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Guido Moerkotte∗, Martin Montag†, Audrey Repetti‡ and Gabriele Steidl†

February 11, 2015

Abstract

In this paper we determine the proximity functions of the sum and the maximum of
componentwise (reciprocal) quotients of positive vectors. For the sum of quotients,
denoted by Q1, the proximity function is just a componentwise shrinkage function
which we call q-shrinkage. This is similar to the proximity function of the ℓ1-norm
which is given by componentwise soft shrinkage. For the maximum of quotients Q∞,
the proximal function can be computed by first order primal dual methods involving
epigraphical projections.

The proximity functions of Qν , ν = 1,∞ are applied to solve convex problems
of the form argminxQν(

Ax

b
) subject to x ≥ 0, 1⊤x ≤ 1. Such problems are of inte-

rest in selectivity estimation for cost-based query optimizers in database management
systems.

1 Introduction

This work is motivated by query optimization in database management systems (DBMSs)
where the optimal query execution plan depends on the accurate estimation of the pro-
portion of tuples, called selectivities, that satisfy the predicates in the query. Models for
selectivity estimation as those in [26] require the solution of a feasibility problem. More
precisely, based on an under-determined linear system of equations Ax = b which has no
nonnegative solution x ≥ 0 we are looking for a ’correct’ right-hand side b̂ such that a
nonnegative solution exists. There exists a large amount of literature on feasibility prob-
lems, see [7,8] and the references therein. In particular we refer to the SMART algorithm
connection with minimizing the Shannon entropy [4, 32]. However, our approach is dif-
ferent from the known ones with respect to the functional which has to be minimized.
By the results in [28] there is a strong evidence that in query optimization it is the (re-

ciprocal) quotients of the components max{ b̂ibi ,
bi
b̂i
} which should be made small, not their

differences. In this paper we are interested in the sum of such quotients denoted by Q1

and their maximum Q∞.
Recently, first order primal dual methods were successfully applied in data processing,

see, e.g., the overview papers [2, 10] and the references therein. These methods are based
on splitting methods known in optimization theory for a long time. In this paper we are
interested in applying first order primal dual methods as an alternative to second order

∗University of Mannheim, Dept. of Computer Science, Mannheim, Germany
†University of Kaiserslautern, Dept. of Mathematics, Kaiserslautern, Germany
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cone programming for solving problems involving the quotient functionals Qν , ν = 1,∞.
Basically, these iterative algorithms decouple the problem into different proximation prob-
lems and the success of the method depends on the efficient solution of these proximation
problems. Therefore, we examine the proximity function of our quotient functionals Qν ,
ν = 1,∞ first. We show that the proximity function of the sum of quotients, Q1, is a
componentwise shrinkage function which we call q shrinkage. It is slightly more involved
than the componentwise soft-shrinkage which is the proximity function of the ℓ1-norm
since one has to solve a third order equation. The proximity function of the maximum
of quotients Q∞ can be computed by an alternating minimization method of multipliers
which involves componentwise epigraphical projections. These componentwise steps can
be computed in parallel.

We apply our findings to solve the feasibility problem described above and demonstrate
the results obtained by different error measures by a numerical example.

The outline of this paper is as follows: In Section 2 we introduce the quotient dis-
tance between positive numbers and use it to define quotient functionals of vectors with
positive components. In Section 3 we determine the proximity operator of the quotient
functionals. We use our findings in Section 4 for solving feasibility problems appearing,
e.g., in selectivity estimations which are necessary for query optimization in DBMSs. We
describe the selectivity estimation problem, propose primal dual minimizaton algorithms
and demonstrate the performance by a numerical example. Conclusions are drawn in
Section 5.

2 Quotient Functions

The function q : (0,+∞)× (0,+∞) → [0,+∞) defined by

q(x, y) :=
max(x, y)

min(x, y)
,

can be considered as a ’distance function’. It is symmetric in its components and since

q(x, y)− 1 =
|x− y|

min(x, y)
,

it fulfills q(x, y)− 1 = 0 if and only if x = y. Clearly, the quotient distance does not fulfill
a triangle inequality. A relative of q(x, y), the so-called generalized relative distance, given
for (x, y) ∈ R

∗ × R
∗ by

|x− y|
max(x, y)

,

has been used in [13,19,27,37]. For a relation between the generalized relative error and
the quotient distance we refer to [34]. Due to its zero-homogeneity

q(λx, λy) = q(x, y), λ > 0 (1)

the quotient distance is used as a contrast measure in image processing [29].
For fixed b > 0, we generalize q(·, b) to the whole real axis by q(·, b) : R → [0,+∞] with

q(x, b) :=





x
b if b ≤ x,
b
x if 0 < x < b,

+∞ otherwise.

(2)
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The function q(·, b) is convex and continuous. Moreover, we have by (1) that q(x, b) =
q(x/b, 1). We will write just q instead of q(·, 1). Note that for positive arguments the
function log q(·, b) = | log b− log(·)| is neither convex nor concave.

