
Reihe Informatik

11 / 1999

Variations on Grouping and Aggregation

Till Westmann Guido Moerkotte

1



2



Variations on Grouping and Aggregation

Till Westmann Guido Moerkotte

Lehrstuhl f�ur Praktishe Informatik III

Universit�at Mannheim

68131 Mannheim

Germany

westmannjmoerkotte�informatik.uni-mannheim.de

May 31, 2002

Abstrat

Grouping and aggregation are onstantly gaining importane in the evaluation of queries.

Hene, there is a need to improve the exeution times of queries ontaining these operations.

To ahieve this goal we propose to extend the relational algebra by new operators that address

di�erent query patterns and that allow for more eÆient implementation than those urrently

used. These new operators have to be spei� enough to allow improved performane and

general enough to be of general use. We present three patterns and the orresponding

operators and show how these operators an be used to speed up query evaluation by a

fator of two.

1 Introdution

One of the main advantages of delarative query languages suh as SQL is their optimizabil-

ity. The equivalene of alulus|the formal foundation of a delarative query language|and

algebra|the language for speifying query exeution plans|forms the basis for optimizability.

Moreover, in order to be able to optimize a query, di�erent query evaluation plans must exist

for a given query with di�erent assoiated osts. The set of query evaluation plans equivalent to

the original query de�nes the searh spae a query optimizer must explore in order to �nd a low

ost plan. There are two fators that imply that the searh spae ontains more than a single

plan: algebrai equivalenes allow to onstrut di�erent plans at the logial level and di�erent

implementations of algebrai operators allow for further alternatives at the physial level.

The tradition has been to provide di�erent implementations for a single logial algebrai oper-

ator, leading to a one-many relationship between operators and their implementations. For ex-

3



ample, the join operator omes with many implementation alternatives suh as nested-loop join,

sort-merge join and hash join [Gra93℄. Our hypothesis is that further eÆieny improvements

an be gained, if speial implementations for speial ases of algebrai operators or ombinations

thereof are provided. We will identify three speial ases, de�ne aording algebrai operators,

and provide their eÆient implementations. Every ase will over a speial intent of the user

stating the query. As we will see, this intent is reeted within the query by a ertain pattern.

Hene, we will refer to suh speial ases as semanti query patterns. The �rst two operators

over di�erent semanti query patterns of grouping with aggregation. The last operator overs

a semanti query pattern mathing a ombination of grouping with aggregation and join.

Of ourse, when identifying these semanti query patterns, the trade o� between generality and

eÆieny has to be onsidered arefully. The more speial a pattern is, the more likely an

eÆient implementation is but the less useful it might be. This is one of the reasons why we

onsider only ases that were identi�ed as important by other people, too. All presented ases

an be found in the TPC-D benhmark [TPC95℄. As a positive side e�et, we were able to use

the TPC-D data to evaluate the performane of our implementations.

We onentrate on ases involving grouping and aggregation sine the use of databases for

Data Warehouse and OLAP appliations inreased drastially in reent years. Within these

appliations, grouping and aggregation play a major role. Witness, again, the TPC-D benhmark

[TPC95℄. Out of 17 queries 17 queries ontain either grouping or aggregation or both. It is

therefore very useful to improve the exeution of these operations.

Grouping and aggregation have quite some history. Klug [Klu82℄ was the �rst who gave preise

de�nitions for aggregate funtions and extended relational algebra and alulus to support these.

Ceri and Gottlob [CG85℄ generalized Klug's aggregate formation operator to allow translation

of SQL to relational algebra. Dayal [Day87℄ gave an implementation of this generalized GAgg

operator and desribed tatis to inlude aggregation into query optimization. All semanti

query patterns we identify will involve the GAgg operator. Implementation tehniques for GAgg

an be found in Epstein's Memorandum [Eps79℄, in Dayal's paper [Day87℄, and in Graefe's survey

[Gra93℄. Shatdal and Naughton provide implementation tehniques for parallel versions [SN95℄.

However, we onentrate on sequential implementations. Chatziantoniou and Ross desribe an

4



extension of SQL that allows for easier formulation of some queries ontaining grouping and

aggregation. Further they introdue the relational operator � that failitates the searh for an

eÆient implementation of the queries onsidered [CR96℄. Nevertheless, the desribed evaluation

algorithm does lead{if appliable{to the ususal implementations in the ases addressed by our

operators. Applying our speial operators leads to twofold improvements in speed or memory

utilization ompared to those found in [Gra93℄.

