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Abstract

The generally accepted optimization heuristics of pushing selections down does not

yield optimal plans in the presence of expensive predicates. Therefore, several re-

searchers have proposed algorithms for the optimal ordering of expensive joins and

selections in a query evaluation plan. All of these algorithms have an exponential

run time. For a special case, we propose a polynomial algorithm which { in one

integrated step { computes the optimal join order and places expensive predicates

optimally within the join tree. The special case is characterized by the following

statements:

1. only left-deep trees are considered,

2. no cross-products are considered,

3. the cost function has to exhibit the ASI property, and

4. cheap selections are pushed before-hand.

1 Introduction

Traditional work on algebraic query optimization has mainly focused on the problem of or-

dering joins in a query. Restrictions like selections and projections are generally treated by

"push-down rules". According to these, selections and projections should be pushed down

the query plan as far as possible. These heuristic rules worked quite well for traditional

relational database systems where the evaluation of selection predicates is of neglectable

cost and every selection reduces the cost of subsequent joins. As pointed out by Kemper,

Moerkotte and Steinbrunn [8] and Hellerstein and Stonebraker [4], this is no longer true for

modern database systems like extensible DBMSs or object-oriented DBMSs where users

are allowed to implement arbitrary complex functions in a general-purpose programming

language. Even in traditional SQL database systems expensive predicates occur due to

subqueries which can not be unnested.

Several researchers have proposed algorithms for the optimal ordering of expensive joins

and selections. All these algorithms bear exponential worst-case complexity.

1



In this paper we generalize the approaches of Ibaraki, Kameda [6] and Krishnamurthy,

Boral, Zaniolo [10] for ordering joins to capture joins and selections { both with expensive

predicates. We use a re�ned version of the standard cost function given in [10] to account

for expensive join and selection predicates. Concerning the search space and the class of

admissible queries, we adopt the assumptions of [10]. That is, we consider acyclic join

graphs only and produce left-deep processing trees without cross products.

The rest of the paper is organized as follows. After summarizing related work in the

next section, we present the background for the rest of the paper in section 3. In section

4 we present an algorithm for ordering expensive selections and joins. Section 5 concludes

the paper.

2 Related Work

Several researchers addressed the problem of ordering binary joins in an n-way join. The

standard and | even today | most prevailing method to solve this optimization problem

is dynamic programming [17]. A reason for its popularity might be the simplicity and

universality of the method. It can be applied to all join graphs, all query processing trees

{ even with cross products, and basically all cost functions. A fast implementation of a

dynamic programming algorithm for bushy trees and cross products is described in [21].

In [15], Ono and Lohman discussed the complexity of dynamic programming algorithms

for the join ordering problem. They also gave the �rst real world examples to show that

abandoning cross products can lead to more expensive plans.

An NP-hardness result for the join ordering problem for general query graphs was estab-

lished in 1984 [6]. Later on, a further results showed that even the problem of determining

optimal left-deep trees with cross products for star queries is NP-complete [1]. The �rst

polynomial time optimization algorithm was devised by Ibaraki and Kameda [6] in 1984.

Their IK-algorithm solved the join ordering problem for the case of left-deep processing

trees without cross products, acyclic join graphs and a nontrivial cost function counting

disk accesses for a special block-wise nested-loop algorithm. The IK-algorithm was subse-

quently improved by Krishnamurthy, Boral and Zaniolo [10] to work in time O(n

2

). They

assumed that the database is memory resident and used a simpler and more common cost

function. The IK- and KBZ-algorithms both built on the notion of rank. The rank is a

numerical value that can be associated with every left-deep tree. The algorithm is based

on the fact that the relative order of two adjacent connected subparts of a left-deep tree

is basically determined by the size of the rank of each subpart supposed that no cross

products are present in the tree. In the next section, we review the IK-KBZ-algorithm in

some detail.