In the following, set IN := {1, . . . , N}. For fixed b = (bk)
N
k=1 ∈ (0,+∞)N we are

interested in the quotient functionals Q1(·, b), Q∞(·, b) : RN → [0,+∞] defined by

Q1(x, b) :=

N∑

k=1

q(xk, bk) and Q∞(x, b) := max
k∈IN

q(xk, bk). (3)

We set Qν := Qν(·, 1), ν ∈ {1,∞}. In the following, norms ‖ · ‖ are Euclidean norms.

3 Proximity Operator of Quotient Functionals

Let Γ0(R
N ) denote the space of proper, convex and lower semi-continuous functions on

R
N mapping to R ∪ {+∞}. For a function ϕ ∈ Γ0(R

N ) and γ > 0, the proximal function
proxγϕ : RN → R

N is defined by

proxγϕ(x) := argmin
t∈RN

ϕ(t) +
1

2γ
‖x− t‖2.

An overview of applications of proximity functions is given in [30]. For example, the
proximal function of the univariate function ϕ := |·| is given by the so-called soft shrinkage
function with threshold γ, i.e.,

proxγ|·|(x) = softγ(x) :=





x− γ if x > γ,
0 if x ∈ [−γ, γ],

x+ γ if x < −γ.

More general the following decomposition rule holds true.

Proposition 3.1. [9, Prop. 3.6] Let φ = ψ + γ| · |, where ψ ∈ Γ0(R) is differentiable at
0 with ψ′(0) = 0. Then proxφ = proxψ ◦ softγ.

In the following we are interested in the proximal functions of Q1(·, b) and Q∞(·, b).
By (1) we have for ν ∈ {1,∞} that

proxγQν(·,b)(x) = argmin
t∈RN

Qν(t, b) +
1

2γ
‖x− t‖2

= argmin
t∈RN

Qν

(
t

b
, 1

)
+

1

2γ
‖x− t‖2

= b argmin
y∈RN

Qν(y, 1) +
b2

2γ

∥∥∥
x

b
− y
∥∥∥
2

= bprox γ

b2
Qν

(x
b

)
. (4)

Therefore it remains to consider for γ > 0 the proximal functions

proxγQν
(x) = argmin

t∈RN

Qν(t) +
1

2γ
‖x− t‖2, ν ∈ {1,∞}. (5)
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3.1 Proximity Operator of Q1

For ν = 1 the minimizer of (5) can be computed componentwise, i.e.,

proxγQ1
(x) =

(
proxγq(xk)

)N
k=1

. (6)

Therefore we only have to find

proxγq(x) = argmin
t∈R

q(t) +
1

2γ
(x− t)2. (7)

The proximal function of γq is given in the following proposition.

Proposition 3.2. For every γ > 0 and x ∈ R, we have

proxγq(x) =





x− γ if x > 1 + γ,

1 if x ∈ [1− γ, 1 + γ],

ζ∗ ∈ (0, 1] if x < 1− γ,

(8)

where ζ∗ is the unique solution of ζ3 − xζ2 − γ = 0 in (0, 1).

Proof. To apply Proposition 3.1 we decompose q as

q(t) = 1 + φ(t− 1), (9)

where φ := ψ + | · | and

ψ(t) :=





0 if t ≥ 0,

t+
1

1 + t
− 1 if t ∈ (−1, 0),

+∞ otherwise.

The function ψ is in Γ0(R), it is differentiable at zero and ψ′(0) = 0. We want to find the
proximal function of γψ, γ > 0. Clearly, we have for x ≥ 0 that proxγψ(x) = x. For x < 0
we obtain

proxγψ(x) = argmin
t∈(−1,0)

ψ(t) +
1

2γ
(t− x)2.

The minimizer is the zero of the derivative of the objective function, i.e. has to fulfill

0 = 1− 1

(1 + t)2
+

1

γ
(t− x),

0 = (1 + t)3 − (x+ 1− γ)(1 + t)2 − γ. (10)

In summary we have

proxγψ(x) =

{
x if x ≥ 0,

t∗ otherwise,

where t∗ ∈ (−1, 0) is the solution of (10). By Proposition 3.1 we conclude that

proxγφ(x) = proxγψ ◦ softγ (11)

=





x− γ if x > γ,

0 if x ∈ [−γ, γ],
t∗ if x < −γ,

(12)
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where t∗ is the solution of

(1 + t)3 − (x+ 1)(1 + t)2 − γ = 0. (13)

Finally, we obtain by (9) that

proxγq(x) = argmin
t∈R

1 + φ(t− 1) +
1

2γ
(t− x)2

= 1 + argmin
y∈R

φ(y) +
1

2γ
(y − (x− 1))2

= 1 + proxγφ(x− 1)

=





x− γ if x > 1 + γ,

1 if x ∈ [1− γ, 1 + γ],

1 + t∗ if x < 1− γ,

(14)

where t∗ is the unique solution in (−1, 0) of

(1 + t)3 − (1 + t)2x− γ = 0,

see Remark 3.1. Setting ζ := 1 + t we obtain (8).

