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Abstract—Finding an optimal execution order of join opera-
tions is a crucial task in every cost-based query optimizer. Since
there are many possible join trees for a given query, the overhead
of the join (tree) enumeration algorithm per valid join tree should
be minimal. In the case of a clique-shaped query graph, the best
known top-down algorithm has a complexity of Θ(n2) per join
tree, where n is the number of relations. In this paper, we present
an algorithm that has an according O(1) complexity in this case.

We show experimentally that this more theoretical result has
indeed a high impact on the performance in other non-clique
settings. This is especially true for cyclic query graphs. Further,
we evaluate the performance of our new algorithm and compare
it with the best top-down and bottom-up algorithms described
in the literature.

I. INTRODUCTION

For a DBMS that provides support for a declarative query
language like SQL, the query optimizer is a crucial piece of
software. The declarative nature of a query allows it to be
translated into many equivalent evaluation plans. The process
of choosing a suitable plan from all alternatives is known as
query optimization. The basis of this choice are a cost model
and statistics over the data. Essential for the costs of a plan
is the execution order of join operations in its operator tree,
since the runtime of plans with different join orders can vary
by several orders of magnitude. An exhaustive search for an
optimal solution over all possible operator trees is computa-
tionally infeasible. To decrease complexity, the search space
must be restricted. For the optimization problem discussed
in this document, a well-accepted heuristic is applied: We
consider all possible bushy join trees [1], but exclude cross
products from the search, presuming that all considered queries
span a connected query graph [2].

When designing a query optimizer, there are two strategies
to find an optimal join order: bottom-up join enumeration
via dynamic programming, and top-down join enumeration
through memoization. Both approaches (naturally) have to
explore the same search space and both face the same chal-
lenges. Let us briefly recall this challenge. This requires a little
preparation.

For every subset S of relations that induces a connected
subgraph (csg for short) the optimal join tree must be
constructed. In order to determine the best join tree for a given
subset S of relations, the plan generator must enumerate all
partitions (S1, S2) of S such that S = S1∪S2 and S1∩S2 = ∅.

Furthermore, since we exclude cross products, S1 and S2 must
induce connected subgraphs of our query graph, and there
must be two relations R1 ∈ S1 and R2 ∈ S2 such that they are
connected by an edge, i.e., there must exist a join predicate
involving attributes in R1 and R2. Let us call such a partition
(S1, S2) a csg-cmp-pair (or ccp for short). Denote by Ti the
best plan for Si. Then the query optimizer has to consider the
plans T1 � T2 for all csg-cmp-pairs (S1, S2).

One possibility to generate all csg-cmp-pairs for a set S
of relations is to consider all subsets S1 ⊂ S, define S2 =
S \ S1, and then check the above conditions. Let us call such
a procedure naive generate and test or ngt for short.

Table I gives for n = 5, 10, 15, 20 relations the number
of connected subgraphs (#csg), the number of csg-cmp-pairs
(#ccp), and the number of generated subsets S1 for the
naive generate and test algorithm (#ngt). These numbers were
determined analytically ([2], [3]), but the formulas are not very
intuitive. Therefore, we decided to illustrate our points with
some explicit numbers1.

Challenge. The number of subsets considered by naive
generate and test is several orders of magnitude higher than the
number of csg-cmp-pairs. Thus, this approach is too inefficient
to be useful (see also Sec. IV-D). Hence, the challenge is
to generate only valid csg-cmp-pairs and to do this with as
little overhead as possible. For quite a long time, no efficient
enumerator for csg-cmp-pairs was known. In bottom-up join
enumeration, all the connected subsets for a given set are
already generated. Therefore, an enumeration strategy for dy-
namic programming that is not generate-and-test based should
be easier to design. Moerkotte and Neumann [3] presented a
dynamic programming variant called DPCCP generating csg-
cmp-pairs within constant time O(1) each. DeHaan and Tompa
took up the even greater challenge and came up with a minimal
graph cut partitioning algorithm called MINCUTLAZY for top-
down join enumeration [4]2. In case of acyclic query graphs,
the complexity for generating a csg-cmp-pair is also O(1).
However, for cyclic query graphs the complexity increases
and reaches a maximum for cliques, where it is O(n2) for
n relations (see appendix).

1The difference by a factor of two between #ccp and #ngt for cliques is
explained in the next section.

2Actually, they presented two algorithms, but one does not completely
enumerate all csg-cmp-pairs.
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5 10 15 20
chain #csg 15 55 120 210

#ccp 20 165 560 1330
#ngt 84 3962 130798 4193840

star #csg 20 521 16398 524307
#ccp 32 2304 114688 4980736
#ngt 130 38342 9533170 2323474358

cycle #csg 21 91 211 381
#ccp 40 405 1470 3610
#ngt 140 11062 523836 22019294

clique #csg 31 1023 32767 1048575
#ccp 90 28501 7141686 1742343625
#ngt 180 57002 14283372 3484687250

TABLE I

Fortunate Observation. The number of connected sub-
graphs (#csg) is far lower than the number of csg-cmp-pairs.
This is very fortunate since (1) #csg is the number of times
cardinality estimation takes place, (2) #ccp is the number of
times the join cost function is evaluated, and (3) the latter is an
order of magnitude cheaper than the former. Indeed, a typical
join cost function only takes a few arithmetic operations to
evaluate [5].

Contribution. In this paper, we propose a new and highly
efficient top-down join enumeration algorithm and evaluate its
performance. More specifically, we

• conduct a detailed complexity analysis of MINCUTLAZY,
showing its O(n2) complexity for clique queries,

• propose branch partitioning as an entirely new and easy
to implement algorithm for top-down join enumeration,

• show analytically that the complexity of branch partition-
ing is in O(1) for acyclic graphs, cycle graphs and clique
queries, and

• present an in-depth performance evaluation indicating
that the new enumerating algorithm is nearly as efficient
as DPCCP.

Besides its efficiency, our new algorithm has the great advan-
tage that it is far easier to implement than the one developed by
DeHaan and Tompa. Whereas they need to build and maintain
a complex data structure called biconnection tree, we only
need set operations, which can be implemented easily and
efficiently using bit vectors.

Important Note. Let us note that branch-and-bound pruning
may be effective for some queries. However, pruning gives
the same advantage to all top-down algorithms. Thus, we
decided to ignore its effects here. Leaving out pruning has
the additional advantage that a fair comparison of the raw
performance with bottom-up approaches, which cannot prune
easily, becomes possible.

Organization. This paper is organized as follows: Sec. II
recalls some preliminaries. Sec. III presents our new algorithm.
Section IV presents our thorough performance evaluation.
Sec. V concludes the paper. The appendix contains the com-
plexity analysis of MINCUTLAZY.

II. PRELIMINARIES

Before we start with our discussions, we give some funda-
mentals. In the first subsection, we explain important notions
and then continue with an introduction to top-down join

enumeration. We present a generic memoization algorithm
for join optimization that can be instantiated with different
enumeration strategies for csg-cmp-pairs, which we also call
partitioning strategies or algorithms. The last part of this
section explains the naive generate-and-test partitioning algo-
rithm.

A. Important Notions

In this subsection, we give some definitions that are im-
portant for a thorough understanding of the work presented
here.

Our focus is to determine an optimal join order for a given
query. The execution order of join operations is specified by
an operator tree of the physical algebra. For our purposes, we
want to abstract from that representation and give the notion
of a join tree. A join tree is a binary tree where the leaf
nodes specify the relations referenced in a query, and the
inner nodes specify the two-way join operations. The edges
of the join tree represent sets of joined relations. Two input
sets of relations that qualify for a join so that no cross products
need to be considered are called a connected subgraph and its
complement pair or ccp for short [3].