In [1], the authors present an algorithm to �nd optimal left-deep processing trees with cross

products for star queries in time O(2

c

+n logn) where c is the number of cross products in

a solution. Concerning the area of non-exact (heuristic) algorithms, there are several ap-

proaches, too. The �rst published nontrivial heuristic for treating cyclic queries appeared

in [10]. They applied the KBZ-algorithm to a minimal spanning tree of the join graph.

Several other approaches use general heuristic search methods like branch-and-bound, A

�

,

tabu search, etc. to �nd orderings with small costs. The class of randomized algorithms

for the join ordering problem includes all stochastic optimization methods like random
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sampling, simulated annealing, genetic algorithms and several hybrid approaches. A com-

parative overview over the best-known exact, heuristic and randomized approaches can be

can be found in [9, 18].

The above mentioned approaches order joins only. Whereas this optimization problem

attracted much attention in the database research community, much less investigations

took place for optimizing boolean expressions not containing any join predicate. Within

the database community, there are only two examples the authors are aware of [7, 8].

Concerning the problem of ordering both joins and selections only few approaches are

known. By modeling selections as joins with arti�cial relations, the authors of [2, 11]

propose a traditional optimization algorithm to order joins and selections.

In [4, 5] Hellerstein and Stonebraker present an algorithm for the optimal placement of

expensive selections within a join graph. By applying their "predicate migration algorithm"

to every possible join ordering, they gave an O(m! (m+s)

4

log(m+s)) algorithm for ordering

m joins and s selections.

The authors of [19] introduced a new type of evaluation plans { called bypass evaluation

plans { which are superior to traditional plans in the case of disjunctive queries. They gave

an O(2

n�1

n!) algorithm for determining near-optimal bypass plans for disjunctive queries

with expensive predicates. By reducing the search space there is also a faster algorithm

which runs in time O((n + 1)!) and yields optimal bypass plans for randomly generated

queries with a high probability.

The table below compares the di�erent approaches of ordering joins and selections. The

parameter m denotes the number of relations and n denotes the total number of operators

in the query.

dynamic IK-KBZ dynamic predicate bypassing this

progr. [6, 10] progr. migration joins paper

[17] [16] [4, 5] [19]

query graph arbitrary acyclic arbitrary arbitrary arbitrary acyclic

query type conjunctive conjunctive arbitrary conj. selection arbitrary conjunctive

predicates

processing bushy left-deep bushy bushy bypass left-deep

trees trees trees trees trees plans trees

cross prod. yes no yes yes no no

ordering of joins joins selections selections selections selections

and joins and joins and joins and joins

cost function arbitrary ASI arbitrary (ASI) arbitrary ASI

join costs arbitrary linear arbitrary linear arbitrary linear

caching no no yes yes no no

expensive no no yes yes yes yes

predicates

semijoins no no no no yes no

worst-case O(3

m

) O(m

2

) O(5

m

+m3

m

) O(m!n

4

log n) O(2

n�1

n!) O(n

2

)

complexity

3 Preliminaries

We consider simple conjunctive queries [20] involving only single table selections and bi-

nary joins (selection-join-queries). A query is represented by a set of query predicates

p

[1]

; : : : ; p

[n]

, where p

[i]

is either a selection predicate p

i

which refers to a single relation R

i

or a join predicate p

i;j

connecting relations R

i

and R

j

.
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Let R

1

; : : : ; R

n

be the relations involved in the query. Associated with each relation is

its size n

i

= jR

i

j. The predicates in the query induce a join graph G = (fR

1

; : : : ; R

n

g; E),

where E contains all pairs fR

i

; R

j

g for which there exists a predicate p

i;j

relating R

i

and

R

j

. We assume that the join graph is acyclic. For every join predicate p

i;j

2 P relating

relations R

i

; R

j

, there is an associated selectivity

f

i;j

:=

jR

i

�R

j

j

jR

i

�R

j

j

=

jR

i

� R

j

j

jR

i

j � jR

j

j

and for every selection predicate p

i

2 P , we assume the existence of a selectivity

f

i

:=

j�

p

i

(R)j

jRj

The selectivity is the expected fraction of tuples that quali�es in a join or a selection.

