
Classi�cation and Optimization

of Nested Queries

in

Object Bases

Sophie Cluet Guido Moerkotte

INRIA Fakult�at f�ur Informatik

BP 105 Universit�at Karlsruhe

Domaine de Voluceau Am Fasanengarten 5

78153 Le Chesnay Cedex D{7500 Karlsruhe

France Germany

Sophie.Cluet@inria.fr moer@ira.uka.de

February 16, 1994

Abstract

Many declarative query languages for object-oriented (oo) databases allow nest-

ed subqueries. This paper contains a complete classi�cation of oo nested queries

and appropriate unnesting optimization strategies based on algebraic rewriting. We

adapt some known relational techniques and introduce new ones that use and are

concerned with features speci�c to object-oriented queries. In particular, we intro-

duce two new and powerful grouping operators which will form the basis for our

unnesting techniques.

Keywords: Query optimization, Object Oriented Databases.

1 Introduction

One essential feature of declarative query languages is the nesting of queries (embedding

of a query into another query). In SQL, nested queries are used to express complex

conditions. This is also true in object-oriented (oo) SQL-like query languages. But oo

nested queries serve other purposes as well: they are used to access nested structures and

to produce nested results. Thus, they represent a fundamental characteristic of oo query

languages. Yet, their optimization has remained largely unexplored. We propose novel

techniques for e�ciently evaluating nested queries in oo languages.

In the last few years, many algebras have been proposed for the optimization of oo

query languages [2, 3, 7, 16, 28, 30, 31]. Most of them allow the representation of nested

algebraic expressions (e.g., a join may occur within the predicate of a selection). However,

1

the proposed algebraic equivalences do not deal with these nested parts that remain nested

throughout the rewriting process. Finally, they are evaluated by rather ine�cient nested

loops.

We propose a complete classi�cation of oo nested queries together with appropriate

algebraic unnesting techniques. It is fundamental to understand that unnesting a query

is not to return an unnested structure, but an unnested algebraic expression (e.g., no

join within the predicate of a selection). The interest of unnesting queries is twofold.

Unnested expressions can be evaluated more e�ciently and they can be rewritten using

standard equivalences. Our unnesting technique heavily builds on two powerful grouping

operators. The unary grouping is a generalization of the common NF

2

nest operator [27].

The binary grouping operator is even more powerful and is used to more elegantly unnest

queries where an outerjoin followed by a unary grouping is needed. The binary grouping

operator generalizes the nest-join operator of [29].

The optimization of relational nested queries has been studied thoroughly in the last

decade [20, 19, 13, 10, 14, 24, 26, 25]. Naturally, our research has been in
uenced by this

body of work. The classi�cation of relational nested queries introduced in [20] proved to be

useful for relational unnesting. Based on this observation, we extended this classi�cation

to the oo context. This extension is necessary due to the following observations. As

opposed to SQL where the where clause is the only place for occurring nested queries, all

clauses are equally important in an oo SQL-like language. That is: (i) nested blocks may

be located in any clause of a query and (ii) a dependency (i.e., reference to a variable of

the outer block) may occur in any clause of a query inner block. Our classi�cation takes

this orthogonality of oo SQL-like query languages into account.

Also, the relational idea of using di�erent join operators for unnesting nested queries

will be carried over to the oo context [20, 10, 14, 24]. However, as opposed to the relational

context, where unnesting is performed at the SQL level, we use algebraic equivalences.

Thus, our work can be applied to di�erent query languages, if a translation procedure

into the algebra is given. Further, we will show that, due to the nesting in the oo data

structures (:1NF), there exist more elegant and e�cient alternatives for unnesting queries.

First, we can avoid null values. They are needed in the relational context to represent mis-

�ts in the joins (outer-joins) introduced by the unnesting process. This is more naturally

captured by empty sets in the oo context. Secondly, the group-by of SQL is captured

in the relational context in a distorted manner using operations that couple grouping

and aggregate. In the oo context, explicit grouping operations are a necessity but they

also yield more
exibility for expressing and rewriting queries. This results in alternative

unnesting techniques not known in the relational context.

Due to space limitation, this paper concentrates on one level nested queries. More

complex unnesting strategies including the treatment of several levels of nesting, non-

neighbor predicates and outer restrictions can be found in [9]. The paper is organized

as follows. The next section introduces some preliminaries, namely the algebra and the

translation of SQL-like queries into the algebra. The core of the paper is contained in

Section 3. It represents the classi�cation of oo nested queries together with the algebraic

equivalences used for unnesting. We review some results of [8] and introduce new unnest-

ing techniques for those cases which could not be unnested so far. In Section 4, we brie
y

present techniques for unnesting nested queries with quanti�ers. More on the treatment

of quanti�ers can be found in [9]. Section 5 concludes the paper.

2

2 Preliminaries

2.1 Algebra

We assume standard knowledge on oo data models. Our underlying data model is similar

to the O

2

[11], GOM [16] or Exodus [4] model and conforms to the Object Database

Standard [5]. It features objects that have an identity, that are manipulated through

user-de�ned methods, whose structures are complex and that belong to classes that may

be re�ned into subclasses. Each class has an extension which is a set containing the object

identi�ers of all its instances. The model also features complex values (or literals) with

no identity, that are manipulated by standard operators and do not belong to classes.

Hence, there are no extensions for them.

The algebra is an extension of the GOM algebra [17, 18]. Its main characteristic is

that | with the exception of the map operator | it is de�ned on sets of tuples. This

guaranties some nice properties among which is the associativity of the join operator.

We now restate the algebraic operators that will be used in the sequel. Union, inter-

section and di�erence operators, that are part of the algebra, are not reviewed.

Map Operations (and Projection) These operators are fundamental to the algebra.