The rest of the paper is organized as follows. Setion 2 ontains the preliminaries. It reviews the

de�nition of the onventional GAgg operator and its implementation. Setions 3-5 are devoted

the semanti query patterns. Eah setion introdues a pattern by means of an example, de�nes

an aording operator, gives its implementation, ompares an original query plan with one using

the new operator, and exempli�es performane gains. Setion 6 onludes the paper.

2 Preliminaries

In SQL, aggregates an be formed within or without a grouping ontext. As an example of the

latter onsider the query

selet sum(Salary), max(Salary)

from Employee

where Employee is a relation with shema

E = (EmpID : int;Name : string; Salary : deimal;Dept : string):

The query sums up the salary of all employees and retrieves their maximum salary. Note that a

vetor of salar aggregate funtions is applied to a set of tuples, i.e. a relation. A salar aggregate

returns a single number for a given input relation [Eps79℄. Examples thereof are ount , sum,

avg et. A vetor of aggregate funtions that returns a set (or tuple) of values for a given

input relation is sometimes alled aggregate funtion [Eps79℄. Within the algebra, we denote

the appliation of a vetor of salar aggregate funtions agg by the operator 

agg

(pronouned

small gamma) de�ned below.

As an example for aggregation in the ontext of grouping onsider the query

5



selet sum(Salary), max(Salary), Dept

from Employee

group by Dept

Here, a vetor of salar aggregate funtions is applied to every group of employees. Every group

onsists of a set of tuples. The groups themselves are spei�ed by the group by lause. This

ombination of grouping with a suessive appliation of a vetor of salar aggregate funtions

to eah group is aptured by the operator �

A;agg

. This operator orresponds to generalized

aggregation operator [Day87℄.

In the subsequent de�nitions of these two operators, we use Maier's notation [Mai83℄: lowerase

letters are used for relations and upperase letters are used for attribute-sets and relational

shemas, r(R) signi�es that r is a relation with shema R. Using these symbols the two operators

are de�ned as follows:

Let r(R) be a relation and agg : P(r)! o be a vetor of salar aggregate funtions returning a

tuple. Then



agg

(r) := fagg(r)g

�

A;agg

(r) := ft(A) Æ a : t 2 r ^ a = agg(fs 2 r : s(A) = t(A)g)g:

Example Suppose e is a relation of employees with shema

E = (EmpID : int;Name : string; Salary : deimal;Dept : string)

and its extent is

e = f (1; \Smith"; 3000:00; \prodution"); (2; \Miller"; 2800:00; \prodution");

(3; \Clark"; 3300:00; \sales"); (4; \Hill"; 3500:00; \sales");

(5; \Barth"; 3100:00; \sales") g:

If we de�ne agg for all q 2 P(e) as

agg(q) :=

0

�

X

t2q

t:Salary ; max

t2q

(t:Salary)

1

A

;

6



we an get the sum of all salaries and the maximum salary using the -operator:



agg

(e) = f(15700:00; 3500:00)g:

If we want the sum of all salaries and the maximum salary per department we use the �-operator:

�

(Dept);agg

= f(\prodution"; 5800:00; 3000:00); (\sales"; 9900:00; 3500:00)g:

Today, there exist three basi methods to implement the � operator: one based on nested loops,

a seond based on sorting and a third based on hashing [Gra93℄. As the nested loop algorithms

show a muh weaker performane than the other two types and as its spei� properties are not

needed in normal RDBMS, they are rarely used. Aording to Graefe [Gra93℄ sorting and hashing

are of nearly equal performane so in a RDBMS there is usually one module that implements

grouping, aggregation and dupliate removal using one of the latter two approahes. Note

that the situation is very similar to the join operator. For a single algebrai operator, several

implementations exist. Eah implementation implements the full funtionality of the operator{

no more and no less. Subsequent setions will introdue algebrai operators for semanti query

patterns that over speial ases of , �, and a ombination of � and 1.