The evaluation of a join or selection predicate can be of di�erent costs. We denote by c

i;j

the costs of evaluating predicate p

i;j

for one tuple of R

i

� R

j

. Similarly, c

i

denotes the

per-tuple-costs associated with the selection predicate p

i

.

A processing tree for a select-join-query is a rooted binary tree with its internal nodes

having either one or two sons. In the �rst case the node represents a selection operation

and in the latter case it represents a binary join operation. The tree has exactly n leaves,

which are the relations R

1

; : : : ; R

n

. A processing tree de�nes a partial order on the nodes

of the tree, corresponding to possible query execution strategies. Internal nodes can be

viewed as intermediate result relations and leaf nodes represent base relations. Processing

trees are classi�ed according to their shape. The main distinction is between left-deep

trees and bushy trees. In a left-deep tree the right son of an internal node is always a

leaf. Otherwise it is called a bushy-tree. Obviously, every processing tree corresponds to

an expression in the relational algebra. In case of left-deep trees, every processing tree can

be represented by an algebraic expression of the form

(: : : ((R

1

 

1

) 

2

) : : :  

m

);

where the unary operators  

i

(i = 1 : : : n) are either selections �

p

i

or joins �

p

i;j

R

j

. R

1

is called the starting relation. The rest of this paper deals only with left-deep processing

trees.

There are di�erent implementations of the join operator, each leading to di�erent cost

functions for the join and hence to di�erent cost functions for the whole processing tree.

Common implementations of a binary join operator are (see [3, 13, 20])

� nested loop join

� hash loop join

� sort merge join

The corresponding cost functions [10] are

C

nl

(R � S) = jRj � jSj+ jRj � jSj � f

RS

C

hl

(R � S) = 1:2 � jRj+ jRj � jSj � f

RS

C

sm

(R � S) = (jRj � log jRj+ jSj � log jSj) + jRj � jSj � f

RS
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Here we made the important assumption that our database is memory resident, i.e. there

is no paging to disk during execution of a query. The �rst summand in the cost functions

accounts for the costs of iterating over the relations and for checking the join predicate.

The second sum which is identical for all cost functions, accounts for the costs to construct

the intermediate results. The factor 1.2 stands for the average length of the collision list

of the hash table.

In order to approximate the costs of n-way joins, we associate with each of the cost functions

C

nl

; C

hl

; C

sm

operating on join-expressions a corresponding binary cost function g working

on input sizes:

g

nl

(r; s) = r � s+ r � s � f

RS

g

hl

(r; s) = 1:2 � r + r � s � f

RS

g

sm

(r; s) = (r � log r + s � log s) + r � s � f

RS

Since the size of the intermediate results plays an important role in all cost functions,

it is a central problem to determine this sizes. Unfortunately, the problem is quite di�cult.

In fact, if one wants to determine the size exactly, the only way would be to perform the

joins explicitly and count the tuples in the result! This is much to expensive in practice. As

a matter of fact, the complexity can be exponential, since the size of intermediate results

can grow exponentially if the selectivities are su�ciently close to one. Under the usual

assumptions of independent and uniform distribution of attribute values, the following

standard approximation holds [20]:

jR

1

� : : : �R

k

j �

k

Y

i=1

jR

i

j

Y

j<i

f

ij

Hence we can write

C(R

�(1)

� : : : �R

�(n)

) =

n

X

k=2

g

k

(jR

�(2)

� : : : �R

�(k)

j; jR

�(k)

j)

=

n

X

k=2

g

k

(

k

Y

i=1

jR

�(i)

j

Y

j<i

f

�(i)�(j)

; jR

�(k)

j)

where g

k

is one of the functions C

nl

; C

hl

depending on the join algorithm used. Since C

nl

and C

hl

are both linear in the �rst argument, we can "extract" the linear factor and de�ne

the unary cost function g as

g

nl

(s) = s+ s � f

RS

g

hl

(s) = 1:2 + s � f

RS

Henceforth we will use the unary function g. Now, we have

C(R

�(1)

