.0_TotalPrice)

from Order 02
where year(ol.0_Orderdate) = year(02.0_Orderdate))

We executed this query three times, once with a conventional plan, once using the hash-

['™a*_operator and once using a sort-implementation of the I'™#*-operator.

implementation of the
Concerning the comparison of the conventional plan with the hash-implementation of the I'™#*-
operator, the results in table 2 show two things. First, the expected improvement of 50% can
actually be achieved and second, the added computational complexity that was caused by the
grouping is less than 25% and therefore does not impact on the total running time (compare
with table 1). Concerning the evaluation of the sort-implementation of the I'™#*-operator there
also two facts worth mentioning. First this implementation is much slower even than the con-
ventional plan, and second the higher cost is mainly due to the cost of sorting. As we already
gave the system enough main memory to perform the whole sorting operation in main memory,

it seems that the use of sorting is only reasonable, if no sort operation is necessary (e.g. because

we can get sorted tuples from a clustered index).

5 The I'*%"_gperator

5.1 Semantic query pattern

Example The introductory query for our third pattern is:

16

plan total | CPU
time | time

conventional plan | 39 s | 10.9 s

MaX_operator 19s| 745
['™2% with sorting | 80 s 67 s
just sorting 78 s 65 s

Table 2: Execution times for the I'™#*-operator

For each department, retrieve the average salary of the department.
In contrast to the last section we do not only want the DeptID but also the name. With
Employee(EmpID, Name, Salary, DeptID) and Department(DeptID, Name)

the query reads in SQL:

select d.Name, d.DeptID, avg(e.Salary)
from Department d, Employee e
where d.DeptID = e.DeptID

group by d.Name, d.DeptID

As was already noted by Yan and Larson [YL94, YL95] and several other authors (for example
Chaudhuri and Shim [CS94] and Gupta, Harinarayan and Quass [GHQ95]) the execution time
for this query can be significantly reduced by grouping Employee by DeptID first and joining
the result of the aggregation with Department in the second step, in other words by pushing
group-by in front of the join. When using hash-based operators for grouping and joining the
following happens: we first build a hash table for grouping with e.DeptID as hash key and then
we build another hash table for joining with e.DeptID as hash key. So we are building two hash
tables with identical content and identical structure. We can obviously do better by using just
one hash table for both tasks. Graefe, Bunker and Cooper also reused hash tables for “hash
teams” [GBC98]. However in their presentation it seems that for a hash team consisting of a
join and a grouping-operator the grouping-operator has to be executed last. Furthermore they
require the grouping columns and the join columns to be identical which is not necessary for
our I'*d-n_gnerator. More specifically, we only require the existence of at least a single common

column.

The general problem we are looking at here are queries that

17

“allow pushing the grouping operation and have common grouping and join columns”.

We call this the common grouping and join columns pattern.

5.2 Operator definition

We propose to introduce the ' "_operator to be used for such queries. It is defined as follows:

Let r(R),q(Q),p(P) be relations and agg : P(r) — p be a vector of scalar aggregate functions,

then we define

Fi?(%igl;lB (r,q) = Tajage(r) Xp g
= {t(A)oaou:terA
a=agg({se€r:s(A) =t(A)}HA
u€ g A (H(A) 0 a)(B) = u(B)}.

While this definition is quite general, the desired efficient implementation is only possible if
AN B # (. If this condition holds a hash table using AN B as hash key can be used for grouping
and join. This is obviously a strict condition but it covers a number of interesting queries, as in
Data-Warehouse-applications both joins and groupings on foreign keys are quite common (for

example in the TPC-D-benchmark [TPC95]).

5.3 Operator implementation

A simple implementation of this operator could look like this:

18

GAMMAADDIN(r, s, A, agg, B) /* relation r is grouped by the set of */
/* columns A and aggregation function */
/* agg is applied, then the result is */
/* joined with relation s on the set */

/* of columns B */
foreach t in r
do
if a group for t exists
then
add t to this group
else

create a new group

initialize the new group with values from t
done
finalize all groups
foreach t in s

do
if a group that matches t exists
then
join t with this group
add the joined tuples to the result
done

In the first loop the search for a group is done using a hash table whose hash value is calculated
using only the columns from AN B. The comparison for group equality however uses all columns
from A. After the first loop the groups are finalized, which is necessary for some aggregate
functions like for example avg. In the second loop the search is done in the same hash table—
again using only the columns from AN B to calculate the hash value—but now all columns from

B are used in the comparison for join equality.

The problem of overflow handling is orthogonal to the principle of the implementation and can
therefore be solved using the usual mechanisms like hybrid hashing. The important improvement
is that the tuples of the second (ungrouped) input relation are probed in the hash table that

was built in the grouping step.

5.4 Comparison of query execution plans

The three possible plans for the implementation of the I'*dd-"_gperator are shown in figure 3.
The traditional plan joins Ry and Rj before grouping. Pushing the grouping operation in front
of the join usually reduces the size of one join input and therefore reduces the time needed
to process this operation [YL94]. Especially if R; is too large to be kept in main memory

this can also lead to a reduction in I/O-costs. Two additional benefits can be achieved by

19

traditional plan pushed grouping [add-in

i F/ X r ddIn
e !

Rr Ry R; Ry Rr Ry

Figure 3: Execution plans for the (logical) ['*44-"_operator

using the T4 operator. At first there is no need to copy the tuples from one hash table
to another, so some CPU-cost can be saved. The second and more important benefit is that
during the execution only half of the memory compared to the use of conventional operators
is needed. Therefore it is also possible to save on I/O-costs if hybrid hashing is used for the

implementation.