3 The Max-Operator

This and the following two setions onsist of �ve parts eah. We start with a desription of a

semanti query pattern, ontinue with a de�nition the operator apturing the semantis of the

pattern. Then, we sketh a possible implementation of the operator. The fourth part ontains

a omparison of two query evaluation plans. The �rst is a traditional plan and the seond

plan utilizes the newly introdued operator. The �fth part reports experimental results on the

performane gains.

All performane experiments were arried out by integrating the newly proposed operators into

our experimental database management system AODB. The queries were run against the TPC-D

database with a saling fator of 1 [TPC95℄. AODB was running on a lightly loaded UltraSpar2

with 256 MByte main memory running under Solaris 2.6.

7



3.1 Semanti query pattern

Example Suppose we have a relation Employee with shema

Employee(EmpID, Name, Salary, DeptID).

Against this relation, we pose the following query:

Retrieve the employee with the highest salary.

Its translation into SQL yields

selet Name

from Employee

where Salary = ( selet max(Salary)

from Employee)

Most ommerial DBMSs (at least all we had aess to) take the given SQL-statement quite

literally. The result is generated in two steps. In the �rst step, the subquery is used to �nd the

maximum value for Salary . In the seond step all qualifying tuples from the relation Employee

are seleted. Both steps ould either be done using an index or by sanning the relation Employee.

In any ase the system would have to look at the salaries and the orresponding tuples twie.

Obviously this is neither desirable nor neessary, espeially if the number of result tuples is small

and easily �ts into main memory. Furthermore, this will typially be the ase. It is even more

undesirable, if the relevant set of tuples is not a base relation but the result of a subquery (e.g.

beause Employee is a view). In this ase, we de�nitely do not have an index to look up our

tuples and we have to exeute the whole subquery twie or materialize its result and san it.

The general semanti query pattern selets

\all tuples exhibiting a maximum value for a given expression."

The following disussion only talks about maximization. Minimization an be treated analo-

gously. Hene, we all this pattern the global extremum pattern.

8



3.2 Operator de�nition

This pattern leads diretly to the following de�nition of the Max-operator, whih is an adaption

of the Max-operator proposed by Cluet and Moerkotte [CM93℄ to the relational ontext.

Let r(R) be a relation, X an ordered set of atomi values and exp : r ! X an expression that

should be maximized. We de�ne

Max

exp

(r) := ft 2 r : exp(t) = max(exp(r))g

In ontrast to this de�nition the operator from [CM93℄ returns a nested result, whih is unsuit-

able for our purpose sine relations in the traditional relational model are at. Further, Cluet

and Moerkotte did not give an implementation.

We propose to use the Max-operator to evaluate queries showing the global extremum pattern.

3.3 Operator implementation

A simple, eÆient, but naive implementation for this operator is

MAX(r,exp) /* relation r, expression exp to be maximized */

M := emptyset

hoose m from r

add m to M

foreah t in r

do

if exp(t) > exp(m)

then

M := emptyset

m := t

add m to M

else if exp(t) = exp(m)

add t to M

done

return M

This implementation touhes eah tuple ontained in r exatly one and is therefore more eÆient

than the usual \2-step-algorithm". The only problem with this implementation may be the size

of M . There is no problem as long as there is suÆient memory to hold M . But this might not

be the ase, even if all result tuples �t into memory. To understand why, imagine the Employee

relation taking the role of r. Assume that every employee has one of three salaries 20k, 200k,

9



2000k and that the Employee relation is aidentally sorted on inreasing salaries. Further, most

of the 10 million employees will exhibit the 20k salary, fewer the 200k salary, and almost none

the 2000k salary. Then, the operator implementation would �rst �ll M with all employees with

20k. As soon as it enounters the �rst employee with the 200k salary, it disards the urrent

M and initializes it with the �rst employee earning 200k. The same proedure starts again.

Hene, M is bound in turn to all employees with salary 20k, 200k, and 2000k. If one of these

sets exeeds the memory apabilities, the algorithm is in trouble. This ase should however be

very unlikely but we better prepare for it.