Since the other operators are de�ned on sets of tuples, sets of non-tuples (mostly sets

of objects) must be transformed into sets of tuples. This is one purpose of the map

operator. Other purposes are dereferenciation, method and function application.

Also, our translation process pushes all nesting into map operators.

The �rst de�nition corresponds to the standard map [17] or materialize [3] operator.

The second and third de�nition are just shorthands: the second is a map with tuple

concatenation and the third a map with tuple construction.

�

e

2

(e

1

) = fe

2

(x)jx 2 e

1

g

�

a:e

2

(e

1

) = fy � [a : e

2

(y)]jy 2 e

1

g

e[a] = f[a : x]jx 2 eg

In the de�nitions, the e

i

's denote both expressions (in the left hand side) and their

evaluation (in the right hand side). Note that the oo map operator obviates the need

of a relational projection. Sometimes the map operator is equivalent to a simple

projection or renaming. In these cases, we will use � instead of �.

Selection Note that in the following de�nition there is no restriction on the selection

predicate. It may contain path expressions, method calls, nested algebraic operators,

etc.

�

p

(e) = fxjx 2 e; p(x)g

Join Operations The algebra features �ve join operators. Besides the complex join

predicate, the �rst four of them are rather standard: join, semi-join, anti-join and

left outer-join are de�ned similarly to their relational counterparts. One di�erence

is that the left outer-join accepts a default value to be given, instead of null, to one

attribute of its right argument.

3

e

1

1

p

e

2

= fy � xjy 2 e

1

; x 2 e

2

; p(y; x)g

e

1

><

p

e

2

= fyjy 2 e

1

;9x 2 e

2

; (p(y; x))g

e

1

<>

p

e

2

= fyjy 2 e

1

;:9x 2 e

2

p(y; x)g

e

1

1

g=c

p

e

2

= fy � xjy 2 e

1

; x 2 e

2

; p(y; x)g [

fy � zjy 2 e

1

;:9x 2 e

2

p(y; x);A(z) = A(e

2

); g 2 A(e

2

);

z:g = c;8a 2 A(e

2

)(a 6= g) z:a = NULL)g

The function A used in the last de�nition returns the set of attributes of a relation.

The last join operator is called d-join (< � >). It is a join between two sets, where

the evaluation of the second set may dependent on the �rst set. It is used to translate

from clauses into the algebra. Here, the range de�nition of a variable may depend

on the value of a formerly de�ned variable. Whenever possible, d-joins are rewritten

into standard joins.

e

1

< e

2

> = fy � xjy 2 e

1

; x 2 e

2

(y)g

Grouping Operations Two grouping operators will be used for unnesting purposes.

The �rst one | called unary grouping | is de�ned on a set and its subscript

indicates (i) the attribute receiving the grouped elements (ii) the grouping criterion,

and (iii) a function that will be applied to each group.

�

g;A�;f

(e) = fy:A � [g : G]jy 2 e;

G = f(fxjx 2 e; x:A�y:Ag)g

Note that the traditional nest operator [27] is a special case of unary grouping. It

is equivalent to �

g;A=;id

. Note also that the grouping criterion may be de�ned on

several attributes. Then, A and � represent sequences of attributes and comparators.

The second grouping operator | called binary grouping | is de�ned on two sets.

The elements of the second set are grouped according to a criterion that depends

on the elements of the �rst argument.

e

1

�

g;A

1

�A

2

;f

e

2

= fy � [g : G]jy 2 e

1

; G = f(fxjx 2 e

2

; y:A

1

�x:A

2

g)g

In the sequel, the following abbreviations will be used: �

g;A;f

for �

g;A=;f

, �

g;A

for

�

g;A;id

.

New implementation techniques have to be developed for these grouping operators.

Obviously, those used for nest operator can be used for simple grouping when �

stands for equality. For the other cases, implementations based on sorting seem

promising. We also consider adapting algorithms for non-equi joins, e.g. those

developed for the band-width join [12].

Max Operation The Max operator has a very speci�c use that will be explained in the

sequel. Note that an analogous Min operator can be de�ned.

Max

g;m;a�;f

(e) = [m : max(fx:ajx 2 eg); g : f(fxjx 2 e; x:a�mg)]

The algebra is de�ned on sets whereas most OODBMS also manipulate lists and bags.

We believe that our approach can be easily extended by considering lists as set of tuples

with an added positional attribute and bags as sets of tuples with an added occurrence

counter attribute.

4

2.2 Translating SQL-like Queries into the Algebra

We use the O

2

SQL language [1] for the examples. However, since we unnest at the

algebraic level, the techniques that we present are not restricted to O

2

SQL but can be

applied to other languages like GOMql [16] or Excess [4]. As a matter of fact, O

2

SQL is

a subset of the oo standard query language as de�ned in [5]. The schema on which the

queries are de�ned represents a company. It can be easily inferred from the queries and,

hence, we will not detail it.

In [8], we showed the importance of factoring out constant or locally constant sub-

queries as well as common subexpressions. For this purpose, we introduced a phase

preceding the optimization process. This phase | called dependency-based optimization

| transforms the SQL-like query by introducing one variable per subquery. Thereby,

common subexpressions are factorized; two occurrences of the same subquery are repre-

sented by only one variable. Further, expressions not dependent on the current block are

pushed into higher level blocks.

Below is an O

2

SQL query before (left hand-side) and after (right hand-side) the

dependency-based transformation. To each employee's age, the query associates the num-

ber of sales made by younger employees.

select tuple(age:x1.age,

nb:count(select s

from x2 in Employee

s in x2.sales

where x2.age < x1.age))

from x1 in Employee

select tuple(age:x1a, nb:cs)

from x1 in Employee

de�ne x1a = x1.age,

cs = count(select s

from x2 in Employee

s in x2.sales

where x2a < x1a

de�ne x2a = x2.age

The transformed query features a new de�ne clause in every block. Here, variables

are introduced that represent expressions dependent on its owner block only. Thus, the

operation x2:age is now part of the outer block. For x2.sales. we did not introduce

a variable. The motivation here is just to ease the translation process whose complete

description is beyond the scope of this paper.

