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Abstract

Since the introduction of object base management systems (OBMS), many query

optimization techniques tailored for object query languages have been proposed.

They adapt known optimization techniques to the OBMS context, exploit special

object-oriented features, or give solutions to problems speci�c to querying objects.

Nonetheless, one of the most prominent features of object models | namely class

hierarchies | have so far not been exploited for query optimization.

The current paper proposes new optimization techniques for queries referring to

classes integrated into a class hierarchy. The techniques are generic in the sense

that we do not give a set of algebraic equivalences the optimizer has to apply, but

instead try to provide the reader with a general understanding of how to exploit

class hierarchies for query optimization purposes. We give general descriptions of

the techniques as well as illustrating examples.

Besides yielding considerable savings in terms of execution time, the presented

optimization techniques have the additional advantages of (1) being easily imple-

mentable and (2) resulting only in a neglectable increase in optimization time.

1 Introduction

Since the introduction of OBMS, much work has been devoted to optimizing object

queries. Special index structures for path indexes [2, 12, 18, 20], class indexes [17, 16], and

function materialization [11] have been proposed. Logical optimization techniques have

been developed. They cover path evaluation [1, 13], factorization [5], unnesting [6, 19],

optimization in the presence of expensive methods [9, 15], disjunctions [14] or aggregates

[7].

Looking at all the e�ort, it is surprising, that, in the context of query optimization,

class hierarchies did not receive special attention. The only special support developed so
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far are index structures that are capable to index multiple sets or classes in a hierarchy

[17, 16, 20]. So far, no e�ort has been made to exploit class hierarchies to optimize queries

that refer to classes integrated into a class hierarchy. The goal of the paper is to start

investigations in this direction.

Either because they are made available to the users or because of preliminary rewritings

[10], class extents are usually the collections on which OO queries are issued. We rely on

the fact that classes are organized in a hierarchy to introduce several generic optimization

techniques for queries referring to class hierarchies. The techniques are generic in the sense

that we lay the basis for applying all the traditional techniques for query optimization to

queries involving class hierarchies. This is done by pointing out the crucial points that

have to be considered. The main ideas are (1) to make the subclasses of a class explicitly

visible to the optimizer and (2) to exploit static as well as dynamic type information.

Using these two simple ideas, we show that by exploiting di�erences in logical and

physical properties present in di�erent subclasses can result in much cheaper plans. Fur-

ther, we give techniques that reduce the number of joins, scans and method evaluations.

This gives way to considerable savings that by far outbalance the added optimization cost

of having to consider more alternatives.

The paper is organized as follows. The next section presents the preliminaries. Among

those, it discusses several possible implementations for class extents. Section 3 introduces

the generic optimization principle of execution plan tuning and the optimization tech-

niques input splitting and reasoning about symmetry . Section 4 demonstrates how static

and dynamic type information can be exploited to further reduce query evaluation costs.

To support this kind of optimization, a new type of easy to maintain aggregate infor-

mation is introduced and its application to query optimization demonstrated. E�ective

pretests are introduced which further save access and method evaluation costs. Section 5

concludes the paper.

2 Preliminaries

We assume general familiarity with the basics of object models and OBMSs.

We base our discussion on the simple class hierarchy of Figure 1. The boxes on the

right side of the �gure contain some attribute de�nitions or their re�nement. A query

1

like

select e

from Employee e

where e.age > 30

not only returns Employees but also Managers and CEOs of age greater than 30. If no

index is present, a scan over the extents (i.e., the set of all objects which are instances of

a class) of Employee, Manager , and CEO is necessary. There exist several possibilities

for implementing scans over extents. In this section, we will brie
y sketch and classify

the di�erent alternatives.

1

Queries are stated in an OQL-like language [4].
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Employee

name: string

salary: int

boss: Manager

6

Manager

boss: CEO

6

CEO

Figure 1: Example Class Hierarchy

The basic preliminaries for implementing extents can be summarized as follows. Most

OBMSs organize an object base into areas or volumes. Each area or volume is then further

organized into several �les. A �le is a logical grouping of objects not necessarily consisting

of subsequent physical pages on disk. Files don't share pages.