One remedy ould be to repeatedly write tuples to disk and delete them, if a new maximum is

found. This is very undesirable as it would lead to writing I/O. There is, however, an easy way

to dynamially handle memory shortage with the following slightly modi�ed implementation:

MAX(r,exp) /* relation r, expression exp to be maximized */

M := emptyset

hoose m from r

add m to M

* overflow := false

foreah t in r

do

if exp(t) > exp(m)

then

M := emptyset

* overflow := false

m := t

add m to M

else if exp(t) = exp(m)

* if M is not full

add t to M

* else

* overflow := true

done

* if(overflow = false)

return M

* else

* hoose m from M

* return all tuples t from r with exp(t) = exp(m)

The main idea of this modi�ation is to fall bak to the \2-step-algorithm", if there is not enough

memory. As soon as there are too many tuples inM , the overow ag is set and no more tuples

are olleted until a tuple is found that exhibits a higher value for exp. Then, we an restart

with a smallM . At the end of the algorithm, we analyze the urrent situation and either return

M diretly, or|in ase of an overow|have to perform a seond san on r. This fall bak

tehnique will be applied to the next operator's implementation as well.

10



2-step-algorithm

1



R

I

�

��

�

�I

6

physial Max-operator

Max

R

I

6

Figure 1: Exeution plans for the (logial) Max-operator

3.4 Comparison of query exeution plans

In �gure 1 the two possible exeution plans are shown. The \2-step-algorithm" onsists|when

desribed in terms of relational operators|of a - and a join-operator. As the smaller input of

the join-operator onsists of just one tuple any low-overhead join implementation is well-suited.

Note however, that every tuple from R

I

is aessed twie by the \2-step-algorithm": one as

an input to the -operator and one for the right input of the join-operator. The modi�ed

implementation of the Max-operator needs eah tuple one or twie depending on the size of

the result. As the alulation of the maximum is omputationally very easy, the time used for

the prodution of the tuples of R

I

takes usually the predominant part of the total exeution

time. Therefore we expet a redution of the total exeution time for queries exhibiting the

global extremum pattern by 50% if the of Max-operator is applied and the result �ts into main

memory. The latter ondition is quite likely to be ful�lled. And even if it is not the ase

the modi�ed implementation reverts to the \2-step-algorithm" and is thus not slower than the

onventional plan.

Remark on indies Obviously, if there is an index on the Salary attribute, this index an

be used to answer the example query. This plan will most likely be more eÆient than our plan.

However, we an not expet to have an index on every attribute. Furthermore there are two

ases in whih we de�nitely do not have an index: (1) if the relation onsidered is produed by

a subquery instead of a base relation and (2) if we do not want to maximize a mere attribute

but a more omplex expression.

11



plan total CPU

time time

\2-step-algorithm" 39 s 9.0 s

Max-operator 19 s 5.7 s

Table 1: Exeution times for the Max-operator

Remark on optimization If the query exhibits the global extremum pattern, the query

evaluation performane is never deteriorated by using the Max-operator. Therefore we an

introdue the Max-operator into the evaluation plan during the rewrite-phase before alternative

plans are generated. So the introdution of the Max-operator does not lead to an inreased size

of the optimizer's searh spae.

3.5 Experimental Result

To show that the Max-operator an deliver the promised performane gain we exeuted the

following query twie|one using the \2-step-algorithm" and one using our implementation of

the Max-operator.

selet O Clerk, O TotalPrie

from Order

where O TotalPrie = (selet max(O TotalPrie)

from Order)

The results presented in table 1 show the expeted improvement of 50%.

4 The �

max

-Operator

4.1 Semanti query pattern

Example Consider the following query:

For every department retrieve the employees that within this department have the

highest salary.

12



Using the relation Employee(EmpID, Name, Salary, DeptID) from the last setion the appro-

priate SQL statement is:

selet e1.Name, e1.DeptID

from Employee e1

where e1.Salary = (selet max(e2.Salary)

from Employee e2

where e1.DeptID = e2.DeptID).

Depending on the quality of the optimizer there are two possibilities how this query an be

evaluated by a urrent DBMS. The �rst possibility is to atually exeute the nested query one

for eah tuple from Employee. This is obviously extremely slow, regardless if there are indies

on Employee or not. The seond possibility is to evaluate the query in two steps similarly to the

algorithm used in the last setion. The �rst step is to use GAgg to group Employee by DeptID

and to alulate max(Salary) for eah group. The seond step is to join the result of the GAgg

operator with Employee on DeptID and Salary.