Remark 3.1. We ask for the positive zeros of the polynomial P (t) = t3 − xt2 − γ, where
x < 1− γ, γ > 0. We have

P ′(t) = t(3t− 2x), P ′′(t) = 6t− 2x

and P (0) = −γ < 0, P (1) = 1− x− γ > 0. We distinguish two cases.
Case 1. Let x ≤ 0. Then P is strictly convex and strictly monotone increasing on

(0, 1). Consequently it has a unique zero t∗ in (0, 1).
Case 2. Let 0 < x < 1−γ. Then P is strictly convex and strictly monotone increasing

on
(
2x
3 , 1

)
and P

(
2x
3

)
= − 4

27x
3− γ < 0. Hence P has a unique zero t∗ in

(
2x
3 , 1

)
. Further

we have for the three zeros z1 = t∗ > 0, z2, z3 of P that z2, z3 are either conjugate complex
or both of them are negative or positive since z1z2z3 = γ. The later is not possible since
z1z2 + z1z3 + z2z3 = 0. Therefore P has exactly one non-negative, real-valued zero.

In summary the zero t∗ ∈ (0, 1) of the polynomial P can be computed by Newton’s
method with starting point t(0) = 1, where the convergence is monotone and quadratic by
the convexity and strict monotonicity of P in (t∗, 1), see [20]. Alternatively we could use
Cardan’s formula for computing the zero.

We call proxγq(x) q-shrinkage of x with threshold γ. The function is illustrated in
Fig. 1.

Remark 3.2. (Proximity operator of q(·, b), for b > 0)
By (4) we obtain

proxγq(·,b)(x) =





x− γ
b if x > b+ γ

b ,

b if x ∈ [b− γ
b , b+

γ
b ],

ζ∗ if x < b− γ
b ,

where ζ∗ ∈ (0, b] is the unique positive solution of ζ3 − xζ2 − γb = 0.
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Figure 1: q-shrinkage with different thresholds γ.

3.2 Proximity Operator of Q∞

Next we want to compute

proxγQ∞
(x) = argmin

t∈RN

Q∞(t) +
1

2γ
‖x− t‖2.

We can treat this minimization problem as an epigraphical constraint minimization prob-
lem. Such problems were considered for example in [6, 21]. Recall that the epigraph of a
function ϕ : RN → R ∪ {+∞} is the set

epiϕ := {(x, ξ) ∈ R
N × R : ϕ(x) ≤ ξ}.

If ϕ ∈ Γ0(R
N ), then epiϕ is a non-empty, closed, convex set. Having this definition in

mind, our minimization problem can be rewritten as

proxγQ∞
(x) = argmin

t=(tk)
N
k=1

∈RN ,ξ∈R

ξ +
1

2γ
‖x− t‖2 s.t. ((tk, ξ))

N
k=1 ∈ (epi q)N . (15)

Using the indicator function of a set Ω ⊂ R
M , where M ∈ N

∗, defined by

ιΩ(x) :=

{
0 if x ∈ Ω,

+∞ otherwise ,

we see that (15) can be further rewritten as

proxγQ∞
(x) = argmin

(t, ξ) ∈ R
N+1

(s, η) ∈ R
2N

ξ +
1

2γ
‖x− t‖2 +

N∑

k=1

ιepi q(sk, ηk) s.t. s = t, ξ1N = η,

(16)

where 1N denotes the vector consisting of N entries 1. This problem can be solved e.g. by
an alternating direction method of multipiers (ADMM) algorithm [10,16,17] as follows:
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Algorithm 1 ADMM for proxγQ∞

Initialization: µ > 0(
s(0)

η(0)

)
∈ R

2N and

(
p
(0)
t

p
(0)
ξ

)
∈ R

2N .

Iterations:
For r = 0, 1, . . .

1.

(
t(r+1)

ξ(r+1)

)
= argmin

(t,ξ)∈RN+1

ξ + 1
2γ ‖x− t‖2 + µ

2

(
‖t− s(r) + p

(r)
t ‖2 + ‖ξ1N − η(r) + p

(r)
ξ ‖2

)
,

2.

(
s(r+1)

η(r+1)

)
= argmin

(s,η)∈R2N

N∑
k=1

ιepi q(sk, ηk) +
µ
2

(
‖t(r+1) − s+ p

(r)
t ‖2 + ‖ξ(r+1)1N − η + p

(r)
ξ ‖2

)
,

3.

(
p
(r+1)
t

p
(r+1)
ξ

)
=

(
p
(r)
t

p
(r)
ξ

)
+

(
t(r+1)

ξ(r+1)1N

)
−
(
s(r+1)

η(r+1)

)
.