The simplest possible implementation to scan all objects belonging to a certain extent

is to perform an area scan and select those objects belonging to the extent in question.

Obviously, this is far to expensive. Therefore, some more sophisticated possibilities to

realize extents and scans over them are needed. The di�erent possible implementations

can be classi�ed along two dimensions. The �rst dimension distinguishes between logical

and physical extents, the second distinguishes between strict and (non-strict) extents.

Logical vs. Physical Extents

An extent can be realized as a collection of object identi�ers. A scan over the

extent is then implemented by a scan over all the object identi�ers contained in

the collection. Subsequently, the object identi�ers are dereferenced to yield the

objects themselves. This approach leads to logical extents. Another possibility is

to implement extent membership by physical containment. The best alternative is

to store all objects of an extent in a �le. This results in physical extents. A scan

over a physical extent is then implemented by a �le scan.

Extents vs. Strict Extents

A strict extent contains the objects (or their OIDs) of a class excluding those of its

subclasses. A non-strict extent contains the objects of a class and all objects of its

subclasses.

Given a class C, any strict extent of a subclass C

0

of C is called a subextent of C.

Obviously, the two classi�cations are orthogonal. Applying them both results in the

four possibilities presented graphically in Fig. 2. The underlying class hierarchy is that of

Fig. 1. We use the same name to denote a class and its strict extent, and the class name

su�xed by a � symbol to denote its non-strict extent.

Note that, while in the logical extent case the redundancy evoked by the membership

of an OID in multiple sets seems neglectable, this is most probably not the case when
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Employee: {e1, e2, ....}

Manager: {m1. ...}

CEO: {c1, ...}

Employee*: {e1, e2, ...., m1, ..., c1}

Manager*: {m1. ..., c1, ...}

CEO*: {c1, ...}

Employee: {e1: [name: Peter, salary:20.000, boss: m1], 
                  e2: [name: Mary, salary:21.000, boss: m1],
                   .....  }

Manager: {m1: [name: Paul, salary:100.000, boss: c1],
                  ... }

CEO: {c1: [name: May, salary: 500.000, boss: c1],
           ... }

Employee*: {e1: [name: Peter, salary:20.000, boss: m1], 
                    e2: [name: Mary, salary:21.000, boss: m1],
                    .....,
                    m1: [name: Paul, salary: 100.000, boss: c1],
                    ....,
                    c1: [name: May, salary: 500.000, boss: c1],
                    .... }

Manager*: {m1: [name: Paul, salary:100.000, boss: c1], 
                   ....,
                   c1: [name: May, salary: 500.000, boss: c1],
                   .... }

CEO*: {c1: [name: May, salary: 500.000, boss: c1], ... }

L
O
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C
A
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C
A
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Strict Extents Extents

Figure 2: Implementation of Extents
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considering physical extents. | Nevertheless, physical containment of objects does not

necessitate their duplication if a �le is allowed to contain other �les. This is possible in

e.g. EOS [3].

Note that it is possible to have di�erent implementations of an extent at the same

time. For instance, an OBMSs could maintain strict physical extents and, redundantly,

non-strict logical extents.

Some of the optimization techniques we propose in the sequel rely on the presence of

strict logical or physical extents.

3 Execution Plan Tuning and Input Splitting

This section argues for making the subextents of an extent visible to the optimizer. That

is, they can be explicitly found in the query execution plan. The advantage of this

approach is demonstrated by applying several optimization techniques to these plans.

The disadvantage is the increase in optimization time since more alternatives can be

considered now. But since the savings can be considerable, for example more than 50%

of the total join cost, the increase in optimization time seems neglectable.

3.1 Execution Plan Tuning

Similar to relations in the relational context, collections and especially extents have certain

properties attached to them. In general, one distinguishes between physical and logical

properties. By physical, we denote those properties, that concern the storage of the extent

whereas logical properties refer to the content of the extent or the values of the contained

objects. In this section, we deal with one logical and two physical properties:

1. attribute value distributions

2. order

3. indexes

The main idea is to exploit these properties in case they vary for di�erent extents. We

demonstrate possible exploitations of this idea by means of a simple example.