The general semanti query pattern is similar to the pattern in the last setion. It selets

\all tuples exhibiting a maximum value for a given expression and a given group."

Again, minimization an be handled analogously, so we all this pattern the loal extremum

pattern.

4.2 Operator de�nition

We de�ne the �

max

-operator as follows:

Let r(R) be a relation, X an ordered set of atomi values and exp : r ! X an expression that

should be maximized. We de�ne

�

max

A;exp

(r) := f t 2 r :

exp(t) = max(exp(fs 2 r : s(A) = t(A)g)) g

The �

max

-operator alulates for every group de�ned by the attributes in A the set of tuples

that within their group maximize the value of the expression exp. Hene, the operator de�nition

diretly reets the semantis of the loal extremum pattern.

13



4.3 Operator implementation

The implementation for this operator is an extension of the implementation of the Max-operator.

Instead of one global set of maximal tuples this implementation uses one set of maximal tuples

per group. So eah tuple has to be assoiated to a group before it is proessed in the same way

as for the Max-operator. The resulting implementation is:

GAMMAMAX(r,exp,A) /* relation r, expression exp to be */

/* maximized, A set of grouping olumns */

foreah t in r

do

if a group for t exists

then

M := set of maximal elements for the group of t

hoose m from M

if exp(t) > exp(m)

then

M := emptyset

add t to M

else if exp(t) = exp(m)

add t to M

else

reate a new group with the set M

M := emptyset

add t to M

done

return the sets of all groups

A less detailed version of this implemenation was already desribed by Chatziantoniou and Ross

in [CR96℄. However, they gave it as an example of a further improvement of their implementation

and they did not onsider overow handling.

To handle overow for this operator we have to use two destaging levels. First, we an also use

overow ags to dynamially revert to the onventional plan. It is advisable to use one overow

ag per group, so only those groups for whih an overow atually ourred have to be joined.

However if the number of groups is too large to be kept in main memory we have to destage

another level and revert to hybrid hashing [GBC98℄.

4.4 Comparison of query exeution plans

We do not disuss the �rst desribed alternative, a nested exeution, beause it needs jR

I

j+ 1

sans of R

I

and therefore shows unaeptable performane for almost every size of R

I

. The

14



onventional plan

1

�

R

I

�

��

�

�I

6

�

max

-operator

�

Max

R

I

6

Figure 2: Exeution plans for the (logial) �

max

-operator

remaining two exeution plans are shown in �gure 2. The onventional plan onsists of a �- and

a join-operator. As already noted for the \2-step-algorithm" in the last setion, this onventional

plan also aesses eah tuple in R

I

twie, whereas the �

max

-operator needs to aess the tuples

a seond time only if the result does not �t into main memory. As the searh for a group does

not add muh omplexity to the alulation of the maximum, the time used for the prodution

of the tuples of R

I

still takes the predominant part of the total exeution time. Therefore we

an ahieve the same speedup as for the Max -operator (50%), but it is less likely to happen

as the probability that the result �ts into main memory degrades. However, even in the worst

ase, there won't be a loss ompared to the onventional plan as the �

max

operator is able to

graefully degrade to the onventional plan.

Remark on indies Using indexes here, is not as straightforward as in the previous ase.

Before we disuss a plan exploiting an index, we onsider an alternative implementation of the

�

max

operator. Assume that the relation is sorted on both, the grouping attributes and the

attributes whih are to be maximized. Then, an eÆient implementation of the �

max

operator

ould simply iterate through the sorted (intermediate) relation and selet the �rst tuples that

exhibit the maximum possible value within eah group (determined solely by the grouping

attributes). Note that this implementation of �

max

does not need any intermediate bu�er. The

main overhead is sorting the relation (see table 2). However, if we have a lustered multi-

attribute index on the grouping attributes and the attributes to be maximized, then sorting an

be replaed by an index san. If only the grouping attributes are indexed (again lustered), then

a simpler sort that only performs sorting within a single group an replae the original sort.

15



Remark on optimization If the query exhibits the loal extremum pattern, the situation is

similar to the situation of a query exhibiting the global extremum pattern. So we an introdue

the �

max

-operator during rewrite as well, also without enlarging the optimizer's searh spae.