Definition 2.1: Let G = (V,E) be a connected query graph,
(S1, S2) is a connected subgraph and its complement pair (or
csg-cmp-pair, or, even shorter, ccp) if the following holds:

• S1 with S1 ⊂ V induces a connected graph G|S1
,

• S2 with S2 ⊂ V induces a connected graph G|S2
,

• S1 ∩ S2 = ∅, and
• ∃(v1, v2) ∈ E | v1 ∈ S1 ∧ v2 ∈ S2.

The set of all possible ccps is denoted by Pccp. We introduce
the notion of cmp-csg pairs for a set to specify all those pairs
of input sets that result in the same output set, if joined.

Definition 2.2: Let G = (V,E) be a connected query graph
and S a set with S ⊆ V that induces a connected subgraph
G|S . For S1, S2 ⊂ V , (S1, S2) is called a ccp for S if (S1, S2)
is a ccp and S1 ∪ S2 = S holds.

By Pccp(S), we denote the set of all ccps for S. Let
Pcon(V ) = {S ⊆ V | G|S is connected ∧ |S| > 1} be the
set of all connected subsets of V with more than one element,
then Pccp = ∪S∈Pcon(V )Pccp(S) holds.

If (S1, S2) is a ccp, then (S2, S1) is one as well, and we
consider them as symmetric pairs. We are interested in the
set P sym

ccp of all ccps, where symmetric pairs are accounted
for only once, e.g., (S1, S2) ∈ P sym

ccp if maxindex(S1) ≤
maxindex(S2) holds, or (S2, S1) ∈ P sym

ccp otherwise. We give
no constraints for choosing which one of two symmetric pairs
should be member of P sym

ccp , but leave this as a degree of
freedom. Analogously, we denote the set of all ccps for a set S
containing either (S1, S2) or (S2, S1) by P sym

ccp (S). The lower
bounds for join enumeration given by Ono and Lohman [2]
(see Table I) for certain graph shapes correspond to |P sym

ccp |.
Thus, this explains the factor of two difference between #ccp
and #ngt for cliques.

Next, we define the neighborhood of a set of nodes:
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Definition 2.3: Let G = (V,E) be an undirected graph, the
neighborhood of a set S ⊆ V is defined as:

N (S) = {w ∈ (V \ S) | v ∈ S ∧ (v, w) ∈ E}.

The next definition is rather standard, for more details see
[9].

Definition 2.4: Let G = (V,E) be a connected undirected
graph. A biconnected component is a connected subgraph
GBCC

i =(Vi, Ei) of G with Vi = {v | (v = u ∨ v =
w) ∧ (v, w) ∈ Ei}, where the set of edges Ei ⊆ E is
maximal such that any two distinct edges (u,w) ∈ Ei

and (x, y) ∈ Ei lie on a cycle 〈v0, v1, v2, ..., vl〉, where
u = v0 ∧ u = vl ∧ w = v1 ∧ x = vj−1 ∧ y = vj ∧ 0 < j < l
and ∀0≤i<j<lvi, vj ∈ V ∧ vi �= vj holds. If for an edge
(u,w) ∈ Ei no such cycle exists, the vertices u,w ∈ Vi induce
a biconnected component GBCC

i = ({u,w}, {(u,w)}).
DeHaan’s and Tompa’s MINCUTLAZY makes use of a data

structure called biconnection tree. We give its definition:
Definition 2.5: Let G = (V,E) be a connected undirected

graph and BCC = {GBCC
1 (V1, E1), ..., G

BCC
k (Vk, Ek)} the

set of biconnected components of which G consists such that
V =

⋃
1≤i≤k Vi holds. For an arbitrary vertex t ∈ V , a

set of vertex nodes Vvn and a set of set nodes Vsn where
Vtree = Vvn ∪ Vsn and Vvn ∩ Vsn = ∅ holds, we call
T = (Vtree, Etree, t) a biconnection tree if

• Vvn = V ,
• Vsn = {sVi | s representing a set of vertices Vi of a bi-

connected component GBCC
i (Vi, Ei)}, and

• the set of tree edges Etree = {(sVi , v) | sVi ∈ Vsn ∧ v ∈
Vi}

The vertex t is called root of T .
Within a biconnection tree T , the descendants DT and the

ancestors AT of an arbitrary vertex v ∈ V can be defined as
follows.

DT (v) = {u ∈ V | u occurs in a subtree of T rooted at v},

AT (v) = {u ∈ V | u is a vertex node on path t
∗→ v}.

B. Basic Memoization

As an introduction to top-down join enumeration, we give
a basic memoization variant called MEMOIZATIONBASIC,
which we derive by utilizing a generic top-down algorithm
that invokes a naive partitioning algorithm. In the first sub-
subsection, we present our generic top-down algorithm. Af-
terwards, we explain the naive partitioning strategy.

1) Generic Top-Down Join Enumeration: Our generic top-
down join enumeration algorithm TDPLANGEN is based on
memoization. We present its pseudocode in Figure 1. Like
dynamic programming, TDPLANGEN initializes the building
blocks for atomic relations first (line 2). Then, in line 3 the
subroutine TDPGSUB is called, which traverses recursively
through the search space. At the root invocation, the vertex
set S corresponds to the vertex set V of the query graph. At
every recursion step of TDPGSUB, all possible join trees of
two optimal subjoin trees that together comprise the relations

of S are build through BUILDTREE (line 3) that we explain
later, and the cheapest join tree is kept. We enumerate the
optimal subjoin trees by iterating over the elements (S1, S2)
of P sym

ccp (S) in line 2. This way, we derive the two optimal
subjoin trees, each comprising exactly the relations in S1 or
S2, respectively, by recursive calls to TDPGSUB. Generating
P sym
ccp (S) is the task of a partitioning algorithm. Depending on

the choice of the partitioning strategy, the overall performance
of TDPLANGEN can vary by orders of magnitude.

The recursive descent stops when either |S| = 1 or TDPG-
SUB has already been called for that G|S . In both cases,
the optimal join tree is already known. To prevent TDPG-
SUB from computing an optimal tree twice, BestT ree[S] is
checked in line 1. BestT ree[S] yields a reference to an entry
in an associative data structure called memotable. The data
structure ”memoizes” the optimal join tree generated for a set
S. If BestT ree[S] equals NULL, this invocation of TDPGSUB
will be the first one with G|S as input, and the optimal join
tree of G|S has not been found yet.