Consider the example class hierarchy consisting of Employee, Manager and CEO . The

logical property we will consider is the value of the salary attribute. Obviously, the range

of the salary will di�er for employees, managers, and CEOs. Further, there could be one

index on salary for managers and one for CEOs, but none for employees. Under these

assumptions let us optimize the following simple example query

select e

from Employee* e

where e.salary > 100.000

The query does not only ask for employees but also for the members of subextents of

Employee, that is, for Managers and CEOs. The explicit � used here is typically not a
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construct of object query languages but only used for the purposes of the paper in order

to emphasize the existence of subextents.

We argue strongly, to make this fact explicitly visible to the query optimizer by trans-

lating the query into:

select[salary>100.000](Employee [ Manager [ CEO)

rather than into

(1) select[salary>100.000](Employee

�

).

Note that the latter is the predominant way to translate a query. The reason for this is

that extents are typically implemented as logical non-strict extents by using e.g. C++

class constructors to add a newly created object to the extent. Since a call to a constructor

of a class implies a call to the constructor of the base (or super) classes, the result is a

non-strict extent.

By incorporating the extents and their subextents explicitly into the query evaluation

plan, the query optimizer is able to use di�erent evaluation plans speci�cally tailored for

the di�erent (sub-) extents. Let us demonstrate this point by means of the example query.

Let us assume that no employee earns more than $100.000, and that 30% of the

managers and 70% of the CEOs earn more than $100.000. Under these assumptions, an

index scan for CEOs is not worth it since the selectivity factor is beyond 50%. Using the

index for managers is still quite reasonable although the selectivity factor of 30% comes

close to the limit.

2

Hence, a reasonable plan would be:

select[salary>100.000](extscan(Employee))

[

indexscan[salary>100.000](Manager)

[

select[salary>100.000](extscan(CEO))

Note that this plan could only be developed, since the di�erent subextents of Employee

are made visible by incorporating them explicitly into the query evaluation plan. By that,

di�erent decisions could be made for the di�erent extents Employee, Manager , and CEO .

We will built upon explicit mentioning of the extents in the plan for all subsequent

optimization techniques. Since only then, advanced optimization techniques for treating

class hierarchies can be applied.

Let us now assume that the OBMS administrator has chosen to materialize the

min/max values of the salary attribute for employees, managers, and CEOs (a reason-

able assumption). Then, the optimizer knows beforehand that no employee will qualify.

Hence, the plan simpli�es to:

indexscan[salary>100.000](Manager)

[

select[salary>100.000](extscan(CEO))

2

We slightly oversimplify the cost estimation to keep the discussion simple and to be able to emphasize

the main points.
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The observation here is analogous to the one above. If there would not be distinct

min/max values for the salary of each of the extents, there would be no way for the

optimizer to perform this optimization.

Let us summarize the main point up to now. The general idea of execution plan tuning

is to exploit the di�erences found for the di�erent subextents of an extent. The technical

means applied to yield plans which are speci�cally tailored for each subextent is pushing

the algebraic operators down over the union. Recall that there are no problems with

duplicates since the strict extents of two di�erent classes are disjoint.

As we will see next, this technique does not always yield a better plan. Sometimes

it is better to leave the union at the bottom most level and union the pure extents.

Nevertheless, abandoning the possibility of better plans by sticking to some pure extent

in the execution plans seems unreasonable.

As already stated, it is not always better to push all the operators inside the unions.

To see this, assume that there exists a joined B-tree index on the names of managers and

CEOs (i.e., Manager* is indexed on names). Assume further that the query is modi�ed

such that the outcome is supposed to be sorted by name.

select e

from Employee* e

where e.salary > 100.000

order by name

Now, since sorting is expensive, and the 30% selectivity for managers is close to the border

where the index scan pays, it might be better to use the already present sort order on the

names of all managers and CEOs. Hence, a reasonable plan would be

select[salary>100.000](indexscan[name](Manager union CEO))

A last execution plan for our simple example query can be deduced if the B-tree index

is on the names of CEOs only. Then,

sort[name](indexscan[salary>100.000](Manager)

mergeunion

select[salary>100.000](indexscan[name](CEO))

could be a perfect plan, if we again require the result to be sorted. Note that here the

union | which is modi�ed to a mergeunion in order to keep the sort orders | is pushed

outside again; or, to put it di�erently, the other algebraic operators are pushed inside.