The following algebraic expression corresponds to the outer block of the query:

q � �

[age:x1a;nb:cs]

(�

cs:e

2

(�

x1a:x1:age

(Employee[x1])))

The from clause contains only one variable whose de�nition is translated by Employee[x1].

This allows us to view the set of object identi�ers, i.e. the extension of Employee, as a

unary relation with attribute x1. Note that this attribute allow us to avoid �-expressions

found in other oo algebras. The next two map (�) operators correspond to the de�ne

clause. Their e�ect is to augment the initial relation with two more attributes represent-

ing the age and the result of the nested block (e

2

). The last map operator corresponds to

the select clause.

Let us now take a look at the inner block's algebraic expression.

e

2

� count(�

s

(�

x2a<x1a

(�

x2a:x2:age

(Employee[x2] < x2:sales[s]>))))

The from clause of the inner block contains two variable de�nitions: this is translated

by a d-join (Employee[x2] < x2:sales[s]>). Note that a standard join could not be used

5

since the evaluation of x2.sales obviously depends on the value of x2 . The inner block

features a where clause. This is represented | as might be expected | by a selection.

Note that in this example, the last map operator (�

s

) is used to transform a relation into

a set of objects.

In the sequel, for readability, we will sometimes combine map operations with other

operators. We did that already in the previous example. We replaced the subexpression

(�

x2s:x2:sales

(Employee[x2])) < x2s[s] > (that would have been derived if we had intro-

duced a variable for x2:sales) by Employee[x2] < x2:sales[s] > where map and d-join

operations are combined.

3 Classi�cation and Algebraic Optimization

In this section we present a classi�cation of oo nested queries along with appropriate

algebraic optimization techniques. The classi�cation extends the relational classi�cation

of [20] which introduced �ve types of nested queries. One of them is not used here

(Type D). The reason is that unnesting of Type D queries is subsumed by our generalized

treatment of Type N and J queries. The four remaining types are:

� Type A nested queries have a constant inner block that returns a single element.

� Type N nested queries have a constant inner block that returns a set.

� Type J nested queries have an inner block that is dependent on the outer block

and returns a set.

� Type JA nested queries have an inner block that is dependent on the outer block

and returns a single element.

Obviously, the need for extending the original classi�cation arises from the richness

of the oo model compared to the relational one and its impact on the query language.

The classi�cation we propose has three dimensions: the original one plus two that are

required by the following oo characteristics. In the oo context, as opposed to the relational,

(i) nested blocks may be located in any clause of a select-from-where block and (ii) a

dependency (i.e., reference to a variable de�ned in an outer block) may occur in any clause.

The organization of this section follows the three dimensions. We start by presenting

nested queries of Type A/N/J/JA with nesting and dependency in thewhere clause. This

will allow us to show the di�erences and similarities between relational and oo unnesting

techniques. We continue by explaining the treatment required by other locations of nesting

(i.e., select and from clauses). We end with the optimization of Type J/JA queries with

range (from clause) or projection (select clause) dependencies.

3.1 Di�erent Types of Nesting

3.1.1 Queries of Type A

Below is an example of a type A query. It returns the employees with the maximum sales.

The inner block is constant and returns a single numerical value.

6

select x1

from x1 in Employee

where x1.TotSales =

max (select x2.TotSales

from x2 in Employee)

de�ne m = max(select x2s

from x2 in Employee)

de�ne x2s = x2.TotSales

select x1

from x1 in Employee

where x1s = m

de�ne x1s = x1.TotSales

Note that the �rst de�ne clause is written before the outer block because its entry does

not depend on any variable. The algebraic translation of the query is:

q � �

x1

(�

x1s=m

(�

x1s:x1:T otSales

(Employee[x1]))))

m � max(�

x2s

(�

x2s:x2:T otSales

(Employee[x2])))

� max(�

x2:T otSales

(Employee[x2]))

For most queries of this kind, we rely on a technique similar to that of [20]. The constant

inner block (m in the example) is evaluated �rst and its result is used for the evaluation

of the outer block (q in the example).

However, for this query, as well as all min/max queries where inner and outer blocks

have a common domain (Employee in the example), it is possible to do better than just

pushing out the constant block [8]. The requirement of having a common domain seems

rather restrictive but retrieving the elements exhibiting the min/max value implies just

this. The idea is to use the scan needed for the evaluation of the inner block to also

evaluate the outer block. This is exactly what the Max operator does. It is introduced

by the following algebraic equivalence which is a slightly generalized version of the one

found in [8]:

f(�

a�max(e

2

)

(e

1

)) � Max

g;m;a�;f

(e

1

):g (1)

if e

2

= �

a

(e

1

)

Remember that the Max

g;m;a�;f

(e) operation returns a tuple containing (i) an attribute

m representing the maximum value for the attribute a in the set e and (ii) an attribute

g representing the result of f applied to the set of elements of e satisfying a�m.

Applying Eqn. 1 to the above query yields

q � Max

g;m;x1s;�

x1

(�

x1s:x1:T otSales

(Employee[x1])):g

Note that the Max operator can be computed within a single pass (linear time) for

Max

g;m�;f

, if f is linear. Also note that an equivalent treatment for min can be applied.

Furthermore, although the equivalence we used can easily be adapted to the relational

context, we are not aware of any such optimization.

In the general case, type A queries are treated, as in the relational context, by

constant factorization. Special cases concern min/max operations that may

have a more e�cient evaluation by applying the Min/Max operators.

3.1.2 Queries of Type N

Below is an example of a Type N query. It returns the employees who have sold all the

expensive products. As can be seen, the inner block is constant and, as opposed to type A

queries, returns a collection that has to be scanned for every element of the outer block.

