Dynamic Programming: The Next Step

Marius Eich !, Guido Moerkotte 2

University of Mannheim
Mannheim, Germany
'marius.eich@uni-mannheim.de
2moerkotte@uni-mannheim.de

Abstract—We fill two gaps in the literature. First, we give a
comprehensive set of equivalences allowing reordering of group-
ing with non-inner joins. Second, we show how to incorporate
the optimal placement of grouping into a state-of-the-art dynamic
programming (DP)-based plan generator.

I. INTRODUCTION

In a recent paper, Shanbhag and Sudarshan pointed out that
the biggest disadvantage of DP-based plan generators (PG)
(like [1]) is that they are not capable of reordering grouping
and joins [2]. Here, we show how to overcome this deficit.
Further, we fill another gap in the literature: the lack of
equivalences useful to push grouping down non-inner joins.
Consider the following query against the TPC-H schema:

select ns.n_name, nc.n_name, count (%)
from (nation ns inner join supplier s on
(ns.n_nationkey = s.s_nationkey))
full outer Jjoin
(nation nc inner join customer c on
(nc.n_nationkey = c.c_nationkey))
on (ns.n_nationkey = nc.n_nationkey)
group by ns.n_name, nc.n_name

The main point here is that since only reorderings between
grouping and inner joins are known [3], [4], [5], [6], [7],
[8], the outer join constitutes a barrier to any reordering with
grouping. This has severe consequences. On HyPer [9], the
execution time is 2140 ms. The plan produced by the DP-
based PG presented in this paper reduces it to 1.51 ms. (Similar
results were obtained for two major commercial systems: for
system 1 we got 8480 ms vs. 47 ms and for system 2 64900 ms
vs. 210 ms.) Since in general, reordering grouping and outer
joins is not a correct rewrite, we eliminate the barrier by
generalizing the definition of outer joins (Sec. III).

After this preliminary step, we show how to integrate
these equivalences into a modern DP-based PG. Since free
placement of grouping extends the search space substantially,
we also present one optimality-preserving pruning technique
and two heuristics.

The rest of the paper is organized as follows. The next
section presents some preliminaries. Then, we discuss the new
equivalences. Sec. IV starts by introducing the basic DP-based
PG. Then, we show how to extend it such that the search space
enlarged by the new equivalences is systematically explored.
Since the enlarged search space may become quite large, we
discuss two heuristics and an optimality-preserving pruning

978-1-4799-7964-6/15/$31.00 © 2015 IEEE

903

technique to make the approach feasible. Sec. V contains
experimental results. We first evaluate the gain of our approach,
then its costs. Sec. VI summarizes the achievements and
proposes directions for future research.

II. PRELIMINARIES
A. Aggregate Functions and Their Properties

Aggregate functions are applied to a group of tuples to
aggregate their values in one common attribute to a single
value. Some standard aggregate functions supported by SQL
are sum, count, min, max and avg. Additionally, it is possible
to specify how duplicates are treated by these functions using
the distinct keyword as in sum(distinct), count(distinct) and so
on. Since several aggregate functions are allowed in the select
clause of a SQL query, we deal with vectors F' of aggregate
functions. If F; and F; are two vectors of aggregate functions,
we denote by Fj o Fy their concatenation.

As usual, the set of attributes provided by some expression
e (e.g. a base relation) is denoted by .A(e) and the set of
attributes referenced by some expression e (e.g. a predicate)
is denoted by F(e).

The following definitions of properties of aggregate func-
tions will be illustrated by some examples in the next section.
There, it also becomes clear why they are needed.

1) Splittability: The following definition captures the intu-
ition that we can split a vector of aggregate functions into two
parts if each aggregate function accesses only attributes from
one of two given alternative expressions.

Definition 1: An aggregation vector F' is splittable into F}
and F, with respect to arbitrary expressions e; and eg if F' =
Fio Fy, F(F1) N A(eg) =0 and F(F2) NA(er) = 0.