Note that all the variety in plans even for a query as simple as the example query would

not have been possible without making the subextents visible to the optimizer. Having

them visible to the optimizer allows to exploit the di�erent properties of the subextents

and to produce an optimal overall plan by chosing individually tailored subplans for each

subextent.

3.2 Operator Input Splitting and Reasoning by Symmetry

In this subsection, we give another argument that favors the explicit treatment of subex-

tents by introducing two optimization techniques. The �rst will be operator input splitting
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whose main advantages are (1) a higher degree of interleaving of I/O and computation

and (2) savings in main memory consumption. The second optimization technique is

reasoning by symmetry which allows to eliminate joins. Input splitting is the prerequisite

for this technique.

Despite the fact that input splitting is not only useful for the join operator, but for

other algebraic operators as well, we base our discussion on joins only since this is by far

the most expensive algebraic operator.

Consider the following simple join query.

select e1, e2

from Employee* e1, Employee* e2

where e1.salary = e2.salary

It retrieves all pairs of employees with the same salary.

Making the subextents of Employee explicitly visible, the evaluation of the query

requires the evaluation of nine joins:

Employee 1 Employee

Employee 1 Manager

Employee 1 CEO

Manager 1 Employee

Manager 1 Manager

Manager 1 CEO

CEO 1 Employee

CEO 1 Manager

CEO 1 CEO

The result of these joins is then to be unioned to yield the �nal result. Thus, we split the

big join

Employee

�

1 Employee

�

into the above nine smaller joins.

This splitting of the input of an operator exhibits several advantages:

� Instead of producing one big package, nine small packages are produced.

If pipelining is applied, the interruption of the pipeline due to a sort-merge join or

a hash-join is not as bad as it would be otherwise.

Further, this can be exploited for parallelization.

� Memory consumption is smaller since not all subextents of Employee

�

have to be

read into main memory at once.

Again, this is most advantageous in case of pipelining.

� Interleaving of join computation and I/O is possible.

After the employees have been fetched, the join computation can start. During that,

the managers can be fetched from disk, and so on.
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Another advantage of input splitting is less obvious and leads us to the next opti-

mization technique we introduce. By reasoning about symmetry , we note that some pairs

of joins exist, that produce symmetric output. For example, Manager 1 Employee and

Employee 1 Manager do not produce the same outcome if we have ordered tuples but

it is much cheaper to produce the outcome of the join Employee 1 Manager from the

result of Manager 1 Employee than computing the join itself. Further, we could use the

result of Manager 1 Employee as an implicit representation of Manager 1 Employee [

Employee 1 Manager . This would result in cost savings when processing subsequent al-

gebraic operators. Taking this kind of reasoning into account, the joins that have actually

to be computed are

Employee 1 Employee

Employee 1 Manager

Employee 1 CEO

Manager 1 Manager

Manager 1 CEO

CEO 1 CEO

Thus, instead of computing nine joins, we only have to compute six joins: 1=3 of the joins

is saved.

What run-time savings can we expect when constructing a result for R 1 S from a

given result S 1 R instead of computing R 1 S explicitly? First, note that this saving

heavily depends on the join algorithm used. Obviously, the smallest saving results from

using the best join algorithm. Assuming that the runtime of a hash join is (almost) linear

in the size of the outer relation, only a constant factor in saving can be expected since the

costs of computing the hash values, performing the lookups, and evaluating the predicate

is saved. We only have to pay the costs for tuple construction. The best case arizes,

if we only need the join in order to compute some aggregate value like a count. Then,

count(R 1 S) = count(S 1 R) and, hence, nothing has to be computed for those joins

left out for symmetry reasons. In this case, saving 1=3 of the joins amounts to saving 1=3

of the execution cost.