7

This inner scan is the reason for considering techniques di�erent from that of type A

queries.

select x

from x in Employee

wherex.SoldItems � select i

from i in Item

where i.price > 20000

de�ne ExpItems = select i

from i in Item

where p > 20000

de�ne p = i.price

select x

from x in Employee

wherexsi � ExpItems

de�nexsi = x.SoldItems

Its algebraic translation is the following:

q � �

x

(�

xsi�ExpItems

(�

xsi:x:SoldItems

(Employee[x])))

ExpItems � �

i

(�

p>20000

(�

p:i:price

(Item[i])))

In the above example, the predicate that connects outer and inner blocks is based on a

set comparison. Set comparators are not supported by standard SQL. However, they are

in the non-standard SQL of [20], where this query would be considered as Type D |

resolved by division. Relational division implements very speci�c queries: i.e., there is a

non strict inclusion relationship between outer and inner blocks (as in the above query).

However, the probability to have a non-strict inclusion in a query is not higher than that

of any other set comparator (or its negation) and, should we choose the division solution,

we would have to introduce one division-like operation per set comparator. Furthermore,

the division operation do not have particularly nice algebraic properties that we would

like to exploit. This is why we rejected the Type D treatment applying division.

We chose to leave type N queries with set comparisons as they are. We will explain

our choice using the above query. First, note that the nesting itself has been solved by

constant factorization. The nested query ExpItems can be evaluated �rst, independently

of expression q. Secondly, remember that, in the oo context, attributes may be sets.

Thus, comparing set attributes in algebraic operations will arise commonly. Accordingly,

it seems natural to support good algorithms for their evaluation.

Other possible predicates connecting inner and outer blocks are based on membership.

For these, we could also rely on good implementations of the selection operator. We prefer

to adapt techniques from the relational context [6, 10, 20] and use semi-join and anti-join

for unnesting the in and not in cases. The interest for unnesting using join operations,

apart from existing e�cient algorithms, is that they have algebraic properties that can

be used for further rewriting. Since they are not totally new, we just brie
y cast these

techniques into algebraic equivalences.

�

A

1

2�

A

2

(e

2

)

e

1

� e

1

><

A

1

=A

2

e

2

(2)

if A

i

� A(e

i

), F(e

2

) \ A(e

1

) = ;

�

A

1

62�

A

2

(e

2

)

e

1

� e

1

<>

A

1

=A

2

e

2

(3)

if A

i

� A(e

i

), F(e

2

) \ A(e

1

) = ;

The �rst condition in the equations states that attribute A

1

(resp. A

2

) must belong to

expression e

1

(resp. e

2

). The F function returns the free variables of an expression. Thus,

8

the condition \F(e

2

) \ A(e

1

) = ;" states that the inner expression e

2

must not depend

on the outer expression e

1

(as is always the case in type N queries).

Type N queries are unnested by constant factorization. Queries with in and

not in predicates can be further rewritten, as in the relational context, using

semi-joins and anti-joins. For queries with set comparators we rely on good

implementations of the selection operation with set predicates (needed anyway

since attributes may be sets in the oo context).

3.1.3 Queries of Type J

In Type J, as opposed to Type N, the inner query is dependent on a variable of the outer

block. Thus, it cannot be factored out. An example is given below. As for type N queries,

the predicate connecting inner and outer blocks is based either on membership or on a

set comparator. Again, queries with in (not in) can be transformed using semi-joins

(anti-joins). Some di�erences occur due to the dependency between the two blocks (see

the second condition below). Type J not in queries cannot be translated directly using

an anti-join operation: a semi-join has to be performed �rst.

�

A

1

2�

A

2

(�

p

(e

2

))

e

1

� e

1

><

A

1

=A

2

^p

e

2

(4)

if A

i

� A(e

i

), F(p) � A(e

1

[e

2

), F(e

2

) \ A(e

1

) = ;

�

A

1

62�

A

2

(�

p

(e

2

))

e

1

� e

1

<>

A

1

=A

2

(e

2

><

p

e

1

) (5)

if A

i

� A(e

i

), F(p) � A(e

1

[e

2

), F(e

2

) \ A(e

1

) = ;

Now let us consider queries with set comparison. These also correspond to relational

Type D queries. The query below returns the employees who have done all the expensive

sales of their department.

select x

from x in Employee

wherex.sales� select s

from s in Sale

where s.dept=x.dept and

s.amount>2000

select x

from x in Employee

wherexs�BestSales

de�nexs=x.sales

xd=x.department

BestSales = select s

from s in Sale

where sd=xd and sa > 2000

de�ne sd=s.dept

sa=s.amount

The algebraic translation of the query is split for clarity:

q � �

x

(�

xs�BestSales

(q

1

))

q

1

� �

BestSales:�

s

(�

sd=xd

(q

3

))

(q

2

)

q

2

� �

xd:x:dept;xs:x:sales

(Employee[x])

q

3

� �

sa>2000

(�

sd:s:dept;sa:s:amount

(Sale[s]))

The problem here is that the nested query evaluating BestSales is not constant. In order

to unnest the query and avoid several costly scans over the Sales extension, we associate

9

with each employee, the set of expensive sales of his/her department. For this, we rely on

the following equivalence. It uses binary grouping.

�

g:f(�

A

1

�A

2

(e

2

))

(e

1

) � e

1

�

g;A

1

�A

2

;f

e

2

(6)

if A

i

� A(e

i

), F(e

2

) \ A(e

1

) = ;, g 62 A

1

[A

2

The conditions state that theA

i

's are attributes of the e

i

's, e

1

and e

2

must be independent,

and g must not be an attribute of e

1

or e

2

. Applying Eqn. 6 to q

1

yields:

q

1

� q

2

�

BestSales;xd=sd;�

s

q

3

If employees and sales are both sorted on their department, this binary group operation

can be evaluated very e�ciently in a single scan over the two sets. This simple evaluation

is not possible when the grouping criterion is based on an operation di�erent than equality.