The sequence (t(r), ξ(r))r∈N generated by the ADMM algorithm is ensured to converge
to a solution of problem (16) by [10].

The minimizer in the first step can be computed separately for t and ξ. Setting the
gradients of the corresponding functionals to zero we obtain

t(r+1) =
1

1 + γµ

(
x+ µγ(s(r) − p

(r)
t )
)

and ξ(r+1) =
1

N

(
N∑

k=1

(η
(r)
k − p

(r)
ξ,k)−

1

µ

)
.

The second proximity problem can be solved separately for k ∈ IN . For each component

it requires the projection of (t
(r+1)
k + p

(r)
t,k , ξ

(r+1) + p
(r)
ξ,k) onto epi q. The projection onto

epi q is considered in the next proposition:

Proposition 3.3. The projection Pepi q(u, ζ) of (u, ζ) ∈ R
2 onto the epigraph of q is given

by

Pepi q(u, ζ) :=





(u, ζ) if u > 0 ∧ max{u, 1u} ≤ ζ,
(12(u+ ζ), 12(u+ ζ)) if 2− u < ζ < u,
(1, 1) if ζ ≤ min{2− u, u},
(t∗, 1

t∗ ) if u < ζ ∧ ζ < 1
u if u > 0,

(17)

where t∗ is the solution of the fourth order equation P (t) := t4 −ut3 + ζt− 1 = 0 in (0, 1).

Proof. The points in the different areas

A1 := {(u, ζ) : u > 0 ∧ max{u, 1u} ≤ ζ}, A2 := {(u, ζ) : 2− u < ζ < u},
A3 := {(u, ζ) : ζ ≤ min{2− u, u}}, A4 := {(u, ζ) : u < ζ ∧ ζ < 1

u if u > 0},

depicted in Fig. 2 are projected in different ways.
The points in A1 are already in epi q and were therefore mapped to themselves. The

points in the normal cone A3 of epi q at (1, 1) are obviously projected to (1, 1). For
(u, ζ) ∈ A2 the orthogonal projection (t, θ) = Pepi q(u, ζ) has to fulfill θ = t and

〈(
u
ζ

)
−
(
t
θ

)
,

(
1
1

)〉
= 0,

which results in t = 1
2 (u+ζ). Finally, the points in A4 are projected onto the curve τ(t) :=

(t, 1/t), t ∈ (0, 1). This curve has the tangent vectors (1,−1/t2). Thus, (t, θ) = Pepi q(u, ζ)
has to satisfy θ = 1/t and 〈(

u− t
ζ − 1

t

)
,

(
1

− 1
t2

)〉
= 0,
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Figure 2: Areas for the epigraphical projection onto epiq.

which leads to
t4 − ut3 + ζt− 1 = 0.

For the zeros of the above polynomial see the next remark.

Remark 3.3. Consider P (t) = t4 − ut3 + ζt− 1, where u < ζ and uζ < 1 if u > 0. We
have

P ′(t) = 4t3 − 3ut2 + ζ, P ′′(t) = 6t (2t − u).

Let t0 := max
(
u
2 , 0

)
. Then P ′′(t) > 0 for t ∈ (t0, 1) so that P is strictly convex and

P ′ is strictly monotone increasing on (t0, 1). Further we conclude P (0) = −1 < 0 and
P (1) = ζ − u > 0. According to the sign of u we distinguish the two cases.

Case 1. Let u ≤ 0. Then P (t0) = P (0) < 0 and the convexity of P implies that P has
exactly one zero t∗ in [0, 1] and is strictly monotone increasing on (t∗, 1).

Case 2. Let 0 < u < ζ. Then uζ < 1 implies that u < 1 and thus u
2 ∈ (0, 12). Now

P (t0) = P (u2 ) = −u4

16 +
1
2

(
ζu−1

)
− 1

2 < 0 and it follows again that P has exactly one zero t∗

in
[
u
2 , 1
]
and is strictly monotone increasing on (t∗, 1). Straightforward computation shows

that P is strictly concave on
(
0, u2

)
and P ′

(
u
2

)
= −u3

4 + ζ > 0, P ′(0) > 0. Consequently
P has no zero in

[
0, u2

]
.

In summary P has exactly one zero t∗ in (0, 1). Since P is convex and strictly in-
creasing on [t∗, 1], the iterates of Newton’s algorithm with starting point t(0) = 1 converge
monotonically to t∗ with quadratic convergence rate, see [20].