4 Type-based Scan Reductions and Pretests

In this section we want to exploit type information as a means to reduce the number

of scans and evaluations of expensive expressions necessary to evaluate a query. As an

introduction consider the following | admittedly stupid but simple | example query.

select p

from Person p

wherep.age = 5 and p.age = \�ve"

By performing the regular type check, the query is detected to be unsafe | not matter

what the schema is since the attribute age can either be declared to be of type int or

string . Neglecting the type error we will get, another way to look at it is that the result

of the query is the empty set; no object quali�es due to disagreeing types for the value
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of the attribute age. Moreover, this can be veri�ed at query optimization time, if we add

the type inference to the query optimization.

The idea of this section is to perform (more subtle) reasoning about types in order to

reduce the number of qualifying objects. This will allow us to (1) get rid of some scans (no

qualifying objects) and (2) avoid evaluating some expensive predicates (some elements of

a scan cannot qualify). In the �rst case we speak of type-based scan reductions, in the

latter of type-based pretests.

For type-based scan reductions, we will not only use static type information as given

by the schema, but also dynamic type information which is deduced at query evaluation

time. As we will see, this will result in an interleaving of query optimization and query

execution.

This section is divided into three parts that illustrate the optimization of (i) simple

restrictions, (ii) self joins (i.e. those involving twice the same extent) and (iii) general

joins.

4.1 Simple Restrictions

We consider the optimization of equality and membership predicates. In both cases, we

are interested in predicates over the attribute of a variable. Note that these are the most

common ones.

Equality Predicate Let us consider the following example. We have an object or a

persistent variable with name peter , and we are interested in all the employees that have

peter as a boss. We use the name peter to simplify the query. However, any constant

subquery would serve our purposes.

select e

from Employee* e

where e.boss = peter

Having no indices to rely on, the best evaluation plan one can come up with is

select[boss=peter ](Employee [ Manager [ CEO)

But obviously,

if peter points to an object which belongs to the class Employee (and nothing

more), then the answer to the query is the empty set.

This is because the attribute boss was de�ned to be of type Manager . Hence, no instance

of Employee can be a boss. This kind of inference still seems a little rough. It will be

re�ned later on.

The query optimizer can decide the emptiness of the query result immediately without

accessing any of the extents Employee, Manager , and CEO . The only thing to be done

is to dereference peter at query optimization time and then perform the type inference

using the dynamic type Employee of peter . Note that at the schema level, there is no way

to tell by using the static types only, that the answer to the query will be the empty set.
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This type of query optimization is easiest implemented within an interpreter. In the

case of a compiler, additional code has to be generated for the type check and the decision

on what plan to execute depending on the outcome of the type check. The interpreter

has to evaluate queries partially and use the resulting type information to simplify the

remaining expression. A compiler could be implemented such that it generates di�erent

alternative plans depending on the possible outcome of the derived type restrictions, and

then generates an according chose-plan operator [8] tying the di�erent plans together.

Many of the subsequent examples are of the same 
avor in that dynamic type in-

formation is used to simplify the query. Hence, we subsequently assume that the query

optimizer is modi�ed such that this information can be taken care of.

Let us now resume the discussion of the above restriction. What can be do if peter is

a CEO? In general or without any more information, nothing can be done. But consider

the following case. In object schemas, attributes can be re�ned. Most systems restrict

re�nement to either covariance or contravariance. Let us assume that the system at hand

supports covariance and that the attribute boss is re�ned to be of type CEO forManager .

Again, static type inference does not help much. Even though, the bosses of the

employees are restricted to be managers, they are only restricted to be at least managers.

There is nothing that forbids them to be CEOs. Nonetheless, in practice we would expect

the (direct) bosses of employees to be managers and not CEOs. Assume for a moment,

that this information is available. Then, for all objects e of class Employee, we would

have that e:boss is of class Manager which is a superclass of CEO . Hence, e:boss = peter

cannot become true for e 2 Employee. That is, we only have to scan the extents of

Manager and CEO , saving the scan over Employee. The resulting query evaluation plan

is

select[boss=peter ](Manager [ CEO)

Note that, in this example, it is likely that the scan over Employee (that we eliminate)

is by far the most expensive, since there are typically more employees than managers and

CEOs.