Remark on optimization The optimization of queries that can benefit from the I'add-in.
operator is a little bit different from the first two cases. As the operator can be seen as an
improved implementation of the combination of a pushed grouping and a join, our optimizer
replaces these combinations by the I'*dd-"_gperator in a second rewrite-phase. This second
rewrite-phase is performed after alternative plans have been generated and an optimal plan has
been chosen. At this point we are sure that the use of the ['*dd-"_gperator improves performance.
As in the previous two cases the size of the optimizer’s search space does not increase by the

introduction of this operator.

5.5 Experimental Result

Fa,dd—in

To show the performance improvements due to the use of the -operator we used this query:

select P_Partkey, P_Mfgr, P_Brand, P_Type, P_Retailprice,
avg(PS_Supplycost) as avg_supplycost

from Part, Partsupp

where P_Partkey = PS_Partkey

group by P_Partkey, P_Mfgr, P_Brand, P_Type, P_Retailprice

having avg(PS_Supplycost) > 0.9 * P_Retailprice

20

plan total | CPU | memory for
time | time | hash tables
traditional plan 20s | 104 s 21.6 MB
pushed grouping | 20s | 6.4s 16.3 MB
[add-in 20s | 54ds 10.7 MB

Table 3: Execution times for the ['*d4-"_gperator

It returns all parts for which the average supply cost accounts for more than 90% of the retail
price. Due to the fact that the system was I/O-bound during the execution of all three plans
we can see no improvement in the total running times in table 3. However there is a substantial
reduction of CPU-cost (48% compared to the traditional plan and 16% compared to the pushed
grouping) and memory usage (51% compared to the traditional plan and 34% compared to the
pushed grouping). The reason why the pushed grouping needs less memory than the traditional

plan is, that an additional projection became possible.

6 Conclusion

We introduced the notion of semantic query pattern and identified three of them in the realm
of grouping and aggregation. For these patterns we derived specifically tailored operators and
gave implementations of them. We elaborated on the reasons why these implementations are an
improvement over today’s implementations and verified the correctness of our claims in practice

using our experimental database management system AODB.

The main result however is, that improvements in the efficient evaluation of queries can not
only be achieved by new implementations of well known algebraic operators—as it has been
done until now—but also by extending the algebra. This approach offers a new optimization
potential. Without realizing it at that time we already exploited this potential with the Diag-
Join-operator, that gains its efficiency by exploiting time-of-creation ordering and by restricting

itself to 1:n-relationships [HWM98].

We hope that future research will identify more cases that are special enough to allow for
improvement through new operators and yet general enough to justify the inclusion of these

operators into a database management system.

21

References

[CGS5]

[CMO3]

[CRY6]

[CS94]

[Day87]

[Eps79]
[GBC9S]
[GHQ95]
[Gra93]
[HWMO9g]
[K1u82]
[Mai83]

[SN95]

[TPC95]

[VLD95]
[VLD9g]
[YL94]

[YL95]

Stefano Ceri and Georg Gottlob. Translating SQL into relational algebra: Optimization, se-
mantics, and equivalence of SQL queries. IEEE Transactions on Software Engineering (TSE),
11(5):324-344, April 1985.

Sophie Cluet and Guido Moerkotte. Nested queries in object bases. In Proceedings of the
Fourth International Workshop on Database Programming Languages - Object Models and
Languages, pages 226-242, New York City, NY, USA, 1993.

Damianos Chatziantoniou and Kenneth A. Ross. Querying multiple features of groups in
relational databases. In Proceedings of the Conference on Very Large Data Bases (VLDB),
pages 295-306, Bombay, India, September 1996.

Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimization. In Proceed-
ings of the Conference on Very Large Data Bases (VLDB), pages 354-366, Santiago, Chile,
September 1994.

Umeshwar Dayal. Of nests and trees: A unified approach to processing queries that contain
nested subqueries, aggregates, and quantifiers. In Proceedings of the Conference on Very Large
Data Bases (VLDB), pages 197-208, Brighton, United Kingdom, September 1987.

R. Epstein. Techniques for processing of aggregates in relational database systems. UCB/ERL
Memorandum M79/8; Univ. of California at Berkeley, February 1979.

Goetz Graefe, Ross Bunker, and Shaun Cooper. Hash joins and hash teams in Microsoft SQL
Server. In VLDB ’98 [VLD98], pages 86-97.

Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query processing in data
warehousing environments. In VLDB ’95 [VLD95], pages 358-369.

Goetz Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,
25(2):73-170, June 1993.

Sven Helmer, Till Westmann, and Guido Moerkotte. Diag-join: An opportunistic join algo-
rithm for 1:n relationships. In VLDB ’98 [VLD98], pages 98-1009.

Anthony Klug. Equivalence of relational algebra and relational calculus query languages having
aggregate functions. Journal of the ACM, 29(3):699-717, July 1982.

David Maier. The theory of relational databases. Computer Science Press, Rockville, MD,
USA, 1983.

Ambuj Shatdal and Jeffrey F. Naughton. Adaptive parallel aggregation algorithms. In Pro-
ceedings of the ACM SIGMOD Conference on Management of Data, pages 104114, San Jose,
CA, USA, June 1995.

Transaction Processing Performance Council TPC. TPC benchmark D (decision support).
Standard Specification 1.0, Transaction Processing Performance Council (TPC), May 1995.
http://www.tpc.org/.

Proceedings of the Conference on Very Large Data Bases (VLDB), Ziirich, Switzerland,
September 1995.

Proceedings of the Conference on Very Large Data Bases (VLDB), New York, NY, USA,
August 1998.

Weipeng P. Yan and Per-Ake Larson. Performing group-by before join. In Proceedings IEEE
Conference on Data Engineering, pages 89—100, Houston, TX, 1994.

Weipeng P. Yan and Per-Ake Larson. Eager aggregation and lazy aggregation. In VLDB ’95
[VLD95], pages 345-357.

22