4.5 Experimental Result

To show the performane of the �

max

-operator we modi�ed the query of setion 3 to produe

the lerk together with the amount for the order with the highest turnover per year.

selet o1.O Clerk, year(o1.O Orderdate) as year, o1.O TotalPrie

from Order o1

where o1.O TotalPrie = (selet max(o2.O TotalPrie)

from Order o2

where year(o1.O Orderdate) = year(o2.O Orderdate))

We exeuted this query three times, one with a onventional plan, one using the hash-

implementation of the �

max

-operator and one using a sort-implementation of the �

max

-operator.

Conerning the omparison of the onventional plan with the hash-implementation of the �

max

-

operator, the results in table 2 show two things. First, the expeted improvement of 50% an

atually be ahieved and seond, the added omputational omplexity that was aused by the

grouping is less than 25% and therefore does not impat on the total running time (ompare

with table 1). Conerning the evaluation of the sort-implementation of the �

max

-operator there

also two fats worth mentioning. First this implementation is muh slower even than the on-

ventional plan, and seond the higher ost is mainly due to the ost of sorting. As we already

gave the system enough main memory to perform the whole sorting operation in main memory,

it seems that the use of sorting is only reasonable, if no sort operation is neessary (e.g. beause

we an get sorted tuples from a lustered index).

5 The �

add-in

-operator

5.1 Semanti query pattern

Example The introdutory query for our third pattern is:

16



plan total CPU

time time

onventional plan 39 s 10.9 s

�

max

-operator 19 s 7.4 s

�

max

with sorting 80 s 67 s

just sorting 78 s 65 s

Table 2: Exeution times for the �

max

-operator

For eah department, retrieve the average salary of the department.

In ontrast to the last setion we do not only want the DeptID but also the name. With

Employee(EmpID, Name, Salary, DeptID) and Department(DeptID, Name)

the query reads in SQL:

selet d.Name, d.DeptID, avg(e.Salary)

from Department d, Employee e

where d.DeptID = e.DeptID

group by d.Name, d.DeptID

As was already noted by Yan and Larson [YL94, YL95℄ and several other authors (for example

Chaudhuri and Shim [CS94℄ and Gupta, Harinarayan and Quass [GHQ95℄) the exeution time

for this query an be signi�antly redued by grouping Employee by DeptID �rst and joining

the result of the aggregation with Department in the seond step, in other words by pushing

group-by in front of the join. When using hash-based operators for grouping and joining the

following happens: we �rst build a hash table for grouping with e.DeptID as hash key and then

we build another hash table for joining with e.DeptID as hash key. So we are building two hash

tables with idential ontent and idential struture. We an obviously do better by using just

one hash table for both tasks. Graefe, Bunker and Cooper also reused hash tables for \hash

teams" [GBC98℄. However in their presentation it seems that for a hash team onsisting of a

join and a grouping-operator the grouping-operator has to be exeuted last. Furthermore they

require the grouping olumns and the join olumns to be idential whih is not neessary for

our �

add-in

-operator. More spei�ally, we only require the existene of at least a single ommon

olumn.

The general problem we are looking at here are queries that

17



\allow pushing the grouping operation and have ommon grouping and join olumns".

We all this the ommon grouping and join olumns pattern.

5.2 Operator de�nition

We propose to introdue the �

add-in

-operator to be used for suh queries. It is de�ned as follows:

Let r(R); q(Q); p(P ) be relations and agg : P(r) ! p be a vetor of salar aggregate funtions,

then we de�ne

�

add-in

A;agg;B

(r; q) := �

A;agg

(r) 1

B

q

= ft(A) Æ a Æ u : t 2 r^

a = agg(fs 2 r : s(A) = t(A)g)^

u 2 q ^ (t(A) Æ a)(B) = u(B)g:

While this de�nition is quite general, the desired eÆient implementation is only possible if

A\B 6= ;. If this ondition holds a hash table using A\B as hash key an be used for grouping

and join. This is obviously a strit ondition but it overs a number of interesting queries, as in

Data-Warehouse-appliations both joins and groupings on foreign keys are quite ommon (for

example in the TPC-D-benhmark [TPC95℄).