� : : : �R

�(n)

) =

n

X

k=2

jR

�(2)

� : : :�R

�(k)

j g

k

(jR

�(k)

j)

Please note that C covers almost all cost functions for joins as pointed out in [10] and

it even covers the nontrivial cost function given in [6]. However, it does not account for

expensive join predicates. These will be taken care of in the next section.
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Next, we repeat some fundamental results concerning the optimization of cost functions

with ASI-property and the IK-KBZ-algorithm of Krishnamurthy, Boral and Zaniolo [10] for

the join ordering problem. The KBZ-algorithm is an improved version of the IK-algorithm

of Ibaraki and Kameda [6], who were the �rst to recognize the applicability of results for

sequencing problems with ASI cost functions [14] to the area of optimizing join orders.

As mentioned earlier, every left-deep tree corresponds to a permutation indicating the

order in which the base relations are joined with the intermediate result relation. We will

henceforth speak of permutations or sequences instead of left-deep processing trees.

We have just seen that all cost functions in the standard cost model for left-deep trees

have the form

Cost(s) =

n

X

i=2

js

1

: : : s

i�1

j � g

i

(js

i

j)

=

n

X

i=2

(

i�1

Y

j=1

f

j

� js

j

j) � g

i

(js

i

j) (1)

where the function g

i

accounts for the join algorithm used in the respective step. As can

easily be veri�ed, there is a recursive de�nition of these cost functions:

C(�) = 0

C(R

j

) = 0 if R

j

is the starting relation

C(R

j

) = g

j

(jR

j

j) else

C(s

1

s

2

) = C(s

1

) + T (s

1

) � C(s

2

)

with

T (�) = 1

T (s) =

n

Y

i=1

f

i

s

i

Here, s

1

; s

2

and s denote sequences of relations.

We now de�ne the ASI property

1

[14] of a cost function.

De�nition 3.1 (ASI property)

A cost function C has the ASI property, if there exists a rank function r(s) for sequences

s, such that for all sequences a and b and all non-empty sequences u and v the following

holds:

C(auvb) � C(avub), r(u) � r(v)

For a cost function of the above form, we have the following lemma:

Lemma 3.1 Let C be a cost function which can be written in the above form.

Then C has the ASI property for the rank function

r(s) =

T (s)� 1

C(s)

for nonempty sequences s.

1

adjacent sequence interchange property
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Let us consider sequences with a �xed starting relation, say R

1

. Since we do not allow

any cross products in a processing tree, the second relation in a feasible join sequence is

restricted to relations which are adjacent to R in the join graph. Similar restrictions hold

for all following relations. These restrictions de�ne a precedence relation on the set of all

base relations. The graph of the precedence relation is a directed version of the join tree

with R

1

being the root and all other relations directed away from the root. This shows

that we actually have a sequencing problem with tree-like precedence constraints where the

cost function satis�es the ASI-property.

For the unconstrained sequencing problem | that is, if we had no precedence con-

straints | sorting the relations according to their rank leads to an optimal sequence!

2

But if precedence constraints are present, they often make it impossible to sort the rela-

tions according to their ranks. The next result provides a means to resolve the con
ict of

ordering according to the precedence constraints and ordering according to the rank. A

composite relation is de�ned as an ordered pair (r; s) where r and s are either single or

composite relations and the condition r(r) > r(s) holds. Rank, cost and size of the com-

posite relation are de�ned to be the respective values of the sequence rs. The precedence

relation generalizes to sequences of relations in a straightforward way. In [14] it is shown

that if for two composite sequences r and s, where r precedes s in the precedence tree and

r(r) > r(s), there is an optimal sequence with r immediately preceding s. By iterating the

process of tying pairs of composite relations together whose rank and precedence stay in

con
ict, we eventually arrive at a sequence of composite relations which is sorted by rank.

This process of iterated tying is called normalization.