TDPLANGEN(G)

� Input: connected G=(V,E), V =
⋃

1≤i≤|V |{Ri}
� Output: an optimal join tree for G

1 for i← 1 to n
2 do BestT ree({Ri})← Ri

3 return TDPGSUB(V )

TDPGSUB(G|S)

� Input: connected sub graph G|S
� Output: an optimal join tree for G|S

1 if BestT ree[S] = NULL
2 then for all (S1, S2) ∈ P sym

ccp (S)
3 do BUILDTREE(G|S , TDPGSUB(G|S1

),
TDPGSUB(G|S2

))
4 return BestT ree(S)

Fig. 1. Pseudocode for TDPLANGEN

The pseudocode of BUILDTREE is given in Figure 2. It is
used to compare the cost of the join trees that belong to the
same G|S . Since the symmetric pairs (S1, S2) and (S2, S1)
(line 2 of TDPGSUB) are enumerated only once, we have
to build two join trees (line 1 and line 4) and then compare
their costs. We use the method CREATETREE, which takes
two disjoint join trees as arguments and combines them to
a new join tree. If different join implementations have to be
considered, among all alternatives the cheapest join tree has
to be built by CREATETREE. If the created join tree (line 1)
is cheaper than BestT ree[S], or even no tree for S has been
built yet, BestT ree[S] gets registered with the CurrentT ree.
For building the second tree, we just exchange the arguments
(line 4). Again, the costs of the new join tree are compared
to the costs of BestT ree[S]. Only if the new join tree has
lower costs, BestT ree[S] gets registered with the new join
tree. Note that because of line 3, BestT ree[S] in line 6 cannot
be NULL. Estimating the costs of the two possible join trees
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BUILDTREE(G|S , T ree1, T ree2)

� Input: inducing a graph G|S , two sub join trees
1 CurrentT ree← CREATETREE(Tree1, T ree2)
2 if BestT ree[S] = NULL ||

cost(BestT ree[S]) > cost(CurrentT ree)
3 then BestT ree[S]← CurrentT ree
4 CurrentT ree← CREATETREE(Tree2, T ree1)
5 if cost(BestT ree[S]) > cost(CurrentT ree)
6 then BestT ree[S]← CurrentT ree

Fig. 2. Pseudocode for BUILDTREE

PARTITIONnaive(G)

� Input: a connected graph G = (V,E)
� Output: P sym

ccp (V )
1 for all S ⊂ V ∧ S �= ∅
2 do if maxindex(S) ≤ maxindex(V \ S) &&

G|S is connected &&
G|V \S is connected

3 then emit(S, V \ S)
Fig. 3. Pseudocode for naive partitioning

at the same time rather than separately and comparing them is
more efficient, e.g., for cost functions as given in [5], where
card(Tx) ≤ card(Ty) ⇒ cost(Tx � Ty) ≤ cost(Ty � Tx)
holds, with card is the number of tuples or pages and Tx, Ty

are (intermediate) relations.
2) Naive Partitioning: As we have already seen, the generic

top-down enumeration algorithm iterates over the elements of
P sym
ccp (S). Now, we show how the ccps for S can be computed

by a naive generate-and-test strategy. We call our algorithm
PARTITIONnaive and give its pseudocode in Figure 3. In line
1, all 2|V | − 2 possible non-empty and proper subsets of V
are enumerated. For rapid subset enumeration, the method
described in [6] can be used. We demand that from every
symmetric pair only one is emitted. There are many possible
solutions, but we make sure that the relation with the highest
index represented in the graph is always contained in the
complement V \S in line 2. Three conditions have to be met so
that a partition (S, V \S) is a ccp. We check the connectivity
of G|S and G|V \S in line 2. The third condition that S needs to
be connected to V \S is ensured implicitly by the requirement
that the graph handed over as input is connected.

III. GRAPH-BASED JOIN PARTITIONING

DeHaan and Tompa [4] proposed the most efficient top-
down join enumeration algorithm known in the literature for
the search space of bushy join trees without cross products
(Appendix A). As we show, it has a complexity of O(1)
for chain, star and cycle queries and O(|S|2) for clique
queries (Appendix B). In this section, we introduce a new join
partitioning algorithm called MINCUTBRANCH and study its
complexity.

A. Branch Partitioning - An Overview

This section presents our novel partitioning algorithm
named branch partitioning, which we denote by MINCUT-

BRANCH. The partitioning algorithm is invoked by TDPGSUB
to compute for a given connected vertex set S all possible
partitions into two disjoint interconnected sets (S1, S2) that
are ccps for S. The output of branch partitioning is a set
P sym
ccp (S) so that symmetric ccps are emitted only once.

In Figure 4 and 5, we give the algorithm’s pseudocode
with PARTITIONMinCutBranch and MINCUTBRANCH. We
call the instantiated generic memoization variant TDMINCUT-
BRANCH with a TD as a prefix to indicate the top-down
algorithm that is based on branch partitioning.

The algorithm’s approach is to recursively enlarge a set C
by members of its neighborhood N (C), starting with a single
vertex t ∈ S. This way, we ensure that at every instance of
the algorithm’s execution C is connected. If at some point of
enlarging C its complement S \C in S is connected as well,
the algorithm has found a ccp for S. Besides, the connectivity
of the C’s complement branch partitioning has to meet some
more constraints before emitting a ccp: (1) Symmetric ccps are
emitted once, (2) the emission of duplicates has to be avoided,
and (3) all ccps for S have to be computed as long as they
comply with constraint (1).

Constraint (1) is ensured because the start vertex t - arbitrar-
ily chosen during the initialization of the partitioning algorithm
in line 1 of PARTITIONMinCutBranch - is always contained in
C and, therefore, can never be part of its complement. For
the second constraint, the algorithm uses a filter set X of
neighbors to exclude from processing. After every recursive
self-invocation of the algorithm, the neighbor v ∈ N (C) that
was used to enlarge C is added to X . Later, we will see in
detail how this works. For constraint (3), it is sufficient to
ensure that all possible connected subsets of S are considered
when enlarging C.

Checking for the connectivity of the complement set adds
a linear overhead per test. Furthermore, there are certain
scenarios, e.g., when star queries are considered, where con-
structing every possible connected subset C of S produces an
exponential overhead because most of the complements S \C
are not connected and the partitions (C, S \C) computed this
way are not valid ccps. For branch partitioning, we propose a
novel technique, which ensures that no partitions are generated
that are not a ccp at the same time. As a positive side effect,
the additional check for connectivity can be eliminated.

Before we explain our technique, we have to make some
observations. From the recursive process of enlarging C, we
know that the number of members in C must increase by one
in every iteration. Furthermore, if a partition (C, S \C) is not
a ccp for S, then S \ C consists of k ≥ 2 connected subsets
D1, D2, ..., Dk ⊂ (S \ C) that are disjoint and not connected
to each other. Hence, those subsets D1, D2, ...Dk can only
be adjacent to C. Let v1, v2, ..., vl be all the members of C’s
neighborhood N (C). Then every Dx with 1 ≤ x ≤ k must
contain at least one such vy with 1 ≤ y ≤ l and k ≤ l holds.
The first ccp after enlarging C by members of S \ C would
be generated when all subsets Dx with 1 ≤ x ≤ k but one are
joined to C.

Having made these observations, we are ready to explain our
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basic idea. The key principle is to exploit information about
how S \ C is connected from all of MINCUTLAZY’s child
invocations. Therefore, we introduce a new input parameter L
and a result set R. The one-element set L contains the last
vertex v that was added to C through the parent invocation.
The result set R of a child invocation contains the maximally
enlarged and connected set Dx such that L ⊆ R holds. Note
that the concept of R as MINCUTBRANCH’s return value is
different from the partitions which branch partitioning has to
emit. We compute R by joining the result sets Rtmp from the
child invocations with L. But we have to be careful to include
only those Rtmp that are adjacent to L. Hence, we need to
distinguish between N (L) and (N (C) \ N (L)): only those
Rtmp can be joined to R where N (L) ∩Rtmp �= ∅ holds.