5.3 Operator implementation

A simple implementation of this operator ould look like this:

18



GAMMAADDIN(r, s, A, agg, B) /* relation r is grouped by the set of */

/* olumns A and aggregation funtion */

/* agg is applied, then the result is */

/* joined with relation s on the set */

/* of olumns B */

foreah t in r

do

if a group for t exists

then

add t to this group

else

reate a new group

initialize the new group with values from t

done

finalize all groups

foreah t in s

do

if a group that mathes t exists

then

join t with this group

add the joined tuples to the result

done

In the �rst loop the searh for a group is done using a hash table whose hash value is alulated

using only the olumns from A\B. The omparison for group equality however uses all olumns

from A. After the �rst loop the groups are �nalized, whih is neessary for some aggregate

funtions like for example avg. In the seond loop the searh is done in the same hash table|

again using only the olumns from A\B to alulate the hash value|but now all olumns from

B are used in the omparison for join equality.

The problem of overow handling is orthogonal to the priniple of the implementation and an

therefore be solved using the usual mehanisms like hybrid hashing. The important improvement

is that the tuples of the seond (ungrouped) input relation are probed in the hash table that

was built in the grouping step.

5.4 Comparison of query exeution plans

The three possible plans for the implementation of the �

add-in

-operator are shown in �gure 3.

The traditional plan joins R

I

and R

J

before grouping. Pushing the grouping operation in front

of the join usually redues the size of one join input and therefore redues the time needed

to proess this operation [YL94℄. Espeially if R

I

is too large to be kept in main memory

this an also lead to a redution in I/O-osts. Two additional bene�ts an be ahieved by

19



traditional plan

�

1

R

I

R

J

�

��

6

6

pushed grouping

1

�

R

I

R

J

6

�

��

6

�

add-in

�

AddIn

R

I

R

J

�

�

�

�

�� 6

Figure 3: Exeution plans for the (logial) �

add-in

-operator

using the �

add-in

-operator. At �rst there is no need to opy the tuples from one hash table

to another, so some CPU-ost an be saved. The seond and more important bene�t is that

during the exeution only half of the memory ompared to the use of onventional operators

is needed. Therefore it is also possible to save on I/O-osts if hybrid hashing is used for the

implementation.

Remark on optimization The optimization of queries that an bene�t from the �

add-in

-

operator is a little bit di�erent from the �rst two ases. As the operator an be seen as an

improved implementation of the ombination of a pushed grouping and a join, our optimizer

replaes these ombinations by the �

add-in

-operator in a seond rewrite-phase. This seond

rewrite-phase is performed after alternative plans have been generated and an optimal plan has

been hosen. At this point we are sure that the use of the �

add-in

-operator improves performane.

As in the previous two ases the size of the optimizer's searh spae does not inrease by the

introdution of this operator.

5.5 Experimental Result

To show the performane improvements due to the use of the �

add-in

-operator we used this query:

selet P Partkey, P Mfgr, P Brand, P Type, P Retailprie,

avg(PS Supplyost) as avg supplyost

from Part, Partsupp

where P Partkey = PS Partkey

group by P Partkey, P Mfgr, P Brand, P Type, P Retailprie

having avg(PS Supplyost) > 0.9 * P Retailprie

20



plan total CPU memory for

time time hash tables

traditional plan 20 s 10.4 s 21.6 MB

pushed grouping 20 s 6.4 s 16.3 MB

�

add-in

20 s 5.4 s 10.7 MB

Table 3: Exeution times for the �

add-in

-operator

It returns all parts for whih the average supply ost aounts for more than 90% of the retail

prie. Due to the fat that the system was I/O-bound during the exeution of all three plans

we an see no improvement in the total running times in table 3. However there is a substantial

redution of CPU-ost (48% ompared to the traditional plan and 16% ompared to the pushed

grouping) and memory usage (51% ompared to the traditional plan and 34% ompared to the

pushed grouping). The reason why the pushed grouping needs less memory than the traditional

plan is, that an additional projetion beame possible.

6 Conlusion

We introdued the notion of semanti query pattern and identi�ed three of them in the realm

of grouping and aggregation. For these patterns we derived spei�ally tailored operators and

gave implementations of them. We elaborated on the reasons why these implementations are an

improvement over today's implementations and veri�ed the orretness of our laims in pratie

using our experimental database management system AODB.