The reader can probably already anticipate the outlines of a recursive algorithm for

solving the join ordering problem with a given starting relation: One starts at the bottom

of the directed join tree and works upwards. To obtain the optimal sequence for a subtree

of relations where all children are chains one simply normalizes each of the chains and

merges them according to the ranks. The resulting sequence is again rank ordered and

we replace the subtree by the corresponding chain of composite relations. By considering

every base relation as starting relation, computing the optimal sequence for this starting

relation and then choosing the cheapest of these sequences, we can determine an optimal

sequence for the join ordering problem.

This is basically the IK-algorithm described in [6]. In [12], Lawler gives an e�cient im-

plementation of this algorithm that runs in time O(n logn), using a set representation

instead of the straightforward sequence representation. The following description of the

IK-algorithm is taken from [6].

Algorithm NORMALIZE(S):

input: a chain of nodes S

output: chain of nodes

1 while there is a pair of adjacent nodes, S

1

followed

by S

2

, in S such that r(S

1

) > r(S

2

) do

2 Find the �rst such pair (starting from the beginning of S) and

replace S

1

and S

2

by a new composite node (S

1

; S

2

).

2

This is not true for the join ordering problem, where the analog problem would consider cross products.
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Algorithm TREE-OPT(Q):

input: tree query Q with speci�ed root R, the relations referenced in Q,

their sizes, and the predicates of Q together with their selectivity factors

output: optimal join ordering for Q with starting relation R

1 Construct the directed tree T

R

with root R.

2 If T

R

is a single chain, then stop. (The desired join ordering is given by the chain.)

3 Find a subtree whose left and right subtrees are both chains.

4 Apply NORMALIZE to each of the two chains.

5 Merge the two chains into one by ordering the nodes by increasing ranks,

and go to step 2.

Algorithm IK(Q):

input: tree query Q with speci�ed root R, the relations referenced in Q,

their sizes, and the predicates of Q together with their selectivity factors

output: optimal join ordering for Q

1 Let S be some �xed initial ordering and C the costs of S

Let R

1

; : : : ; R

n

be the relations involved in the query.

2 for i 1 to N do

3 Apply TREE-OPT to the directed join tree with root R

i

4 If the optimal join ordering starting with R

i

has better costs than C, then

update C and S

5 return S

A slightly more e�cient version of this algorithm is the KBZ-algorithm of Krishna-

murthy, Boral and Zaniolo [10]. Their algorithm has a worst case time complexity of

O(n

2

). The idea is to reuse the computed optimal sequence for a starting relation R to

compute an optimal sequence for a starting relation R

0

being adjacent to R in the join

graph. This leads to a considerable reduction of work. For details we refer to [10].

4 Ordering Expensive Selections and Joins

Let us extend the notion of a precedence tree to capture select-join queries. Suppose we

are to use a distinguished relation { say R

1

{ as the starting relation in the processing

tree (the leftmost leaf). Then, since no cross products are allowed, the join tree becomes

a rooted tree with R

1

as the root. We can extend the directed tree to incorporate all the

selection operators as follows. For every selection operator  

i

= �

p

i

relating to a single

relation R

i

, we add a new successor node to R and label it with  

i

. The resulting tree

de�nes a precedence relation among the operators  

i

and we call it the precedence tree of

the query with respect to the starting relation R

1

. For an example see the end of this

section.

For each operator  

i

we de�ne the cost factor d

i

as

d

i

=

(

c

i

if  

i

� �

p

i

g(jR

i

j) � c

j;i

if  

i

� �

p

j;i

R

i
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for i > 1 and d

1

= 0, where c

i

and c

j;i

denote the cost of evaluating p

i

and p

j;i

for one

tuple, respectively. j is the index of the unique predecessor of R

i

in the precedence tree.