To make use of the connected sets Rtmp that are adjacent to
v, we postpone the emission of ccps towards the end. Instead
of enlarging C with all but one Rtmp when the complement
S \ C is not connected, we introduce an optimization which
simply emits (S \Rtmp, Rtmp) right away. Note that if S \C
is connected, there exists only one Rtmp with Rtmp = S \ C
and (S \Rtmp, Rtmp) = (C, S \ C) holds. We have said that
due to constraint (3), all connected subsets of S have to be
considered as values for the set C. Through the optimization
certain connected sets S\Rtmp are skipped. Because we avoid
only those S \Rtmp where the complement S \ (S \Rtmp) =
Rtmp is not a connected set, our optimization is still sufficient
to meet constraint (3).

B. The Algorithm in Detail

In the following, we take a closer look at the pseudocode
given in Figures 4 and 5. PARTITIONMinCutBranch calls
MINCUTBRANCH the first time with C = L = {t}, where
t is an arbitrary vertex. This ensures constraint (1) because
the complement Rtmp cannot contain t at any instance of
MINCUTBRANCH’s execution. In line 1 and line 2, the result
sets R and Rtmp are initialized.

When processing the neighbors of C, the primary interest
lies on the neighbors of the recently added vertex v ∈ L
because they are important for the computation of the return
value. Therefore, in line 3 the set NL is introduced to store
all the neighbors that certainly need to be processed, i.e.,
all neighbors of L that are not in X . The other neighbors
of C which, at the same time, are not neighbors of L, are
only explored if they belong to the result set Rtmp of one
of the child invocations called with a neighbor of L. We
store the neighbors of this category in the set NB that holds
all neighbors of C but not those that are in N (C) and,
additionally, are not in X (line 5). Special care has to be
taken before processing neighbors of L that are also elements
of X , whereas the set X holds former neighbors that have been
processed in an ancestor invocation. Now only those neighbors
of L that are also element of X and are not contained in one
of the result sets Rtmp need to be processed. We compute
those candidates in line 4 and store them into NX . Whether
the other neighbors that are contained by the last two sets NB

and NX are processed or not is decided dynamically during
the loop in lines 6 to 29.

The loop (lines 6 to 29) consists of three cases. To un-
derstand these cases, we have to learn about the additional
requirement that exists due to our duplicate avoidance tech-
nique. As already mentioned, we use the filter set X to exclude
its members from being processed as a new L in a child
invocation of MINCUTBRANCH. Moreover, if a complement
S \ Rtmp is not disjoint with X , then (S \ Rtmp, Rtmp) is
a duplicate and has already been emitted. For explaining this
fact, we denote by vold a member of S\(Rtmp∩X). We know
that vold ∈ N (C) must hold, because vold being a member
of X implies that vold was processed as a v in an ancestor
invocation of MINCUTBRANCH as a neighbor of a Cold. As
we will see later, vold must be connected to v within S \Cold

with Cold ⊂ C. Hence, a recursive descent started from a child
invocation with a C = Cold ∪ {vold} and an L = {vold} must
have returned at one point with the same Rtmp as our current
value. Therefore, the partition (S \ Rtmp, Rtmp) has already
been emitted. We implement the test for duplicates in line 24
and emit the ccp in line 27.

Let us now consider the chain query of Figure 7. We
choose R0 as the initial C. In the root invocation of MIN-
CUTBRANCH, we first process R1. When the child invocation
returns, Rtmp equals {R1, R3}. Before processing R2 as the
second neighbor, we add R0 to X ′. In the next child invocation
of MINCUTBRANCH with C = {R0, R2}, L = {R2}, and
X = {R0}, a further recursive call with C = {R0, R2, R4},
L = {R4}, and X = {R0} would return a R = {R4}. But in-
stead of emitting the ccp ({R4}, {R0, R1, R2, R3}), we would
falsely assume that it is a duplicate because (S\Rtmp)∩X �= ∅
holds. To solve this problem, a X ′ needs to be reset to X once
a new neighbor v is chosen that is not part of R yet (line 12).

As a consequence, we specify the processing order of the
three sets NL, NB and NX dynamically and define three cases:
Case (1) is checked in line 7. It is true if a child invocation has
started with a vx ∈ NL (case (2)) or a vx ∈ NX (case (3)) and
a vy ∈ NL or vy ∈ NB is part of the returned Rtmp. Since
the next invocation which we start with L = {vy} must return
the same Rtmp, we do not have to save its return value and
have no partition to emit since it is already emitted. Note that
the child invocation’s excluded filter set is set to X ′, which
in turn we must have set or reset to our own X in line 12
by processing case (2) or (3) before. After processing vy , we
delete it from its originating set, which is either NL (line 10)
or NB (line 11).

Lines 13 to 16 cover case (2). If the condition of case (1)
is not valid and there are elements of NL left, we have to
consider case (2). That means NL is not empty and either
Rtmp is empty and no neighbor has been processed yet or
no other v ∈ NL is part of the current Rtmp. As explained
for our duplicate avoidance technique, we have to set or reset
the new input parameter X ′ to our current input parameter X .
Because this also needs to be done for case (3), we move this
task to line 12. Once the child invocation returns, we save the
result in Rtmp. Note that Rtmp ∩ R = ∅ holds. Later in line
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PARTITIONMinCutBranch(S)

� Input: a connected set S
� Output: P sym

ccp (S)
1 t← arbitrary vertex of S
2 MINCUTBRANCH(S, {t}, ∅, {t})

Fig. 4. Pseudocode for PARTITIONMinCutBranch

28, Rtmp is joined with R. Having processed the current v, it
is subtracted from NL in line 16.

Case (3) ensures that all those neighbors v ∈ NX are
processed that are not part of any returned Rtmp. A child
invocation started with such a L = {v} could not emit any
further ccps because of the condition in line 24. As we only
have to compute Rtmp, we use REACHABLE (Section III-D).
Because it is constructed solely for this task, it is a simpler and
therefore more efficient method. By line 19, we avoid further
unnecessary calls to REACHABLE. Note that also the results
of case (2) are used to minimize NX .

Lines 20 to 26 will be explained in Section III-C. Before
we return the call, we join L to the final result set R.

C. Two Optimization Techniques

The lines 20 to 26 specify two optimization techniques that
are not a requirement for the branch partitioning algorithm.
The first technique considers cases where Rtmp contains
elements of X . In that case, all other invocations of MIN-
CUTBRANCH and their child invocations with neighbors of C
that are disjoint from Rtmp cannot emit any partitions because
the R′

tmp that they produce must be disjoint with Rtmp so that
S \ R′

tmp cannot be disjoint with X (line 24) any more. But
as we need to ensure that R is correctly computed, we have to
add those neighbors for which we want to avoid unnecessary
calls to MINCUTBRANCH to NX (line 20).

The second optimization technique avoids exploring all the
other neighbors of C which are also elements of Rtmp if
the complement S \ Rtmp is not disjoint with X . As already
mentioned, if these neighbors were not subtracted from NL

and NB, they would be processed in the next iterations of
the loop, and the condition of line 8 would qualify. Hence,
all resulting child invocations of MINCUTBRANCH in line 9
cannot be avoided, although they would not emit any ccps.

D. Exploring Restricted Neighbors

Finally, we explain REACHABLE. As already mentioned, it
is its aim to return the maximally enlarged and connected set
adjacent to L. In line 1 of REACHABLE, the one element result
set R is initialized with L. Enlarging R starts with the set of
neighbors of L that are disjoint to C and lie in S. During the
while loop in lines 3 to 5, all the neighbors of the neighbors
from the previous iteration of the loop that are disjoint with
C are added to R. The loop is exited once no vertex is left to
be added.