The main result however is, that improvements in the eÆient evaluation of queries an not

only be ahieved by new implementations of well known algebrai operators|as it has been

done until now|but also by extending the algebra. This approah o�ers a new optimization

potential. Without realizing it at that time we already exploited this potential with the Diag-

Join-operator, that gains its eÆieny by exploiting time-of-reation ordering and by restriting

itself to 1:n-relationships [HWM98℄.

We hope that future researh will identify more ases that are speial enough to allow for

improvement through new operators and yet general enough to justify the inlusion of these

operators into a database management system.

21



Referenes

[CG85℄ Stefano Ceri and Georg Gottlob. Translating SQL into relational algebra: Optimization, se-

mantis, and equivalene of SQL queries. IEEE Transations on Software Engineering (TSE),

11(5):324{344, April 1985.

[CM93℄ Sophie Cluet and Guido Moerkotte. Nested queries in objet bases. In Proeedings of the

Fourth International Workshop on Database Programming Languages - Objet Models and

Languages, pages 226{242, New York City, NY, USA, 1993.

[CR96℄ Damianos Chatziantoniou and Kenneth A. Ross. Querying multiple features of groups in

relational databases. In Proeedings of the Conferene on Very Large Data Bases (VLDB),

pages 295{306, Bombay, India, September 1996.

[CS94℄ Surajit Chaudhuri and Kyuseok Shim. Inluding group-by in query optimization. In Proeed-

ings of the Conferene on Very Large Data Bases (VLDB), pages 354{366, Santiago, Chile,

September 1994.

[Day87℄ Umeshwar Dayal. Of nests and trees: A uni�ed approah to proessing queries that ontain

nested subqueries, aggregates, and quanti�ers. In Proeedings of the Conferene on Very Large

Data Bases (VLDB), pages 197{208, Brighton, United Kingdom, September 1987.

[Eps79℄ R. Epstein. Tehniques for proessing of aggregates in relational database systems. UCB/ERL

Memorandum M79/8, Univ. of California at Berkeley, February 1979.

[GBC98℄ Goetz Graefe, Ross Bunker, and Shaun Cooper. Hash joins and hash teams in Mirosoft SQL

Server. In VLDB '98 [VLD98℄, pages 86{97.

[GHQ95℄ Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query proessing in data

warehousing environments. In VLDB '95 [VLD95℄, pages 358{369.

[Gra93℄ Goetz Graefe. Query evaluation tehniques for large databases. ACM Computing Surveys,

25(2):73{170, June 1993.

[HWM98℄ Sven Helmer, Till Westmann, and Guido Moerkotte. Diag-join: An opportunisti join algo-

rithm for 1:n relationships. In VLDB '98 [VLD98℄, pages 98{109.

[Klu82℄ Anthony Klug. Equivalene of relational algebra and relational alulus query languages having

aggregate funtions. Journal of the ACM, 29(3):699{717, July 1982.

[Mai83℄ David Maier. The theory of relational databases. Computer Siene Press, Rokville, MD,

USA, 1983.

[SN95℄ Ambuj Shatdal and Je�rey F. Naughton. Adaptive parallel aggregation algorithms. In Pro-

eedings of the ACM SIGMOD Conferene on Management of Data, pages 104{114, San Jose,

CA, USA, June 1995.

[TPC95℄ Transation Proessing Performane Counil TPC. TPC benhmark D (deision support).

Standard Spei�ation 1.0, Transation Proessing Performane Counil (TPC), May 1995.

http://www.tp.org/.

[VLD95℄ Proeedings of the Conferene on Very Large Data Bases (VLDB), Z�urih, Switzerland,

September 1995.

[VLD98℄ Proeedings of the Conferene on Very Large Data Bases (VLDB), New York, NY, USA,

August 1998.

[YL94℄ Weipeng P. Yan and Per-

�

Ake Larson. Performing group-by before join. In Proeedings IEEE

Conferene on Data Engineering, pages 89{100, Houston, TX, 1994.

[YL95℄ Weipeng P. Yan and Per-

�

Ake Larson. Eager aggregation and lazy aggregation. In VLDB '95

[VLD95℄, pages 345{357.

22