The size factors h

i

are de�ned as

h

i

=

(

f

i

if  

i

� �

p

i

jR

i

j � f

j;i

if  

i

� �

p

j;i

R

i

d

i

accounts for the costs incurred by applying operator  

i

to an intermediate result R whose

generation was in accordance with the precedence tree. Whenever  

i

is applied to such an

intermediate result R, we expect R to grow by a factor of h

i

. We call a sequence feasible, if

it satis�es all ordering constraints implied by the present attributes in the predicates of the

operators, as expressed in the precedence tree. In the following we identify permutations

and sequences.

For a sequence s we de�ne the costs

3

Cost(s) = jR

1

j

n

X

i=2

F

s

i�1

d

s(i)

= jR

1

j

n

X

i=2

i�1

Y

j=2

h

s(j)

d

s(i)

;

where s(i) is the i-the element of the operator sequence s and the intermediate result size

F is given by

F

s

i

=

i

Y

j=2

h

s(j)

Then, we have to solve the following optimization problem

minimize

s

[Cost(s)];

where the minimization is taken over all feasible sequences s.

Since R

1

just contributes a constant factor, it can easily be dropped from Cost(s) without

changing the optimization problem.

Our goal is to apply the IK and KBZ algorithms. Hence, we have to �nd a rank function

for which the cost function satis�es the ASI property. We do so by �rst recasting the cost

function into a more appropriate form. For

F (s) =

Y

k2s

h

k

we de�ne the binary function C as

C(j; �) = C(�; j) = c

j

for j 2 f1; : : : ; ng

and

C(s; t) = C(s

0

; s

00

) + F (s)C(t

0

; t

00

) for sequences s; t

where s = s

0

s

00

and t = t

0

t

00

with jsj > 1 ) js

0

j � 1 ^ js

00

j � 1, and jtj > 1 ) jt

0

j � 1^

jt

00

j � 1.

3

Empty sums equal 0, empty products 1.
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A simple induction shows that C is consistent, that is, s

1

s

2

= s

0

1

s

0

2

implies C(s

1

; s

2

) =

C(s

0

1

; s

0

2

). With the binary C being consistent, the unary C de�ned as

C(j) = c

j

for j 2 f1; : : : ; ng

C(st) = C(s; t) for sequences s; t with jsj � 1 ^ jtj � 1

is well-de�ned. Another simple proof by induction shows that the functions Cost and the

unary C are equal for all feasible s. Summarizing, the following three lemmata hold.

Lemma 4.1 The binary cost function C is consistent.

Lemma 4.2 The unary cost function C is well-de�ned.

Lemma 4.3 The unary cost function C and the cost function Cost are the same.

Now, we come to the central Lemma of our paper, which will allow us to apply the

IK and the KBZ algorithms to our problem of optimally ordering expensive selections and

joins with expensive predicates simultaneously.

Lemma 4.4 C satis�es the ASI property [14] with

r(s) =

F (s)� 1

C(s)

being the rank of a sequence s.

Proof: We have to proof that

C(ustv) � C(utsv), r(s) � r(t)

for all sequences u and v. Since

C(ustv) = C(us) + F (us)C(tv)

= C(u) + F (u)C(s) + F (us)[C(t) + F (t)C(v)]

= C(u) + F (u)C(s) + F (us)C(t) + F (us)F (t)C(v)

the following holds

C(ustv)� C(utsv) = F (u)[C(t)(F (s)� 1)� C(s)(F (t)� 1)]

= F (u)C(t)C(s)[r(s)� r(t)]

With this equation the ASI property follows for C. 2

Using the results summarized in section 3, we can apply the IK- or KBZ-algorithm.

Both guarantee to �nd an optimal solution in time O(n

2

log(n)) and O(n

2

), respectively.

Since we do only consider strict left-deep trees, non-expensive selections will be placed after

the corresponding join in any case! To avoid this drawback, we push cheap selections down

the query tree prior to the invocation of the algorithm. Note that this preprocessing step

changes the sizes of some relations which must be respected.

Next, we illustrate how the IK-algorithm in case of our new rank de�nition works.