Clearly, the information we used | all bosses of employees are simple managers and

not CEOs | is not readily available. There exist two possibilities to get hold on this

information. First, similar to materializing the maximum and minimum value of a scalar

attribute, one materializes the highest and the lowest class of the attribute values of a

class valued attribute. That is, redundant information is introduced.

One might object that the problem with this approach is the incurred update penalty.

But this is not necessarily true. First, if this kind of information is hold only for attributes

that do not change frequently, like for the boss attribute, then the query speed up by far

outweighs the additional update costs. Second, note that not every update leads to an

update of the aggregated type information. Only if the type of the attribute value changes,

an update of the aggregated type information is necessary.

Furthermore, it is our opinion, that this is a very good argument to introduce indexes

solely based on the type of the attributes instead of their values. This would even increase

the possibilities of the query optimizer to optimize queries. In case of the example, there

might exist some exceptions such that an employee is directly managed by a CEO but

these would then easily be detected by using the index. Although this kind of index is
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very useful for query optimization, we do not elaborate on their possible realizations in

the current paper but leave it for future research.

Membership Predicate Let us consider the following query that selects all employees

having poor bosses.

select e1

from Employee* e1

where e1.boss in select e2

from Employee* e2

where e2.salary < 100.000

The traditional evaluation, without type inference, would have to consider the union

of all the strict extents Employee, Manager , and CEO as a range for both, e1 and e2.

Applying the techniques of this section, we can do better:

� By using static type inference, we can �rst eliminate the extent of Employee from

the range of e2, since a boss must be at least a manager.

Let us assume that the evaluation of the subquery returns only managers, since CEOs

are all rich. Then,

� if we have the type information that managers have only CEOs as bosses (see above),

we eliminate the Manager and CEO from the range of e1.

Suppose that the system does not maintain this information. Then, we cannot avoid

the scans on Manager and CEO . However, we may further optimize the query by using

dynamic type information at evaluation time. The idea is to evaluate e1.boss and perform

a type check before the actual predicate is to be evaluated. In the case of equality for

two simple values, this would of course not pay: instead of one equality test for the value

only, we have now two equality tests, one for the type and one for the value. However,

in the present case this can very well pay. Indeed, by performing a very simple type-

based test, we may avoid evaluating an expensive membership predicate. This is what

we call type-based pretests. Note that type-based pretests can be added very easily to the

implementations of restriction or join operations.

Last, note that if we would have the max aggregate type information available on the

salary of each subextent of Employee, then CEOs could be excluded from the range of e2

immediately.

Summarizing, using type informations we only have to consider Employee as the range

for e1, and Manager as the range for e2. Thus, we save

� scanning the extent CEO,

� the evaluation of e1.boss for Manager ,

� the evaluation of e1.boss for CEO ,

� the evaluation of e2.salary for Employee, and
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� the evaluation of e2.salary for CEO .

Note in the case of logical extents, the latter evaluations of the attribute values of e

1

and e

2

result in dereferencing the according object identi�ers and, hence, might result in

additional page faults | which we save.

4.2 Joining an Extent with Itself

The following query retrieves those employees that have the same boss.

select e1, e2

from Employee* e1, Employee* e2

where e1.boss = e2.boss

Applying input splitting results in the nine joins

Employee 1 Employee

Employee 1 Manager

Employee 1 CEO

Manager 1 Employee

Manager 1 Manager

Manager 1 CEO

CEO 1 Employee

CEO 1 Manager

CEO 1 CEO

By dynamic type inference for e1.boss and e2.boss for each of the (sub-)extents of Em-

ployee, four joins can be eliminated immediately. For example, an employee and a man-

ager can never have the same boss (due to the re�nement). Hence, the joins Employee

1 Manager and Manager 1 Employee can be eliminated. The same argument applies to

employees and CEOs. Note that even if we have to get this information by scanning the

extents (as we have to do anyway), the elimination of these four joins will considerably

reduce the costs.