Finally, we want give also an analytic solution of P (t) = 0. Setting t = x+
u

4
, we can

convert this quartic equation into a depressed quartic equation, and we obtain

P̃ (x) := P (x+
u

4
) = x4 + αx2 + βx+ γ. (18)

Then we can apply Ferrari’s method [35] or Lagrange’s method [24] to solve P̃ (x) = 0 as
shown in the following lemma.
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Lemma 3.1. The solutions of P (t) = 0 are (t1, t2, t3, t4) ∈ C
4 such that for every i ∈

{1, 2, 3, 4}, ti = xi +
u

4
, where (x1, x2, x3, x4) ∈ C

4 are the solutions of P̃ (x) = 0 given by





x1 =
1
2

(√
z1 +

√
z2 +

√
z3
)
,

x2 =
1
2

(√
z1 −

√
z2 −

√
z3
)
,

x3 =
1
2

(
−√

z1 −
√
z2 +

√
z3
)
,

x4 =
1
2

(
−√

z1 +
√
z2 −

√
z3
)
,

(19)

where (z1, z2, z3) ∈ C
3 are solutions of the third order equation

R(z) := z3 + 2αz2 + (α2 − 4γ)z − β2 = 0, (20)

with

α := −3u2

8
, β := ζ − u3

8
, γ :=

ζu

4
− 3u4

44
− 1.

The zeros of the third order polynomial R can be found using Cardan’s method detailed
in the appendix. The following proposition gives the epigraphical projection onto epi q(·, b),
for b > 0:

Proposition 3.4. The epigraphical projection at (u, ζ) ∈ R
2 onto epi q(·, b) for fixed b > 0

is given by

Pepiq(·,b)(u, ζ) :=





(u, ζ) if u > 0 ∧ max{ub , bu} ≤ ζ,

( b
1+b2 (bu+ ζ), 1

1+b2 (bu+ ζ)) if 1 + b2 − bu < ζ < u
b ,

(b, 1) if ζ ≤ min{1 + b2 − bu, 1 − b2 + bu},
(t∗, bt∗ ) if 1− b2 + bu < ζ ∧

(
ζ < b

u if u > 0
)
,

(21)
where t∗ is the solution of the fourth order equation P (t) := t4 − ut3 + ζbt − b2 = 0 in
(0, b).

Proof. Let b > 0. Similar to the proof of Proposition 3.3, we consider the four areas A1, A2,
A3 and A4. To this end, we need to find the perpendicular of u ∈ (0, b] 7→ q1(u, b) := b/u
and u ∈ [b,+∞) 7→ q2(u, b) := u/b at (b, 1).

Let u ∈ (0, b]. The perpendicular of q1(u, b) at (b, 1), denoted by p1(u) := α1u + β1,
where (α1, β1) ∈ R

2, satisfies
{
〈(u, ζ)− (t, θ), (1,−b/t2)〉 = 0

(t, θ) = (b, 1)
⇔ 〈(u, ζ)− (b, 1), (1,−1/b)〉 = 0

⇔ u− b− 1

b
(ζ − 1) = 0

⇔ bu− b2 + 1 = ζ.

Thus,
p1(u) := bu+ 1− b2. (22)

Let u ∈ [b,+∞). The perpendicular of q2(u, b) at (b, 1), denoted by p2(u) satisfies, for
β2 ∈ R,

{
p2(u) = −bu+ β2

p2(b) = 1
⇔

{
p2(u) = −bu+ β2

−b2 + β2 = 1

⇔ p2(u) = −bu+ 1 + b2. (23)
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According to (22) and (23), the areas are given by

A1 = {(u, ζ) ; u > 0 ∧ ζ ≥ max{u/b, b/u}},
A2 = {(u, ζ) ; 1 + b2 − bu < ζ < u/b},
A3 = {(u, ζ) ; ζ ≤ min{1− b2 + bu, 1 + b2 − bu}},
A3 = {(u, ζ) ; ζ > 1− b2 + bu ∧ (ζ < b/u if u > 0)}.

The points in A1 are already in epi q(·, b) and were therefore mapped to themselves.
The points in the normal cone A3 of epi q(·, b) at (b, 1) are obviously projected to (b, 1).
For (u, ζ) ∈ A2 the orthogonal projection (t, θ) = Pepi q(u, ζ) has to fulfill θ = t/b and

〈(
u
ζ

)
−
(
t
θ

)
,

(
1
1/b

)〉
= 0,

which results in t = b
1+b2

(bu + ζ). Finally, the points in A4 are projected onto the curve

τ(t) := (t, b/t), t ∈ (0, b). This curve has the tangent vectors (1,−b/t2). Thus, (t, θ) =
Pepi q(u, ζ) has to satisfy θ = b/t and

〈(
u− t

ζ − b
t

)
,

(
1

− b
t2

)〉
= 0,

which leads to t4 − ut3 + ζbt− b2 = 0.

4 A Feasibility Problem in Selectivity Estimation

The aim of this section is to solve for ν ∈ {1,∞} the minimization problem

argmin
x∈RN

Qν (Ax, b) subject to x ∈ △ (24)

where A ∈ R
M×N and

△ := {x ∈ [0,+∞)N :
N∑

k=1

xk ≤ 1}.