10



Example: Consider the following select-join-query involving six relations:

�

p

2

(�

p

3

(�

p

5

(R

1

�

p

1;2

R

2

�

p

1;3

R

3

�

p

2;4

R

4

�

p

3;5

R

5

�

p

5;6

R

6

)))

The are eight operators. Three of them are (expensive) selections and �ve are joins. The

associated selectivities, relation sizes and cost factors are speci�ed in the three tables below.

n

1

n

2

n

3

n

4

n

5

n

6

50 60 30 10 40 20

f

1;2

f

1;3

f

2;4

f

3;5

f

5;6

f

2

f

3

f

6

0.6 0.7 0.05 0.3 0.2 0.5 0.6 0.4

c

1;2

c

1;3

c

2;4

c

3;5

c

5;6

c

2

c

3

c

6

6 5 2 7 4 10 4 3

The join graph is shown in Figure 1(a) and Figure 1(b) shows the directed join graph

rooted at the starting relation R

1

, i.e., the precedence graph.

(a)

R

4

R

2

R

1

R

3

R

5

R

6

(b)

1

n = 50

n = 60

2

f = 0:6, c = 6

4

n = 10

f = 0:05, c = 2

7

f = 0:5, c = 10

3

n = 30

f = 0:7, c = 5

8

f = 0:6, c = 4

5

n = 40

f = 0:3, c = 7

9

f = 0:4, c = 3

6

n = 20

f = 0:2, c = 4

Figure 1: (a) join graph in the example query, (b) the associated precedence

tree; selectivities, relation sizes and cost factors are shown. Dashed arrows

pointing to square boxes indicate selections and solid arrows pointing to cir-

cular boxes correspond to joins.

Instead of considering every relation as a starting relation as the IK-algorithm does,

we restrict ourselves to the single starting relation R

1

. Since the nodes in the rooted tree

uniquely correspond to the operators in the query, we henceforth use them interchangeably.

For this we use the following coding scheme. Suppose the query has m selections and

involves n base relations. Then, operator  

i

(1 < i � n) corresponds to the join operation

�

p

j;i

R

i

where j is the unique predecessor node in the precedence tree. For n < i � n+m,

operator  

i

corresponds to the selection operator �

p

j

where j is the unique predecessor

11



node of i in the precedence tree. Operator  

1

represents an exception, it corresponds to

the starting relation R

1

. Nodes in the precedence tree are labeled with the number of the

corresponding operator, i.e. node i (1 � i � n +m) corresponds to operator  

i

. E.g., in

our example, node 5 corresponds with operator  

5

, which is the join �

p

3;5

R

5

whereas node

7 corresponds with operator  

7

, which is the selection �

p

2

.

In this example, we assume that all joins are hash-loop joins. The IK-algorithm works

bottom-up. Let us �rst process the subtree with root 5. The sons of node 5 are the leaves

6 and 9 which are trivially ordered by rank. Node 6 is a join operator and its rank is

r( 

6

) =

F ( 

6

)� 1

C( 

6

)

=

f

5;6

n

6

� 1

1:2 � c

5;6

=

0:2 � 20� 1

1:2 � 4

= 0:625

Node 9 is a selection operator with rank

r( 

9

) =

F ( 

9

)� 1

C( 

9

)

=

f

5

� 1

c

5

=

0:4� 1

3

= �0:20

Now we can merge the two nodes. Since r( 

9

) < r( 

6

), node 9 has to precede node 6 and

we can replace the subtree rooted at 5 with the chain 5-9-6. Next, we examine whether

this chain is still sorted by rank. The rank of node 5 is

r( 

5

) =

0:3 � 40� 1

1:2 � 7

= 1:31

This shows that the ranks of the nodes 5 and 9 contradict their precedence and we have to

tie these two nodes together as a composite node (5,9). The rank of the new node (5; 9) is

r( 

5

 

9

) =

F ( 

5

 

9

)� 1

C( 

5

 

9

)