The selection in q

3

can be evaluated independently, e.g. using an index, or can be combined

with the �

s

operator in the group. Note that the selection with set comparator � is now

evaluated between two attributes. As for type N queries, we rely on good algorithms for

such selections.

The above equation is the most general and can be applied in all Type J queries

(as well as to Type JA cases as will be shown in the sequel). There exist two other

equations which may deal more e�ciently, using simple grouping, with two special cases.

The equation

�

g:f(�

A

1

=A

2

(e

2

))

(e

1

) � �

A

2

(e

1

1

g=f(;)

A

1

=A

2

(�

g;A

2

;f

(e

2

))) (7)

if A

i

� A(e

i

), F(e

2

) \ A(e

1

) = ;, A

1

\A

2

= ;; g 62 A(e

1

) [A(e

2

)

relies on the fact that the comparison of the correlation predicate is equality, as in the

above example. The expression �

A

2

eliminates the attribute(s) A

2

from the relation it

is applied to. If we apply this equation on the original q

1

expression, it yields a new

alternative:

q

1

� �

sd

(q

2

1

BestSales=;

sd=xd

(�

BestSales;sd;�

s

(q

3

)))

Note that the binary grouping operation in the previous expression of q

1

now corresponds

to a simple grouping followed by an outer-join (see below, also). The outer-join does not

introduce null values for those employees whose department do not have expensive sales.

The ; default value corresponds to the application of the operation �

s

on the empty set.

The �

sd

expression can be dropped due to the �

x

operation in q.

The next equation relies on the fact that there exists a common range for the variables

of the correlation predicate (third condition). Its application will be illustrated in a

subsequent subsection.

�

g:f(�

A

1

�A

2

(e

2

))

(e

1

) � �

A

1

:A

2

(�

g;A

2

�;f

(e

2

)) (8)

if A

i

� A(e

i

), F(e

2

) \ A(e

1

) = ;, g 62 A(e

1

) [A(e

2

),

e

1

= �

A

1

:A

2

(e

2

) (this implies that A

1

= A(e

1

))

It is important to note that the applicability of the above equivalences does not depend

on the set comparison of the predicate in the outer where clause but, instead, on the

10

correlation predicate within the inner block. This is opposed to the relational unnesting

techniques which solely depend on the predicate restricting the outer block. This has one

important consequence: a uniform treatment, independent of the predicate in the outer

block, is possible. Hence, they enable the derivation of alternative unnested expressions

for the in and not in cases. To see this, consider �

A2e

2

(e

1

) � �

A2B

(�

B:e

2

(e

1

)). Further, as

illustrated in the next subsection, the equations can be used (unchanged!) for unnesting

Type JA nested queries. That is why they should be considered the core of unnesting

nested queries in the oo context. Also, since these equations also hold for set comparators

as the predicate in the outer block, they obviate a special treatment of Type D queries as

needed in the relational case.

Let us �nally clarify the correspondence between the binary grouping and the unary

grouping in conjunction with an outer-join:

�

g:f(�

A

0

1

�A

0

2

(e

2

))

(e

1

) � �

g;A

1

;f��

A

1

��

A

2

6=?

A

2

(e

1

1

A

0

1

�A

0

2

e

2

) (9)

if A

i

= A(e

i

), A

0

i

� A

i

, g 62 A

1

[A

2

, F(e

2

) \A

1

= ;

Here, ?

A

is a tuple with attributes A and null values only. This alternative �rst produces

an intermediate
at result which is subsequently grouped. The range of applicability of

this equation is the same as for Eqn. 6 which introduces a binary grouping. Concatenating

Eqns. 6 and 9 gives the correspondence between binary and unary grouping in conjunction

with an outer-join. If several of the Eqns. 6{9 apply, chosing the most appropriate is a

matter of costs.

In the general case, Type J queries are unnested using the binary grouping

operator or, alternatively, an outer-join followed by a unary grouping. Other

alternatives are possible for speci�c cases. Queries with membership predicates

can be evaluated using semi-joins and anti-joins. If its inner and outer blocks

have a common domain, a nested query can be rewritten into a simple grouping.

A query with a correlation predicate on equality can be rewritten into simple

grouping followed by an outer-join.

3.1.4 Queries of Type JA

The di�erence between Type J and Type JA queries it that, for the latter, an aggregate

function (e.g, count, max) is applied on the inner block.

However, this di�erence between Type J and Type JA queries does not necessitate

new unnesting techniques. Indeed, the grouping operators, that we used for unnesting

type J queries, have been de�ned to allow the application of an arbitrary function to each

formed group. For Type J queries, this function usually is a map operator. For Type

JA queries this is an (additional) aggregate function. Thus, by applying Equations 6{9,

aggregated Type JA queries are treated in exactly the same manner as Type J queries.

The following subsection will give an example.

It is interesting to note that Eqn. 7, when used on Type JA queries (i.e., with an

aggregate function), captures the technique introduced by [10] for relational type JA

queries. His technique relies on an operator called generalized aggregation combining a

grouping with an aggregate.

11

In the oo context, using the full power of the two grouping operators, Type

JA queries are unnested in the same manner as Type J queries.

3.2 Di�erent Locations of Nesting

So far, we studied queries where the nesting was used to express complex conditions

(nesting in the where clause). Nesting has other purposes in the oo context, too. It

can be used to produce nested results (select clause) or access nested structures (from

clause). This is what we study now.

3.2.1 Nesting in the select Clause

Although nothing forbids it, Type A or N nesting rarely occurs in select clauses. Indeed,

there is not much sense in associating a constant (set or element) to each element of a set.