Such problems arise, e.g., in the estimation of selectivities for cost-based query optimizers
in DBMSs, see [26, 28]. A brief sketch of the selectivity estimation task is given in the
following subsection.

4.1 Selectivity Estimation in DBMSs

Selectivities indicate the proportion of tupels in a database that satisfy the predicates in
a query. The accurate estimation of selectivities is crucial for the design of optimal query
execution plans. However, in practice we have to live with inaccurate size estimations and
a natural question is how these errors influence the query plan optimization. In [28] the
error propagation of wrong selectivity estimates though an accordingly optimized query
was examined. It appears that the error propagation is multiplicative, see also [22]. Worst-
case error bounds of the cost function of an optimal plan based on erroneous selectivities
were proved in terms of the cost function of the optimal plan based on accurate selectivities
and the quotient of the erroneous and the accurate selectivities. The results give strong
evidence that the quotient error of selectivities should be considered superior to other
error measures, in particular additive ones.
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The selectivity estimation problem reads as follows: Let Pn denote the power set of
In := {1, . . . , n}. Assume that we are given a set {pi : i ∈ In} of simple predicates.
According to [26] we model the selectivities of conjunctive predicates as a probability
distribution. For this purpose we represent the conjunctive predicates in full disjunctive
normal form (DNF). For example in case n = 3, the predicates p1 and p1 ∧ p2 have the
DNFs

p1 = (p1 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ ¬p2 ∧ p3) ∨ (p1 ∧ p2 ∧ p3),
p1 ∧ p2 = (p1 ∧ p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3).

We identify the sets of Pn with the binary strings β ∈ {0, 1}n, where βi = 1 if and only
if i ∈ In belongs to the set. Then β := 0n corresponds to the empty set and β := 1n
to the full set In. Let P := {0, 1}n\{0n}. Accordingly, we index the selectivities sβ of
conjunctive predicates by binary labels β ∈ {0, 1}n, where βi = 1 if and only if predicate
pi is in the conjunction. Finally, the selectivities xβ of the clauses v in the DNFs are
indexed by binary strings β ∈ {0, 1}n, where βi = 1 if pi ∈ v and βi = 0 if ¬pi ∈ v. Using
this notation we obtain in the above example

s100 = x100 + x110 + x101 + x111,

s110 = x110 + x111.

Clearly, we have

s0n =
∑

β∈{0,1}n

xβ = 1

and x0n appears only as a summand in sβ for β = 0n. The values xβ can be interpreted as
probabilities of the appearance of the corresponding clause. Of course only a small part
of selectivities sβ, β ∈ J ⊂ P, #J ≪ 2n, of conjunctive predicates can be stored via
multivariate statistics in a DBMS. Let b := (sβ)β∈J , x := (xβ)β∈P and

A := (aβ,β′)β∈J ,β′∈P , aβ,β′ :=

{
1 if βi = 1 ⇒ β′i = 1 ∀ i ∈ In,
0 otherwise.

Then, if all sβ, β ∈ J were known accurately, the xβ would satisfy Ax = b. In [26] the
authors propose to estimate xβ, β ∈ P (and consequently all selectivities) by maximizing
the entropy

max
x

∑

β∈{0,1}n

−xβ log xβ subject to Ax = b, x ≥ 0,
∑

β∈{0,1}n

xβ = 1. (25)

If this convex optimization problem is feasible it can be solved by several methods, e.g.,
via a Newton method applied to the dual problem, see [15, p. 222-223]. An iterative
scaling method was proposed in [26].

However, in practice, inaccuracies in the stored selectivities sβ make (25) infeasible, i.e.,
Ax = b has no solution x ≥ 0. Penalizing the error between Ax and b by adding a further
term to the entropy would require us to determine a penalizing parameter. Therefore we
deal with the feasibility problem separately and seek a feasible x first. By the reasons
described at the beginning of this subsection, we are looking for a small quotient error
between Ax and b, i.e., we consider (24). The result can subsequently be used to solve
(25) which is not addressed in this paper.
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4.2 Solution of the Feasibility Problem

One possible approach to solve problem (24) is via second order cone programming (SOCP)
as proposed, e.g., in [34]. For details on SOCP we refer, e.g., to [25]. In the following, we
show how the problem can be tackled by first order primal dual algorithms. These iterative
algorithms have the advantage that certain steps in each iteration as the q thresholding or
the epigraphical projections can be computed in parallel. In particular, the Q1 approach
appears to be rather fast.

We rewrite the problem (24) as

argmin
x∈RN ,y∈RM

Qν (y, b) + ι△(x) subject to Ax = y. (26)

The above optimization problem can be solved by various primal-dual algorithms [5, 11,
12,23,31,36].