E. Two Examples

We illustrate the execution of MINCUTBRANCH by two
examples. Tables II and III show the execution steps when the

MINCUTBRANCH(S,C,X,L)

� Input: connected sets S,C with C,X ⊂ S, |L| = 1
� Output: ccps for S

1 R← ∅
2 Rtmp ← ∅
3 NL ← ((N (L) ∩ S) \ C) \X
4 NX ← ((N (L) ∩ S) \ C) ∩X
5 NB ← (((N (C) ∩ S) \ C) \NL) \X
6 while NL �= ∅ ∨NX �= ∅ ∨NB ∩Rtmp �= ∅
7 do if (NB ∪NL) ∩Rtmp �= ∅ � case (1)
8 then v ← a element of ((NB ∪NL) ∩Rtmp)
9 MINCUTBRANCH(S,C ∪ {v}, X ′, {v})

10 NL ← NL \ {v}
11 NB ← NB \ {v}
12 else X ′ ← X
13 if NL �= ∅ � case (2)
14 then v ← a element of NL

15 Rtmp ← MINCUTBRANCH(
S,C ∪ {v}, X ′, {v})

16 NL ← NL \ {v}
� case (3)

17 else v ← a element of NX

18 Rtmp ← REACHABLE(
S,C ∪ {v}, {v})

19 NX ← NX \Rtmp

20 if Rtmp ∩X �= ∅
21 then NX ← NX ∪ (NL \Rtmp)
22 NL ← NL ∩Rtmp

23 NB ← NB ∩Rtmp

24 if (S \Rtmp) ∩X �= ∅
25 then NL ← NL \Rtmp

26 NB ← NB \Rtmp

27 else emit (S \Rtmp, Rtmp)
28 R← R ∪Rtmp

29 X ′ ← X ′ ∪ {v}
30 return R ∪ L

Fig. 5. Pseudocode for MINCUTBRANCH

REACHABLE(S,C, L)

� Input: a connected set S, C ⊆ S, L ⊆ C, |L| = 1
� Output: connected set R adjacent to C

1 R← L
2 N ← (N (L) ∩ S) \ C
3 while N �= ∅
4 do R← R ∪N
5 N ← ((N (N) ∩ S) \ C)
6 return R

Fig. 6. Pseudocode for REACHABLE

R3 R1 R0

R4 R2

Fig. 7. Chain Query

R0 R1

R2 R3

Fig. 8. Cyclic Query
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chain query of Figure 7 or, respectively, the cyclic query of
Figure 8 is given as input. The first column named level keeps
track of the recursion level. The root invocation is indicated
with a 0. Column 2 shows which case in the parent invocation
has initiated the current call. Due to the lack of space, we omit
invocations where NL = NX = NB = ∅, because they return
immediately to the parent invocation by avoiding the loop of
lines 6 to 29.

For all acyclic graphs, MINCUTBRANCH has only case 2 to
consider. Table II confirms this for chain graphs. The maximal
recursion depth depends on the position of the start vertex.
Here, it is 3, but it is not shown, because the recursion with
L = {R3} and L = {R4} is omitted. For the graph of Figure
8, we have the same recursion depth and again a recursion with
L = {R2}, following the third entry in Table III, is omitted.
As can be seen for this example at the last three entries of
Table III, there is a recursive invocation of MINCUTLAZY
with C = {R0, R3} and X = {R1, R2} that does not emit
any further ccps. Unfortunately, this is an execution overhead
that cannot be avoided easily.

level case C L X NL NX NB

0 - {R0} {R0} ∅ {R1, R2} ∅ ∅
1 2 {R0, R1} {R1} ∅ {R3} ∅ ∅
1 MCB. returns {R3} → emitting ({R3}, {R0, R1, R2, R4})
0 MCB. returns {R3, R1} → emitting ({R1, R3}, {R0, R2, R4})
1 2 {R0, R2} {R2} ∅ {R4} ∅ ∅
1 MCB. returns {R4} → emitting ({R4}, {R0, R1, R2, R3})
0 MCB. returns {R4, R2} → emitting ({R2, R4}, {R0, R1, R3})

TABLE II
EXEMPLIFIED EXECUTION OF MINCUTBRANCH FOR THE GRAPH OF FIG. 7

level case C L X NL NX NB

0 - {R0} {R0} ∅ {R1, R2, R3} ∅ ∅
1 2 {R0, R1} {R1} ∅ {R3} ∅ {R2}
2 2 {R0, R1, R3} {R3} ∅ {R2} ∅ ∅
2 MCB. returns {R2} → emitting ({R2}, {R0, R1, R3})
1 MCB. returns {R2, R3} → emitting ({R2, R3}, {R0, R1})
2 1 {R0, R1, R2} {R2} {R3} ∅ {R3} ∅
2 REACHABLE returns {R3} → emitting ({R3}, {R0, R1, R2})
0 MCB. returns {R2, R3, R1} → emitting ({R1, R2, R3}, {R0})
1 2 {R0, R2} {R2} {R1} {R3} ∅ ∅
2 2 {R0, R2, R3} {R3} {R1} ∅ {R1} ∅
2 REACHABLE returns {R1} → emitting ({R1}, {R0, R2, R3})
1 MCB. returns {R1, R3} → emitting ({R1, R3}, {R0, R2})
1 2 {R0, R3} {R3} {R1, R2} ∅ {R1, R2} ∅
1 2 calls to REACHABLE return {R1} and {R2}
0 MCB. returns {R1, R2, R3}

TABLE III
EXEMPLIFIED EXECUTION OF MINCUTBRANCH FOR THE GRAPH OF FIG. 8

F. Complexity of Branch Partitioning

We determine the complexity of MINCUTBRANCH to emit
successive ccps by O( i+r+l

|P sym
ccp (S)| ), where i is the number

of iterations of the loop in line 6, r is the number of all
invocations of REACHABLE and l is the number of all iterations
of the loop in line 3 of REACHABLE.

For acyclic graphs we know that |P sym
ccp (S)| = |S|−1 holds.

Furthermore, no v ∈ NB ∪NX will be processed. Therefore,
i = |S| − 1 and r = l = 0 holds, since there is no call to

REACHABLE. Hence, the complexity of MINCUTBRANCH to
emit a ccp for acyclic graphs is in O(1).

A cycle query has |P sym
ccp (S)| = 1

2 |S|2\
1
2 |S| symmetric ccps

for S. Each of the first |S|−1 invocations processes a neighbor
taken from the set NL. That recursive descent is always
initiated through line 15. There are |S|−2 second invocations
of the loop of line 6 calling MINCUTBRANCH from line
9. Those invocations process further

∑|S|−2
k=1 k neighbors in

total. Altogether, there are |S| − 1 + |S| − 2| +
∑|S|−2

k=1 k =
1
2 |S|2 + 12|S| − 2 = i neighbors processed. REACHABLE is
called r = |S|−2 times, and the loop of line 3 never iterates, so
that l = 0 holds. Therefore, the total complexity per emitted
ccp is |S|2+3|S|−8

|S|(|S|−1) , which decreases asymptotically to 1, so
that the complexity is O(1).

Considering clique queries, we know that |P sym
ccp (S)| =

2|S|−1−1 holds. There are 2|S|−1 neighbors processed that are
element of NL. Furthermore, there are 2|S|−2 − 1 neighbors
processed that are element of NX . Therefore i = 2|S|−1 +
2|S|−2 \ 1 = 3

42
|S| − 1 and r = 2|S|−2 − 1 holds. The

number of iterations through the loop of line 3 must be
|S| − 2 times less than there are calls to REACHABLE, so that
l = 2|S|−2 − |S| − 3 holds. To emit all symmetric ccps, the
complexity is 5

42
|S|− |S| − 5. Per emitted ccp the complexity

increases asymptotically to 5
2 . Hence, the complexity for clique

queries is in O(1).