Should that happen, we rely on the �rst phase of the optimization process to factor out

the constant block. Thus, it will only be evaluated once. We do not believe in or consider

further optimization.

For Type J/JA queries, nesting in the select clause is equivalent to nesting in the

where clause. Remember that the application of Eqns. 6{9 did not depend on the pred-

icate in the outer where block but on the correlation predicate within the inner block.

I.e., it did not depend on the location of the nesting, but on the fact that a dependency

between inner and outer block existed in the form of a selection. Hence, Eqns. 6{8 can be

used whenever nesting occurs in the select clause. To illustrate this, we take the query of

the previous Section (Page 5). It is of Type JA and associates to each employee's age, the

number of sales made by younger employees. The algebraic expression is the following:

q � �

[age:x1a;nb:cs]

(�

cs:e

2

(�

x1a:x1:age

(Employee[x1])))

e

2

� count(�

s

(�

x2a<x1a

(�

x2a:x2:age

(Employee[x2] < x2:sales[s]>))))

Assume that every employee has at least one sale. Then, we may use advantageous-

ly the fact that one variable (x2) of the inner block ranges over the same set (all the

employees) than the variable of the outer block (x1) to apply equivalence 8.

q � �

[age:x1a;nb:cs]

(�

x1a:x2a

�

cs;x2a�;count��

s

(e

0

2

))

e

0

2

� (�

x2a:x2:age

Employee[x2]) < x2:sales[s] >

Note that we pushed the map operation before the d-join in expression e

0

2

. The � operation

can be e�ciently implemented by �rst sorting the argument on its age values. If the

argument is already sorted, e.g., due to an index scan, the � operation can be evaluated

in linear time during a single scan of e

2

, if f is linear.

There exists one Type J case where another more powerful technique can be applied: a

atten operation is performed on the outer block, and there is no tuple constructor within

the outer block's select clause. As shown in [8], these queries can be optimized by pushing

the
atten operation inside until it is applied on stored attributes, thus eliminating the

nesting.

Nesting in the select clause can be optimized as nesting in the where clause.

If a
atten operation is used on the outer-block we can sometimes do better

by pushing the
atten operation inside.

12

3.2.2 Nesting in the from Clause

For the moment, we consider that inner blocks are constant or that their dependency

on outer blocks are expressed through a selection. Other dependencies are studied in the

sequel. In the current context, nesting in the from clause is easily optimized. Due to space

limitation, we do not illustrate this with an example but the following two equivalences

should clarify the matter.

e

1

< �

p

(e

2

) > � �

p

(e

1

< e

2

>)

�

p

(e

1

< e

2

>) � e

1

1

p

e

2

if F(e

2

) \ A(e

1

) = ;

Let us consider that e

1

and e

2

are, respectively, the outer and inner block of an O

2

SQL

query. Since the nesting is located in the from clause, this results in a d-join between

e

1

and e

2

. If there is a predicate dependency between inner and outer block, it can be

pushed out of the d-join (�rst equivalence). When no dependency exists between inner

and outer blocks, the d-join can be transformed into a standard join (second equivalence).

Nesting in the from clause can be optimized by transforming d-join operations

into standard joins.

3.3 Di�erent Kinds of Dependency

Remember that we distinguish three kinds of dependencies: projection dependency (a

reference to an outer variables occurs in the select clause), range dependency (: : : in the

from clause) and predicate dependency (: : : in the where clause). Above, we studied

queries with predicate dependency. In the sequel, we concentrate on optimization tech-

niques required for range and projection dependencies.

3.3.1 Range Dependency

Consider the following query exhibiting a range dependency. It associates to each em-

ployee, the name of their customers living in Roma. The inner block's variable s depends

on the outer block.

select tuple (e: x.name, c: select s.customer.name

from s in x.sales

where s.customer.city

= \Roma")

from x in Employee

select tuple (e: xn, c: SCN)

from x in Employee,

de�ne xn = x.name

xs = x.sales

SCN =select scn

from s in xs

where scc = \Roma"

de�ne sc = s.customer

scn = sc.name

scc = sc.city

Translation into the algebra yields:

q � �

[e:xn;c:SCN]

(�

SCN :nq

(�

xn:x:name;xs:x:sales

(Employee[x])))

nq � �

scn

(�

scc=\Roma

00

(�scc : sc:city(�

scn:sc:name

(�

sc:s:customer

(xs[s])))))

� �

sc:name

(�

scc=\Roma

00

(�

sc:s:customer;scc:sc:city

(xs[s])))

13

The only unnesting technique that can be applied to this query, and those of same kind,

consists in reducing the range dependency into a predicate dependency. Once this is done,

we can apply the above equations. The reduction, from range to predicate dependency,

is based on type based rewriting as found in [7, 15, 21, 22, 23]. This technique relies on

the existence of type extents for rewriting queries. Since type based rewriting itself has

already been described, we just comment on its application to unnesting using the above

example.

Relying on the fact that the elements of the attribute sales of an employee belong to

the extent of the class Sale, the inner block of the query can be rewritten as

nq � �

sc:name

(�

scc=\Roma

00

(�

sc:s:customer;scc:sc:city

(�

s2xs

(Sale[s]))))

Type based rewriting can be performed again using the extent of class Customer. This

allows, for instance, to use indexes on Customer.city and Sale.customer to evaluate the

query. However, since our goal is unnesting and not general optimization, we do not

detail on this. Concerning unnesting, it is important to note that the dependency no

longer speci�es the range (xs[s]) but now represents a predicate (�

s2xs

). Herewith, the

algebraic expression is of the same form as one resulting from a predicate dependency.

Hence, the above mentioned unnesting techniques apply.

However, in our model, the domain of an attribute is not always covered by an ex-

tent. Thus, we cannot always apply type based rewriting. In these cases, we do not

unnest and rely on existing optimization techniques for path expressions crossing sets

(e.g., x.sales.customer.city).