Hence, only the following �ve joins are left to be computed:

Employee 1 Employee

Manager 1 Manager

Manager 1 CEO

CEO 1 CEO

CEO 1 Manager

Further, if we apply reasoning by symmetry, we can further reduce the number of joins

to be computed. The remaining ones are

Employee 1 Employee

Manager 1 Manager

Manager 1 CEO

CEO 1 CEO
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Employee

name: string

salary: int

boss: Manager

6

Manager

�

�

��

Secretary

A

A

AK

Robot

Car

owner: Employee

House

owner: Employee

Figure 3: New Simple Schema

Hence, only four instead of nine joins have to be computed. That is, we save more than

50% of the join execution cost. Since the join operation is the most expensive operation,

this is considerable.

4.3 General Joins

Let us change our example to that of Figure 3. Again, boxes contain attribute de�nitions.

The two classes Car and House reference the class Employee which, this time, has three

subclasses and no attribute rede�nitions.

The following query selects pairs of houses and cars having the same owner:

select h, c

from House h, Car c

where h.owner = c.owner and

h.owner.salary > 100.000

Let us de�ne

Cj

a2C

0

:= fc 2 Cjc:a 2 C

0

g

to be the objects of class C whose value for attribute a is of class C

0

. Hence, we can

partition an extent into several subsets depending on the type of the attribute. If this

partition of an extent is not available by a special index on the type of a, it has to be

determined dynamically. The sequel shows that even if we have to get the information

dynamically, partitioning may be interesting. Note that (attribute-type-based) partition-

ing is similar in spirit to hash-based partitioning. But the former not only exhibits the

same advantages as the latter but also some more (see below).

Applying the above de�nition, we can partition the original join House 1 Car into

the following 16 joins
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Housej

owner2Employee

1 Carj

owner2Employee

Housej

owner2Employee

1 Carj

owner2Manager

Housej

owner2Employee

1 Carj

owner2Secretary

Housej

owner2Employee

1 Carj

owner2Robot

Housej

owner2Manager

1 Carj

owner2Employee

Housej

owner2Manager

1 Carj

owner2Manager

Housej

owner2Manager

1 Carj

owner2Secretary

Housej

owner2Manager

1 Carj

owner2Robot

Housej

owner2Secretary

1 Carj

owner2Employee

Housej

owner2Secretary

1 Carj

owner2Manager

Housej

owner2Secretary

1 Carj

owner2Secretary

Housej

owner2Secretary

1 Carj

owner2Robot

Housej

owner2Robot

1 Carj

owner2Employee

Housej

owner2Robot

1 Carj

owner2Manager

Housej

owner2Robot

1 Carj

owner2Secretary

Housej

owner2Robot

1 Carj

owner2Robot

out of which only the following 4 survive:

Housej

owner2Employee

1 Carj

owner2Employee

Housej

owner2Manager

1 Carj

owner2Manager

Housej

owner2Secretary

1 Carj

owner2Secretary

Housej

owner2Robot

1 Carj

owner2Robot

We just eliminated those joins which for sure result in the empty set. For example, we

know that

Housej

owner=Employee

1 Carj

owner=Manager

results in the empty set since the equality of two owners trivially implies the equality of

their respective types. In general, if we have c possible classes for an attribute value, only

c joins have to be performed. The rest of the c

2

joins results in empty sets.

The question now is in how far does this kind of saving in the number of joins to be

executed result in savings of actual execution time. More speci�cally: Are the execution

costs for the remaining four joins, including the partitioning costs of the input into the

di�erent classes faster to execute than the single join Employee* 1 Employee* ?

Let us �rst consider a theoretical argument. Further let us assume, that the class

hierarchy rooted at C of the join attribute's class C consists of c classes containing exactly

n=c elements each. Then, the join costs depend on the actual join algorithm but the in-

memory costs can be assumed to be proportional to the following expressions:

join algorithm cost for C* cost for c small joins

nested-loop n

2

c(n=c)

2

sort-merge n lgn c(n=c lgn=c)

hash n c(n=c)

if we assume that the result size is smaller than n. Now, the factors we save can be

estimated as follows:
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join algorithm expected saving factor

nested-loop c(n=c)

2

=n

2

= 1=c

sort-merge c(n=c lgn=c)=(n lgn) = 1� lg c= lgn

hash c(n=c)=n = 1

Hence, the largest saving is for the nested-loop algorithm, some small savings are still

available for the sort-merge join, and no saving exists for the hash join.