IV. EVALUATION

This section summarizes our experimental findings. We start
by briefly describing our setup. Then, we concentrate on the
enumeration costs per ccp, which, as we have argued in the
introduction, is fundamental (Sec. IV-B). Sec. IV-C compares
the complete execution times of TDMINCUTBRANCH and
TDMINCUTLAZY. Finally, Sec.IV-D is devoted to a com-
parison of these algorithms with the best bottom-up join
enumerator. For completeness, it also shows the depressing
results for MEMOIZATIONBASIC, which underlines the chal-
lenge discussed in the introduction.

A. Experimental Setup

For all plan generators, no matter whether they work top-
down or bottom-up, a shared optimizer infrastructure was
established. It contains the common functions to instantiate,
fill, and lookup the memotable, initialize and use plan classes,
estimate cardinalities, calculate costs, and compare plans.
Thus, the different plan generators differ only in those parts
of the code responsible for enumerating csg-cmp-pairs. Since,
due to the fact that we ignore pruning, the cost calculation is
immaterial for our investigation, we simply use Cout. It sums
up the cardinalities of the intermediate results.

We store the pre-calculated ancestors, descendants (required
by MINCUTLAZY and neighbors of a vertex in an array of
size |V |.

To generate our workload, we have implemented a generic
query graph generator. In a first step, it generates chain,
star, cycle, and clique queries as well as random acyclic and
cyclic graphs. For the latter, edges are randomly added by
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Fig. 9. Cost per emitted ccp of MINCUTLAZY and MINCUTBRANCH for
clique queries.

selecting two relation’s indices using uniformly distributed
random numbers. In a second step, cardinalities and selec-
tivities are attached using a random generator with a Gaussian
distribution. Since we leave out pruning, these numbers do not
influence the search space of the plan generators.

We include only those query graphs in our evaluation that
all plan generators could process in less than 100 seconds.
Our workload consists of 25.500 query graphs. The number of
vertices and edges for our random cyclic queries are uniformly
distributed. We conducted all our experiments on an Intel
Pentium D with 3.4 GHz, 2 Mbyte second level cache and
3 Gbyte of RAM that runs openSUSE 11.0. We used the Intel
C++ compiler with the O3 compiler option set.

B. Partitioning Costs

We have analyzed the complexity of lazy minimal cut
partitioning (Appendix B) and branch partitioning (Section
III-F) for chain, star, cycle and clique queries. For both
partitioning strategies, the complexity is in O(1) for chain,
star and cycle queries per emitted ccp. But when clique queries
are considered, MINCUTLAZY has a complexity in O(|S|2)
whereas MINCUTBRANCH is still in O(1). Therefore, we have
measured the partitioning costs and discuss them here for
clique queries. Figure 9 shows our results with the number
of vertices on the abscissa and the execution time per emitted
ccp on the ordinate.

The costs per emitted ccp are decreasing for a small number
of vertices. But with five and more vertices, the costs for lazy
minimal cut partitioning are increasing again. The increase is
quadratic. For MINCUTBRANCH the costs are dropping for
less than ten vertices. After that, they are slightly increasing.
The decrease at the start of both curves is due to some
instantiation overhead that becomes negligible compared to
the other processing costs when a higher number of vertices is
considered. Our results support a quadratic increase as proven
by our complexity analysis, but this effect is rather weak for
the number of vertices considered here. Note that the effect
was weakened by our implementations, since we have used
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Fig. 10. Performance of TDMINCUTLAZY and TDMINCUTBRANCH with
chain queries.

inline assembler instructions to minimize the accessing cost
of the data structure MINCUTLAZY relies on.

For MINCUTBRANCH, we have proven that the complexity
is increasing asymptotically to a constant factor. Our results
show a very weak increase. This is caused by an increasing
number of cache misses for an increasing number of vertices.

In summary, our results show that the performance dif-
ferences between the two algorithms for clique queries are
strongly increasing with a higher number of vertices.

For the other three graph shapes, MINCUTBRANCH clearly
dominates MINCUTLAZY, but the differences are not as strong
as for clique queries, because both algorithms have only a
constant overhead in those scenarios.

C. Costs of Plan Generation

The Figures 10 to 17 present the performance results
for TDMINCUTLAZY and TDMINCUTBRANCH for certain
query shapes. Contrary to the previous section, we do not
measure the cost for one call to the partitioning algorithm but
the overall cost for one call to TDPLANGEN. This includes
the cost for all calls to BUILDTREE and the costs of all calls
to PARTITIONi.

To minimize measurement errors, we computed the average
for every algorithm run for a given input. For fixed query
shapes that are chains, stars, cycles, and cliques, and for
random acyclic graphs (Figures 10 to 14), we give the number
of vertices on the abscissa and the execution time in log scale
on the ordinate. We connect the averaged execution times with
lines.

Since for randomly generated cyclic queries the perfor-
mance results of the algorithms deviate significantly for the
same number of vertices, we show the results separately for
different numbers of vertices. At the abscissa, we chose to
display the number of edges and again the execution time in
log scale on the ordinate. We do not present the exact results,
but results smoothed by Bezier curves (Figures 15 to 17).

In all charts, we also present the differences of TDMIN-
CUTLAZY’s and TDMINCUTBRANCH’s runtime. Since the
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Fig. 11. Performance of TDMINCUTLAZY and TDMINCUTBRANCH with
star queries.

effort of the join cost calculations is exactly the same for both
algorithms (for a given query graph of course), the difference
of both runtimes equals the difference of the partitioning
costs for both algorithms. Hence, the time spent for all calls
to BUILDTREE is not contained in the introduced difference
curve any more. By normalized runtime we denote the quo-
tient of TDMINCUTLAZY’s execution time and TDMINCUT-
BRANCH’s execution time. Although the normalized runtime
can be easily calculated from the absolute runtimes, we include
the normalized runtimes in separate charts in our technical
report [7].

For all scenarios, we can see that TDMINCUTBRANCH
dominates TDMINCUTLAZY. Since the difference curve is
always above TDMINCUTBRANCH, the runtime of TDMIN-
CUTLAZY is at least twice as high as TDMINCUTBRANCH’s
runtime. Furthermore, the differences in the partitioning costs
alone exceed all costs of MINCUTBRANCH. But note that the
time spent for cardinality estimation and plan cost computation
in today’s database environments would be a multiple of the
time spent with our implementation of BUILDTREE. Neverthe-
less, this would not change the shape of our difference curves!

For chain, star and random acyclic queries, the runtimes
of both graphs are converging up to a factor of two. This is
not surprising, since TDMINCUTLAZY has to build just one
biconnection tree per call to the partitioning algorithm. Which
means that the fixed overhead for allocating the biconnection
tree data structure becomes negligible with an increasing
number of vertices. Among acyclic graphs, star queries have
the highest number of ccps and chain queries the lowest
number of ccps. Hence, star queries have the highest execution
times for the same number of vertices and chain queries have
the lowest. Random acyclic graphs range in the middle. The
normalized runtimes range between a factor of 2 to 3 for all
acyclic query shapes, as can be seen in detail in [7].