Range dependency can be transformed into predicate dependency using rewrit-

ing techniques based on extents.

3.3.2 Projection Dependency

In the algebra, the inner block of a query with projection dependency ends with a map

operation with a function argument depending on both, the inner and the outer blocks.

This kind of query should be rare which is good because they cannot be unnested. Nested

loops or cross products have to be used for their evaluation. The only optimization that

can be done is to push those parts of the expression that depends only on the outer block

out of the inner block and to memorize (e.g., using an hash table) the results of the

complex expressions depending solely on the inner block to avoid evaluating them only

once.

Queries with projection dependency cannot be unnested.

Remarks Nothing restricts variables of the outer block to occur at only one place within

the inner block. If there exist several dependencies, all the corresponding unnesting

techniques can be applied alternatively. Hence, if, for example, a range and a predicate

dependency occur, the latter should be used for unnesting if the range dependency cannot

be resolved by type based rewriting.

Queries containing several nested blocks of same level are unnested by successive

rewritings as in the relational context. Note that if the nesting occurs in a disjunctive

where clause, the query has to be transformed �rst into a union.

14

Queries containing several levels of nesting are more complex. In the simple case,

we can start the rewriting by the lower level and go up. However, when queries contain

non-neighbor predicates, it is not always possible to apply the equivalences we introduced

in the previous section.

Last not least, a query may contain quanti�ers. This problem is treated brie
y in the

next section. Further techniques as well as a solution to non-neighbor predicates and an

e�cient treatment of outer restrictions can be found in a technical report [9].

4 Nested Queries with Quanti�ers

In the previous section, we considered nested select-from-where (SFW) blocks. These

blocks are not the only primitives allowing iterations over sets. Quanti�ers also play a

major role. This is why we have to consider nesting with quanti�ers. We introduce two

operators to deal with these. Due to space limitation, we only sketch these operators and

appropriate unnesting strategies. More can be found in [9].

The operators are 8

p

(e) and 9

p

(e). They return true if all elements in e satisfy p or

at least one element in e satis�es p, resp; else they return false.

Nested queries with quanti�ers come in three di�erent
avors. (i) The quanti�er is

nested in another block, (ii) a nested block is part of the quanti�er condition, and (iii) a

nested block is part of the domain of the quanti�er. Let us consider the following example

that corresponds to the �rst case. The query returns those employees having the same

name as some other employee.

select x1

from x1 in Employee

where exists x2

in Employee

wherex2.name = x1.name and x1<>x2)

select x1

from x1 in Employee

where EE

de�ne x1n = x1.name

EE = exists x2

in Employee

wherex1n=x2n and x1<>x2

de�ne x2n = x2.name

Translation to the algebra yields

q � �

x1

(�

EE

(�

EE:nq

(�

x1n:x1:name

(Employee[x1]))))

nq � 9

x1n=x2n^x16=x2

(�

x2n:x2:name

(Employee[x2]))

Queries of this kind are treated in a manner similar to that of type J/JA queries. We

simply have to adapt Eqns. 6{8 so that a quanti�er replaces the selection used for the

unnesting. In the above query, inner and outer block share a common domain. Thus

we can adapt equation 7. The equivalence is given below. It is speci�ed for existential

quanti�ers but an analogous equation can be de�ned for universal quanti�ers.

�

g:9

A

1

�A

2

(e

2

)

(e

1

) � �

A

1

:A

2

(�

g;�A

2

;9

true

(e

2

)

)

if A

i

� A(e

i

), g 62 A(e

1

) [A(e

2

), F(e

2

) \ A(e

1

) = ;;

e

1

= �

A

1

:A

2

(e

2

) (implies A

1

= A(e

1

)),

15

Application to the query yields

q � �

x1

(�

EE

(�

x1n:x2n;x1:x2

(�

EE;(=x2n;6=x2);9

true

(�

x2n:x2:name

(Employee[x2])))))

� �

x2

(�

EE

(�

EE;(=x2n;6=x2);9

true

(�

x2n:x2:name

(Employee[x2]))))

Note that, in the example, the group operation has two criterions. It associates a boolean

value to each employee. The boolean value is \true" if the set of other employees (6= x2)

having same name (= x2n) is not empty (9

true

). This query can be e�ciently evaluated

by, for instance, using an index on the employees name or by sorting the employees on

their name and identi�er.

Let us now consider, brie
y, the cases where the quanti�er is used as an outer block.

These cases rarely occur by themselves but have to be considered for the treatment of

multi-level nested queries. As stated above, the nesting can then be used for de�ning the

quanti�er predicate or the quanti�er domain.

When the nested block is part of the condition of a quanti�er, a treatment similar to

that of SFW blocks with nesting in the where clause can be applied. This should be

obvious for type A/N queries. Concerning type J/JA queries, remember that applying

Equivalences 6, 7, or 8 did not rely on the predicate of the outer where block (in this case

a quanti�er) but on the correlation predicate within the inner block. Another technique

can also be used for special cases. It consists in transforming the quanti�er into a set

comparison, using equivalences of the type

8

�x(x2e

2

)

(e

1

) � e

1

� e

2

When the nested block is used for de�ning the quanti�er domain, there is no real

unnesting to be done as is the case for nested blocks within a from clause. A more

complete description on the treatment of quanti�ers can be found in [9].

5 Conclusion

As opposed to the relational context where unnesting is performed at the SQL-level, we

have introduced a technique which allows unnesting at the algebraic level. This frees us

from query language dependencies. We introduced an algebra and showed how nested

SQL-like queries are translated into nested algebraic expressions. Then, we reported

several unnesting strategies in the form of algebraic equations. While some of them

merely recast known relational strategies, most of them make use of and are concerned

with features speci�c to object-oriented queries. Our presentation was concerned with

one-level nested queries. More complex unnesting strategies including the treatment of

several levels of nesting, non-neighbor predicates and outer restrictions can be found in

[9].