For ν = 1 we apply the primal-dual hybrid gradient method with an extrapolation of
the dual variable (PDHGMp) from [3,5, 14,29] to solve (26), see appendix:

Algorithm 2 PDHGMp for (26)

Initialization: µ > 0. σ > 0 with µσ < 1/‖A‖22, θ ∈ (0, 1]
x(0), p(0) = p̄(0).
Iterations:
For r = 0, 1, . . .

1. x(r+1) = argmin
x∈RN

ι△(x) + 1
2µ‖x−

(
x(r) − µσA⊤p̄(r)

)
‖2

2. y(r+1) = proxQ1(·,b)/σ(p
(r) +Ax(r+1))

3. p(r+1) = p(r) +Ax(r+1) − y(r+1)

4. p̄(r+1) = p(r+1) + θ(p(r+1) − p(r))

The sequence (x(r), y(r))r∈N generated by Algorithm 2 is ensured to converge to a
solution of problem (26) by [5], see also [3, Theorem 6.4].

The first step is just a projection of x(r) − µσA⊤p̄(r) onto △. The second step re-
quires the solution of a proximity problem for Q1(·, b) which can be done by applying
componentwise the q-shrinkage described in Remark 3.2.

For ν = ∞ we reformulate problem (26) as

argmin
(x,ξ)∈RN+1,(y,η)∈R2M

ξ +

M∑

k=1

ιepi q(·,bk)(yk, ηk) + ι△(x) s.t. Ax = y, ξ1M = η (27)

and apply the PDHGMp algorithm again:
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Algorithm 3 PDHGMp for (27)

Initialization: µ > 0. σ > 0 with µσ < min(1/‖A‖22, 1/M), θ ∈ (0, 1]
x(0), p(0) = p̄(0).
Iterations:
For r = 0, 1, . . .

1.

(
x(r+1)

ξ(r+1)

)
= argmin

(x,ξ)∈RN+1

ξ + ι△(x) + 1
2µ

∥∥∥∥∥

(
x
ξ

)
−
((x(r)

ξ(r)

)
− µσ

(
A⊤p̄

(r)
x

1⊤M p̄
(r)
ξ

)
)
∥∥∥∥∥

2

2.

(
y(r+1)

η(r+1)

)
= argmin

(y,η)∈R2M

M∑
k=1

ιepi q(·,bk)(yk, ηk) +
σ
2

∥∥∥∥∥

(
y − (p

(r)
x +Ax(r+1))

η − (p
(r)
ξ + 1M ξ

(r+1))

)∥∥∥∥∥

2

3.

(
p
(r+1)
x

p
(r+1)
ξ

)
=

(
p
(r)
x +Ax(r+1) − y(r+1)

p
(r)
ξ + 1M ξ

(r+1) − η(r+1)

)

4.

(
p̄
(r+1)
x

p̄
(r+1)
ξ

)
=

(
p
(r+1)
x + θ(p

(r+1)
x − p

(r)
x )

p
(r+1)
ξ + θ(p

(r+1)
ξ − p

(r)
ξ )

)

In the first step we have to compute the projection of x(r) − µσA⊤p̄
(r)
x onto the prob-

ability simplex and

ξ(r+1) = ξ(r) − µσ1⊤M p̄
(r)
ξ − µ.

The second step requires just the componentwise epigraphical projection of the tuple

((p
(r)
x + Ax(r+1))k, (p

(r)
ξ + 1Mξ

(r+1))k) onto the epigraph of q(·, bk), k = 1, . . . ,M , which
can be realized by Proposition 3.4.

Example 4.1. We use the notation from Subsection 4.1 and consider the linear system
of equations




1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1







x001
x010
x011
x100
x101
x110
x111




=




0.2114
0.6331
0.6312
0.5182
0.9337
0.0035




=




s001
s010
s100
s011
s101
s110




which has no solution x ≥ 0. Note that the last component of the vector b on the right-hand
side differs from the other ones by a magnitude of order. We solve problem (24) for ν = 1
by Algorithm 2 and for ν = ∞ by Algorithm 3, with stopping criterion ‖Ax−y‖∞ < ǫ and
the parameters in Table 1, where s = 1/‖A‖2 and A ∈ R

m×n. Note that we have chosen
the parameters in Algorithm 2 slightly larger than µσ‖A‖22 < 1 to get a faster convergence
although the convergence has not been proved theoretically for such parameters. Step 2
of Algorithm 3 is computed using Newton’s algorithm, which is faster than computing an
analytic solution while providing a high precision.

For comparison we solve the following feasibility problems with the additive errors

argmin
x∈RN

‖Ax− b‖p subject to x ∈ △ (28)

for p ∈ {1, 2} by linear and quadratic programming routines from MOSEK [1], respectively.
Having the solutions x̂ of the four problems we compute the vectors b̂ := Ax̂. Note that
x̂ itself is not of interest here because it will be optimized later, e.g., in the database



14

application by entropy minimization. The errors Q∞(b̂, b) for the four vectors b̂ read as
follows:

method (24) for ν = ∞ (24) for ν = 1 (28) for p = 1 (28) for p = 2

Q∞(b̂, b) 2.61 3.65 75.65 74.85 .