In terms of join enumeration, cycle queries are the least
complex queries among cyclic queries. The results for cycle
queries in Figure 13 resembles the chart for chain queries. This
is as expected, since only the input of the root invocation of

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5  10  15  20  25  30

tim
e 

el
ap

se
d 

in
 s

ec
on

ds

number of relations

Acyclic

TDMinCutLazy
TDMinCutBranch

Difference

Fig. 12. Performance of TDMINCUTLAZY and TDMINCUTBRANCH with
random acyclic queries that are neither chain nor star queries.

TDPLANGEN is a cycle, for all other invocations the cycle
is broken off into a chain. Cycle queries are on one side
of the spectrum of cyclic graphs and clique queries, as the
most complex queries, on the other. Here, we have the highest
runtime, because clique queries have the highest number
of ccps. One can see that the difference of both runtimes
almost converges with the runtime of TDMINCUTLAZY. We
have measured the execution times for up to 16 vertices.
As displayed, the normalized runtime of TDMINCUTLAZY
increases to 5. Since the partitioning costs are in O(|S|2) (also
compare Section IV-B), the normalized runtime would increase
as well for more vertices.

As we have seen from our experiments, the normalized
runtime for cyclic queries ranges between a factor of two
(cycle queries) to a factor of five (clique queries). In Figure 15
and Figure 17, we show the results for random cyclic queries.
We observe that the difference curve is shifting towards the
curve of TDMINCUTLAZY with an increasing number of
vertices. For those random graph shapes, the normalized
runtime ranges between a factor of 3 to 6, rising with the
number of relations and join predicates.

D. Overall Comparison

The previous section has shown that our new algorithm is
clearly superior to TDMINCUTLAZY. But now we want to see
how it compares to MEMOIZATIONBASIC and state-of-the-art
bottom-up join enumeration with Moerkotte’s and Neumann’s
DPCCP. Due to the lack of space, we do not present our results
as charts, but summarize them in Table IV for acyclic graphs
and in Table V for cyclic graphs. We give the results as relative
factors, where we compare an algorithm’s runtime to DPCCP’s
runtime. We give the minimal value, the maximal value and
the average value over all results for a certain query type. Note
that these aggregated values are taken from an average value
over multiple runs of the algorithms with the same input.

We observe that MEMOIZATIONBASIC with a generate and
test partitioning strategy performs certainly worst for acyclic
graphs and graphs with a low number of edges relative
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Fig. 13. Performance of TDMINCUTLAZY and TDMINCUTBRANCH with
cycle queries.
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Fig. 14. Performance of TDMINCUTLAZY and TDMINCUTBRANCH with
clique queries.
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Fig. 15. Performance of TDMINCUTLAZY and TDMINCUTBRANCH for
cyclic queries with 8 vertices.
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Fig. 16. Performance of TDMINCUTLAZY and TDMINCUTBRANCH for
cyclic queries with 12 vertices.
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Fig. 17. Performance of TDMINCUTLAZY and TDMINCUTBRANCH for
cyclic queries with 16 vertices.

to the number of vertices. With a factor of almost 4700,
for chain queries the algorithm is a bad choice for acyclic
graphs. TDMINCUTLAZY performs relatively well with a
maximal factor of 3.2. Except for star queries, where we have
more cache misses with an increasing number of vertices,
TDMINCUTBRANCH performs even better than the state-of-
the-art in dynamic programming. The lowest factor we could
determine was at 0.66 for random acyclic queries.

For random cyclic queries and an increasing number of
vertices, MEMOIZATIONBASIC starts dominating TDMIN-
CUTLAZY. For clique queries it performs on average more
than 3 times faster. TDMINCUTBRANCH performs for these
types of queries only second best. The average values of
1.09 for clique and 1.13 for random cyclic queries are very
competitive, but the factors can also range to 1.47, which is
still a very impressive result, compared to TDMINCUTLAZY
and MEMOIZATIONBASIC.

As a result of our empirical analysis, we propose TD-
MINCUTBRANCH as the algorithm of choice for bottom-up
processing, since it is the fastest algorithm for acyclic graphs
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and performs very well for random cyclic graphs. We can
contrast the worst relative factor of 1.47 with a factor of
1

0.66 = 1.52 being faster than the state-of-the-art with DPCCP,
although no branch-and-bound pruning is put in place.

V. CONCLUSION

We presented a new top-down join enumeration algorithm,
which has two advantages over the best bottom-up algorithm
known so far:

• It performs better.
• It is easier to implement.

The latter is due to the fact that it does not need complex data
structures like the biconnection tree. Instead, it only relies on
set operations, which can be implemented easily and efficiently
using bit vectors.

Furthermore, the new algorithm exhibits about the same
performance as the best-known bottom-up algorithm. Impor-
tantly, it does so without relying on pruning. Thus, as soon
as the query is amenable for branch-and-bound pruning, our
new top-down algorithm will be superior to the best bottom-up
algorithm.

There are two major challenges for future work. The first is
to extend our new algorithm to hypergraphs. This is important,
since not all queries have an equivalent query graph. Some
need hypergraphs.

Currently, the conditions under which pruning is effective,
that is for which kind of query which degree of pruning can
be achieved, is unknown. Thus, the second, unequally more
challenging problem for future work is to determine these
conditions.
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APPENDIX

A. Lazy Minimal Cut Partitioning

DeHaan and Tompa [4] proposed a partitioning algorithm
named MINCUTLAZY that generates the ccps for a set. We

give its pseudocode in Figure 18. MINCUTLAZY can be used
to instantiate the generic top-down algorithm to which we then
refer as TDMINCUTLAZY.

DeHaan’s and Tompa’s partitioning algorithm starts with
one-element-sets of the relations C and expands them recur-
sively by the descendants DT (v) [4] of a neighbor v ∈ N (C),
but does not cause the complement S \ C to become dis-
connected. Duplicates are avoided through a restricted set X
that is enhanced by the ancestors AT (v) [4] of a v ∈ N (C)
after every recursive call. The calculation of descendants and
ancestors is based on a biconnection tree structure T that is
computed by a call to BUILDBCCTREE [8]. The biconnection
tree building complexity is in the worst case in O(|S|2).
To avoid the unnecessary re-computation of the biconnection
tree at every invocation of MINCUTLAZY, the reusability test
ISUSABLE [4] is proposed. Since the test returns false nega-
tives, the partitioning algorithm in the worst case constructs a
biconnection tree for every emitted partition. But in the best
case, that is, for all acyclic graphs, only one biconnection tree
is constructed.
PARTITIONMinCutLazy(S)

� Input: connected set S
� Output: P sym

ccp (S)
1 t← arbitrary vertex of S
2 MINCUTLAZY(S, ∅, ∅, {t}, NULL, t)

MINCUTLAZY(S,C,Cdiff , X, T ′, t)

� Input: connected set S, C ∩X = ∅, Cdiff ⊆ C
� Output: ccps for S

1 if C �= ∅
2 then emit (C, S \ C)
3 if N (C) ⊆ X
4 then return
5 if ISUSABLE(T ′, Cdiff )
6 then T ← T ′

7 else T ← BUILDBCCTREE(S \ C, t)
8 P ← {v ∈ N (C)|v ∈ (S \X)∧

(DT (v) ∩ N (C)) = {v}}
9 X ′ ← X

10 for all v ∈ P
11 do MINCUTLAZY(S,C ∪DT (v),DT (v), X

′, T , t)
12 X ′ ← X ′ ∪ AT (v)