There remain two topics for further research. The �rst topic concerns the implemen-

tation. Good algorithms for the extended operators have to be invented and existing cost

models have to be extended to include these. A good starting point might be sorting

based grouping operations. Special techniques for implementing non-equi joins (like the

band-width join [12]) might also give good clues.

The second topic involves the extension of the current approach in order to incorporate

bags and lists. As already indicated, a simple strategy is coding of these data structures

with sets.

16

References

[1] F. Bancilhon, S. Cluet, and C. Delobel. A query language for the o

2

object-oriented database

system. In DBPL II, Salishan Lodge, Oregan, 1989.

[2] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented query languages. In

Proc. Int. Conf. on Database Theory (ICDT), pages 72{88, 1990.

[3] J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences building the oodb query

optimizer. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 287{296,

1993.

[4] M. Carey, D. DeWitt, and S. Vandenberg. A data model and query language for EXODUS.

In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 413{423, 1988.

[5] R. Cattell, editor. The Object Database Standard: ODMG 93. Morgan Kaufmann, to

appear.

[6] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Optimization, semantics

and equivalence of SQL queries. IEEE Trans. on Software Eng., pages 324{345, 1985.

[7] S. Cluet and C. Delobel. A general framework for the optimization of object-oriented

queries. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 383{392,

1992.

[8] S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. Int. Workshop on

Database Programming Languages, pages 226{242, 1993.

[9] S. Cluet and G. Moerkotte. Classi�cation and optimization of nested queries in object

bases. Technical report, University of Karlsruhe, 1994.

[10] U. Dayal. Of nests and trees: A uni�ed approach to processing queries that contain nested

subqueries, aggregates, and quanti�ers. In VLDB, pages 197{208, 1987.

[11] O. Deux. The story of o2. IEEE Transaction on Knowledge and Data Engineering, 2(1),

March 1989.

[12] D. DeWitt, J. Naughton, and D. Schneider. An evaluation of non-equijoin algorithms. In

Proc. Int. Conf. on Very Large Data Bases (VLDB), page 443, Barcelona, Spain, 1991.

[13] G. Lohman et al. Optimization of nested queries in a distributed relational database. In

Proc. Int. Conf. on Very Large Data Bases (VLDB), 1984.

[14] R. Ganski and H. Wong. Optimization of nested SQL queries revisited. In Proc. of the

ACM SIGMOD Conf. on Management of Data, pages 23{33, 1987.

[15] P. Jenq, D. Woelk, W. Kim, and W. Lee. Query processing in distributed ORION. In Proc.

Int. Conf. on Extended Database Technology (EDBT), Venice, 1990.

[16] A. Kemper and G. Moerkotte. Advanced query processing in object bases using access

support relations. In Proc. Int. Conf. on Very Large Data Bases, pages 294{305, 1990.

[17] A. Kemper and G. Moerkotte. Query optimization in object bases: Exploiting relational

techniques. In Proc. Dagstuhl Workshop on Query Optimization (J.-C. Freytag, D. M aier

und G. Vossen (eds.)). Morgan-Kaufman, to appear 1993.

17

[18] A. Kemper, G. Moerkotte, and K. Peithner. A blackboard architecture for query optimiza-

tion in object bases. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 543{554,

1993.

[19] W. Kiessling. SQL-like and Quel-like correlation queries with aggregates revisited.

ERL/UCB Memo 84/75, University of Berkeley, 1984.

[20] W. Kim. On optimizing an SQL-like nested query. ACM Trans. on Database Systems,

7(3):443{469, Sep 82.

[21] G. Mitchell. Extensible Query Processing in an Object-Oriented Database. PhD thesis,

Brown University, Providence, RI 02912, 1993.

[22] G. Mitchell, S. Zdonik, and U. Dayal. Object-oriented query optimization: What's the

problem? Technical Report CS-91-41, Brown University, 1991.

[23] G. Mitchell, S. Zdonik, and U. Dayal. Object-Oriented Database Systems (A. Dogac, M. T.

�

Ozsu, A. Biliris, and T. Sellis (eds.)-, chapter Optimization of Object-Oriented Queries:

Problems and Applicatios. NATO ASI. Springer, 1993. to appear.

[24] M. Muralikrishna. Optimization and data
ow algorithms for nested tree queries. In Proc.

Int. Conf. on Very Large Data Bases (VLDB), 1989.

[25] M. Muralikrishna. Improved unnesting algorithms for join aggregate SQL queries. In Proc.

Int. Conf. on Very Large Data Bases (VLDB), pages 91{102, 1992.

[26] A. Rosenthal and C. Galindo-Legaria. Query graphs, implementing trees, and freely-

reorderable outerjoins. In Proc. of the ACM SIGMOD Conf. on Management of Data,

pages 291{299, 1990.

[27] H.-J. Schek and M. H. Scholl. The relational model with relation-valued attributes. Infor-

mation Systems, 11(2):137{147, 1986.

[28] G.M. Shaw and S.B. Zdonik. A query algebra for object-oriented databases. In Proc. IEEE

Conference on Data Engineering, pages 154{162, 1990.

[29] H. J. Steenhagen, P. M. G. Apers, and H. M. Blanken. Optimization of nested queries in

a complex object model. In EDBT, 1994. To appear.

[30] D. Straube and T.

�

Ozsu. Queries and query processing in object-oriented database systems.

ACM Trans. on Information Systems, 8(4):387{430, 1990.

[31] S. L. Vandenberg and D. DeWitt. Algebraic support for complex objects with arrays,

identity, and inheritance. In Proc. of the ACM SIGMOD Conf. on Management of Data,

pages 158{167, 1991.

18