=

n

5

f

3;5

f

5

� 1

1:2c

3;5

+ n

5

f

3;5

c

5

=

40 � 0:3 � 0:4� 1

1:2 � 7 + 40 � 0:3 � 3

= 0:086

For the rank of the selection node 8 we have

r( 

8

) =

0:6� 1

4

= 0:1

and the new rooted join tree is

12



1

2

4 7

3

8

r = 0:10

5

r = 0:086

9

6

r = 0:625

In the next step we merge node 8 and the chain consisting of the composite node (5,9)

succeeded by node 6. The corresponding join tree is

1

2

4 7

3

5

r = 0:086

9

8

r = 0:1

6

r = 0:625

The rank of the join node 3 is

r( 

3

) =

30 � 0:7� 1

1:2 � 5

= 3:333

Since the nodes 3 and (5,9) have contradictory ranks, we build the new composite relation

(3,5,9) with rank

r( 

3

 

5

 

9

) =

n

3

f

1;3

n

5

f

3;5

f

5

� 1

1:2 � c

1;3

+ n

3

f

1;3

� 1:2 � c

3;5

+ n

3

f

1;3

n

5

f

3;5

c

5

=

30 � 0:7 � 40 � 0:3 � 0:4� 1

1:2 � 5 + 30 � 0:7 � 1:2 � 7 + 30 � 0:7 � 40 � 0:3 � 3

= 0:106

The nodes (3,5,9) and 8 still have contradictory ranks and must be tied together again.

The new rank is

r( 

3

 

5

 

9

 

8

) = 0:050

and the new join tree has the form
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1

r = 4:86

2

r = �0:208

4 7

r = �0:05

3

5

r = 0:050

9

8

6

r = 0:625

After having linearized the right subtree of R

1

, we proceed with the left subtree. The

ranks of nodes 2,4 and 7 are

r( 

2

) = 4:86; r( 

4

) = �0:208; r( 

7

) = �0:05

We merge the subtree rooted at 2 and then normalize the resulting chain 2-4-7. The pair

2 and 4 has contradictory ranks, hence we build the composit node (2,4). Since the rank

of (2,4) is 0.182, which is still greater then the rank of the succeeding node 7, we add 7 to

the end of (2,4). The rank of the composite node (2,4,7) evaluates to 0.029 and the new

precedence tree is

1

2

r = 0:029

4

7

3

5

r = 0:050

9

8

6

r = 0:625

Finally, the left and right chains of R

1

are merged, yielding

1

2

4

r = 0:029

7

3

5

r = 0:050

9

8

6

r = 0:625
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As result, we have that the �nal sequence of operators

 

1

 

2

 

4

 

7

 

3

 

5

 

9

 

8

 

6

which correspond to the following optimal left-deep precessing tree for the starting relation

R

1

�

p

5;6

�

p

3

�

p

5

�

p

3;5

�

p

1;3

�

p

2

�

p

2;4

�

p

1;2

R

1

R

2

R

4

R

3

R

5

R

6

Analogous computations are made for the precedence trees rooted at the relations

R

2

; R

3

; R

4

; R

5

and R

6

. The cheapest of all the n operator sequences is the result of the

IK-algorithm.

5 Conclusion

We have presented the �rst polynomial algorithm that optimally orders joins and selections,

both with expensive predicates. However, there remain several open questions for further

research. First, the question arizes whether | opposed to the two-phase approach proposed

in the paper, where cheap selections are pushed before-hand in a separate phase before

the algorithm is applied | there exists a polynomial one-phase algorithm. Second, in

our result trees, expensive predicates can be evaluated many times, if they occur after

several join operations. This can be avoided by caching the results of expensive predicates.

The same is true for join predicates, if intermediate results contain duplicates. Clearly,

this caching can be applied during the evaluation of the processing tree produced by our

algorithm. But then, applying caching obviously changes the costs. Hence, under these

circumstances, our algorithm may not produce the optimal result. The question is whether

there exists a polynomial time algorithm which produces the optimal processing tree under

the assumption that expensive predicate evaluations are cached.
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