� N (∅) = S \ {t}
Fig. 18. Pseudocode for MINCUTLAZY

B. Complexity of Lazy Minimal Cut Partitioning

We analyze the complexity of DeHaan’s and Tompa’s
MINCUTLAZY for fixed shape query graphs which are chain,
star, cycle and clique queries. We base our calculations on
Fender’s and Moerkotte’s analysis of the biconnection tree
building [7] which is |E| + 2|S| − 2 + |A|, where A is
the set of articulation vertices [9] of a G = (S,E). Fur-
thermore, our analysis presumes a simplification of line 8
which saves unnecessary iterations during the calculation of
the pivot set. Now, the revised computation in line 8 is:
P ← {v ∈ N (C) \ X | (DT (v) ∩ N (C)) = {v}}. For one
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Algorithm Chain Star Acyclic
min max avg min max avg min max avg

DPccp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MemoizationBasic 1.06 46826.65 1569.17 0.89 76.93 11.88 0.94 5646.15 150.87
TDMinCutLazy 1.69 2.85 2.27 2.19 3.50 2.93 1.48 3.22 2.23
TDMinCutBranch 0.74 0.98 0.85 0.77 1.30 1.04 0.66 1.03 0.85

TABLE IV
MINIMUM, MAXIMUM AND AVERAGE OF THE NORMALIZED RUNTIMES FOR CHAIN, STAR AND RANDOM ACYCLIC QUERIES.

Algorithm Cycle Clique Cyclic
min max avg min max avg min max avg

DPccp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MemoizationBasic 0.97 4392.17 117.19 0.82 1.93 1.42 1.10 200.93 5.76
TDMinCutLazy 1.63 3.70 2.42 3.60 7.40 6.00 2.13 8.00 5.63
TDMinCutBranch 0.70 1.20 0.98 0.79 1.26 1.09 0.78 1.47 1.13

TABLE V
MINIMUM, MAXIMUM AND AVERAGE OF THE NORMALIZED RUNTIMES FOR CYCLE, CLIQUE AND RANDOM CYCLIC QUERIES.

call to PARTITIONMinCutLazy , we compute the algorithm’s
complexity in the form of O(

Ot+Ou+Op+Oi

|P symccp(S)| ), where Ot is the
complexity of all biconnection tree buildings, Ou the com-
plexity of all usability tests, Op the complexity for computing
all pivot sets P , and Oi the complexity of all iterations of the
loop in line 10.

First, we consider chain queries. We know that |A| = |S|−2
holds and only one biconnection tree has to be built. Hence,
Ot = |S| − 1 + 2|S| − 2 + |S| − 2 = 4|S| − 5 holds. The
number of usability tests will be |S|−3 times at minimum and
|S|−2 times at maximum at O(1) cost each, because at every
step |DT (v)| = 1 holds. The condition of line 8 (DT (v) ∩
N (C)) = {v} for computing the pivot set P is evaluated
2|S|−4 times at least and 2|S|−3 times at most at O(1) cost
each. MINCUTLAZY is invoked |S|−1 times in line 11, which
we account with O(1) cost each. In total, the complexity is
4|S| − 5+ |S| − 2+ 2|S|− 3+ |S| = 8|S| − 11, and there are
|S|−1 ccps emitted, whereas symmetric ccps are counted only
once. Therefore, the complexity of MINCUTLAZY to emit a
ccp corresponds to O(1).

Next, star queries are to be considered. Again, there will
be only one biconnection tree building with a complexity of
|S| − 1 + 2|S| − 2 + 1 = 3|S| − 2, because |A| = 1 holds.
Depending on whether the hub of the star is chosen as the
root vertex t of the biconnection tree, there is no usability test
required and otherwise, one usability test at O(1) cost. The
condition of line 8, (DT (v) ∩ N (C)) = {v}, is computed
|S|− 1 times at least and |S| times at most at O(1) cost each.
There are |S| − 1 times that MINCUTLAZY is invoking itself
in line 11, which we account with O(1) cost each. In total, the
complexity is 3|S|−2+1+|S|+|S| = 5|S|−2, and since there
are |S| − 1 ccps emitted, the complexity of MINCUTLAZY to
emit a ccp is in O(1).

Let us now consider cycle queries. First of all, we know that
|E| = |S| holds. There are |S| many connected subgraphs of
size k, with k < |S| and (|S| − 1)|S| = |S|2 − |S| in total.
When we count symmetric ccps only once, the number of
ccps is 1

2 |S|2−
1
2 |S|. Lazy minimal cut partitioning needs one

initial biconnection tree building for S and at the most |S|−2
buildings for the complements of size |S| − 1 that are chain

graphs, because the cycle is broken off. This yields a worst
case complexity of |S|−2|S|−2+1+(|S|−1)(|S|−2+2(|S|−
1)− 2 + |S| − 3) = 4|S|2 − 18|S|+ 17 for all tree buildings.
MINCUTLAZY invokes itself 1

2 |S|2 −
1
2 |S| times. The same

holds for the number of times that the condition of line 8,
(DT (v) ∩ N (C)) = {v}, is computed, again at O(1) cost
each. The number of tree usability tests evaluated is at least
|S| − 1 lower than MINCUTLAZY invokes itself, because of
the early exit in line 1. Therefore, there are 1

2 |S|2 −
3
2 |S|+ 1

usability tests with O(1) cost each. In total, the worst case
complexity is 4|S|2−18|S|+17+ 1

2 |S|2−
3
2 |S|+1+2(12 |S|2−

1
2 |S|) = 11

2 |S|2 −
41
2 |S| + 18. Therefore, the complexity of

MINCUTLAZY to emit a ccp is in O(1).
Finally, we analyze the algorithm’s complexity for clique

queries. For every clique it holds that |E| = |S|(|S|−1)
2 . Since a

powerset of a set with n elements has 2n−1 nonempty subsets,
for a clique |P symccp(S)| = 2|S|−1−1 holds. When determin-
ing the complexity of the biconnection tree buildings for clique
queries, it is important how often the tree building algorithm
is called for a subgraph GS\C . Since the vertex t, arbitrarily
chosen during the invocation of PARTITIONMinCutLazy , must
always be part of a complement S \ C, there are

(|S|−1
k−1

)

possible complements of size k. Because of the early exit
in line 1 of MINCUTLAZY, there are no biconnection trees
built for complements of size k = 1 or if S \ C = X
holds. This means that there are only

(|S|−2
k−2

)
biconnection

tree buildings of size k. In total, there are
∑|S|

K=1

(|S|−2
k−2

)
=

2|S|−2 biconnection tree buildings with a complexity of∑|S|
K=1(

(|S|−2
k−2

)
k2+3k−4

2 ) = 1
322

|S|(|S|2 + 11|S| − 2). There
are as many tree usability tests as biconnection tree buildings,
each at O(1) costs, since ∀v ∈ S : |DT (v)| = 1 holds. This
results in a complexity of 2|S|−2 for all tests. MINCUTLAZY
is called 2|S|−1 times, which we count with a complexity of
2|S|−1. The condition (DT (v) ∩ N (C)) = {v} is calculated
2|S|−1 times at cost of O(1) each. The total complexity is
1
322

|S|(|S|2+11|S|−2)+2|S|−2+2∗2|S|−1 = 1
322

|S|(|S|2+
11|S| + 38). When we assume that the number of ccps is
|P symccp(S)| = 2|S|−1 instead of 2|S|−1 − 1, we have a
complexity of 1

16 |S|2 + 11
16 |S| +

19
8 per emitted ccp, which

corresponds to O(|S|2).
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