Nevertheless, in practice the results will di�er for two reasons:

1. Overhead

The higher the number of joins, the higher the overhead of their initialization and

unioning of the result (although this union does not involve duplicate elimination).

For example, we would expect c small hash joins to be slower than the one big hash

join.

2. Paging

The arguments of the smaller joins will �t better into the available bu�er than

the big arguments for the big join. We would expect less paging and, hence, less

execution time spent for the smaller joins, if the size of the arguments exceeds a

certain threshold. This becomes even more true for the hash join since its access to

pages is | opposed to the sort-merge join | rather random.

Since the proportion of the overhead becomes smaller for larger joins, we would expect

a break-even point between the two execution plans for hash join. This is illustrated in

Fig. 4 where the execution times for di�erent join algorithms was measured for c = 4

classes where each class contains exactly n=4 elements.

Let us know resume the optimization of the example. So far, we have only applied type-

based partitioning which is similar in spirit to hash partitioning. Nevertheless, applying

type-based partitioning allows us to incorporate more knowledge into the optimization

process of the single partitions. If we assume that only employees and managers earn

more than 100.000 and that this knowledge is available through min/max statistics on

the extents, we can eliminate two further joins resulting in

Housej

owner2Employee

1 Carj

owner2Employee

Housej

owner2Manager

1 Carj

owner2Manager

In case Employee is a virtual class, we are done with

Housej

owner2Manager

1 Carj

owner2Manager

Last, we have to introduce the selection. Assuming that all managers earn more

than 100.000, no selection is needed. Assume we have logical extents. Then, saving this

selection saves accessing the Manager objects.

Remarks The above discussion was based on attribute values. If we replace these

attributes and their type by methods and their result type, the above optimization tech-

niques still remain valid. That is, the argument types of a method can just be neglected.
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n nl nl (P) sm sm (P) hl hl (P)

256 0.05 0.02 0.02 0.02 0.02 0.02

512 0.19 0.06 0.03 0.03 0.02 0.03

1024 0.95 0.34 0.07 0.06 0.03 0.04

2048 3.78 1.52 0.16 0.15 0.06 0.07

4096 15.21 6.03 0.34 0.33 0.11 0.13

8192 60.66 24.39 0.75 0.73 0.23 0.25

16384 242.61 97.38 1.66 1.62 0.49 0.63

32768 969.50 382.43 3.83 3.48 1.16 1.37

65536 - - 8.38 7.82 2.83 3.89

131072 - - 20.13 17.88 9.17 8.27

262144 - - 49.86 39.38 25.95 17.16

Figure 4: Sample experimental result to illustrate the e�ect of partitioning

The execution times for nested-loop (nl), sort-merge (sm), and hash-loop (hl) join algorithms

are given in seconds. The variant where partitioning was applied is marked with an additional

\P". Due to its tremendous run-time, the nested loop algorithm was not measured for all extent

sizes n.

Furthermore, since the cost of evaluating a method can be far higher than the evalua-

tion of a simple comparison, the saving is higher. Additionally to saving scan and join

operations, one is able to save method applications.

As a last remark in this section let us note that although we dealt with re�nement

under covariance the analogous optimization techniques exist for contravariance.

5 Conclusion

We presented several techniques to optimize queries that span a hierarchy of class extents.

The main idea is to make the (sub-) extents visible to the optimizer and to apply tra-

ditional optimization techniques, reasoning about symmetry, and type inference to yield

highly optimized execution plans.

In order to apply some of our optimization techniques more successfully, we relied

on the possible types of the values of an attribute. One way to yield this information

was to dynamically check types. Another was to rely on type aggregate information or

type based indices. We did not elaborate on how to maintain this kind of information

e�ciently. Hence, some future research in this direction is necessary.
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