Indeed this reflects qualitatively what we have seen in many test examples. Method (24)
with ν = ∞ provides of course the minimal value Q∞(b̂, b) since the method was designed to
minimize this error. However, model (24) with ν = 1 produces only a slightly larger error
Q∞(b̂, b). Since this method, which does not require epigraphical projections, is faster, it
may be a good alternative choice. Finally, both methods (28) lead to considerably higher
errors Q∞(b̂, b). From the tests we have done so far it cannot be deduced that one of this
methods gives a smaller quotient error than the other one. We emphasize again that we
are only interested in the Q∞ error since this error influences the design of query execution
plans.

µ σ θ ǫ Initialisation It

Algorithm 2 s/2 8s 1 10−5 x(0) = 1
n1n, p(0) = 1m 161

Algorithm 3 s/2 2s 1 10−4 x(0) = 1
n1n, p

(0)
x = p

(0)
ξ = 1m 160

Table 1: Parameters used for Example 4.1

5 Conclusions

We have determined the proximity operator of the sum and the maximum of componen-
wise quotient errors of positive vectors. These proximity operators may be applied in the
solution of various tasks. As an example we have considered a feasibility problem appearing
in the selectivity estimation for query optimization. Here we have a strong evidence that
quotient distances are more relevant than additive error measures. We have proposed
first order primal dual methods to solve the relevant problem and have underlined our
findings by a numerical toy example. In connection with query optimization in DBMSs
we are working on a GPU implementation of certain steps of the primal dual algorithms
and on the solution of problem (25). We intend to give a comprehensive comparison of
several methods, in particular in terms of the execution time. We have found that such
a comparison is indeed a task on its own which is beyond the scope of the present paper,
which explains the basic mathematical ideas.

In the future, we intend to apply quotient distances to problems appearing in image
processing as for example illumination corrections based on the so-called retinex model.
This model assumes that an image is given by the componentwise product of the illumi-
nation and the reflection in the scene, see [18].

6 Appendix

6.1 General PDHGMp Algorithm

For f1 ∈ Γ0(R
N ), f2 ∈ Γ0(R

M ) and C ∈ R
M×N the solution of

argmin
x,y

f1(x) + f2(y) subject to Cx = y



15

can be computed by the PDHGMp supposed that a saddle point of the Lagrangian
L(x, y, p) := f1(x) + f2(y) + 〈p,Cx− y〉 exists, see [5, 33].

Algorithm 4 PDHGMp

Initialization: µ > 0. σ > 0 with µσ < 1/‖C‖2, θ ∈ (0, 1]
x(0), p(0) = p̄(0).
Iterations:
For r = 0, 1, . . .

1. x(r+1) = argmin
x∈RN

f1(x) +
1
2µ‖x−

(
x(r) − µσC⊤p̄(r)

)
‖2

2. y(r+1) = argmin
y∈RM

f2(y) +
σ
2 ‖y − (p(r) + Cx(r+1))‖2

3. p(r+1) = p(r) + Cx(r+1) − y(r+1)

4. p̄(r+1) = p(r+1) + θ(p(r+1) − p(r))

The sequence (x(r), p(r))r∈N generated by Algorithm 4 converges to a saddle point of
the Lagrangian [3, Thm. 6.4].

6.2 Cardan’s Formula for Solving (20)

We show how the Cardan formula can be applied for finding the zeros of the third order
polynomial R in (20): After a change of variable, we have

R̃(y) = R(y − 2α

3
) = y3 + py + q, (29)

where

p = α2

(
1− 8α

3

)
− 4γ, q = −β2 + 8α

3

(
γ − α

36

)
.

Solutions of equation (29) denoted by (y1, y2, y3) ∈ C
3 depend on the sign of the discrim-

inant ∆ = −
(
4p3 + 27q2

)
. Then, we have the following cases:

(i) If ∆ > 0, then the equation has 3 distinct real roots given, for every i ∈ {1, 2, 3}, by

yi = 2

√
−p
3

cos

(
1

3
arccos

(−q
2

√
27

−p3
)
+

2(i− 1)π

3

)
.

(ii) If ∆ = 0, then two cases are possible: if p = q = 0 then the equation (29) admits 0
as a multiple root, otherwise, the equation has a multiple root and all its roots are
real and equal to

y1 = 2 (−q/2)1/3 and y2 = y3 = − (−q/2)1/3 .

(iii) If ∆ < 0, then the equation has one real root and two nonreal complex conjugate
roots given by

y1 = a+ b, y2 = ja+ j̄b, y3 = j2a+ j̄2b,

where a =
(
1
2 (−q +

√
−∆/27)

)1/3
, b =

(
1
2(−q −

√
−∆/27)

)1/3
, and j = ei 2π/3.
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