In this case, we can evaluate F; on e; and F5 on es. A special
case S1 occurs for count (%), which accesses no attributes
and can thus be added to both, F; and F5.

2) Decomposability: One property of aggregate functions
that is of particular interest for the considerations in this paper
is decomposability [10]:

Definition 2: An aggregate function agg is decomposable
if there exist aggregate functions agg' and agg? such that
agg(Z) = agg®(agg'(X),agg'(Y)), for bags of values X, Y
and Z where Z = X UY.

In other words, if agg is decomposable, agg(Z) can be
computed independently on arbitrary subbags of Z and the

ICDE Conference 2015

partial results can be aggregated to yield the correct total result.
For some aggregate functions, decomposability can be seen
easily:

min(X UY) = min(min(X),min(Y))
mazx(X UY) = maz(maz(X),maz(Y))
count(XUY) = sum(count(X),count(Y))
sum(X UY) sum(sum(X), sum(Y))
In contrast to their duplicate preserving counterparts,

sum(distinct) and count(distinct) are not decomposable.

The treatment of avg is only slightly more complicated.
If there are no null values present, SQL’s avg is equivalent to
avg(X) = sum(X)/count(Y’). Since both sum and count are
decomposable, we can decompose avg as follows:

avg(XUY') = sum(sum(X), sum(Y"))/(count(X)+count(Y)).

If there exist null values, we need a slightly modified
version of count that only counts tuples where the aggregated
attribute is not null. We denote this by count’V"¥. We can then
use this to decompose avg as follows:

sum(sum(X), sum(Y"))

XUY) = .
ave() count’VVN (X)) + countV N (Y)

For special case S1, the two counts have to be multiplied.

3) Duplicate Sensitive and Agnostic: We have already seen
that duplicates play a central role in correct aggregate process-
ing. Thus, we define the following. An aggregate function f
is called duplicate agnostic if its result does not depend on
whether there are duplicates in its argument or not. Otherwise,
it is called duplicate sensitive. Yan and Larson use the terms
Class C for duplicate sensitive functions and Class D for
duplicate agnostic functions [4].

For SQL aggregate functions, we have that

e min, max, sum(distinct), count(distinct), avg(distinct)
are duplicate agnostic and
e sum, count, avg are duplicate sensitive.

If we want to decompose an aggregate function that is du-
plicate sensitive, some care has to be taken. We encapsulate
this by an operator prime (') as follows. Let F' = (b; :
aggi(ay),...,bm : aggm(am)) be an aggregation vector.
Further, let ¢ be some other attribute. In the context of this
work, ¢ will be an attribute holding the result of some count().
Then, we define F ® c as

F®c:=(by:aggi(e1),...,bn : aggl (em))

with
agg,(e;) if agg, is duplicate agnostic,
aggi(ei) = { agg;(eixc) if agg, is sum,
sum(c) if agg;(e;) = count(x),

and if agg;(e;) is count(e;), then aggl(e;) :
NULL?0 : ¢).

sum(e;

904

B. Algebraic Operators

One operator that plays an important role in the following
sections is the grouping operator, which we denote by I'. The
grouping operator can be defined as

= {yolg:az]|ye Hg(e)’
x=f({z|z €¢e, 2.G 0 y.G})}

Locig:1(e)

for some set of grouping attributes G, a single attribute g,
an aggregate function f, and a comparison operator § € {=
,#,<,>,<,>}. We denote by 117 (e) the duplicate-removing
projection onto the set of attributes A, applied to the expres-
sion e. The resulting relation only contains values for those
attributes that are contained in A and no duplicate values.
The function f is then applied to groups of tuples taken from
this relation. The groups are determined by the comparison
operator 6. Afterwards, a new tuple consisting of the grouping
attribute’s values and an attribute g holding the corresponding
value calculated by the aggregate function f is constructed.

The grouping operator can also introduce more than one
new attribute by applying several aggregate functions. We
define

FGG;blzfl,...,bk:fk (e) = {y o [bl X1, .,bk : xk} ‘ Yy € Hg(e),
x; = fi({z]z € e, 2.G 0 y.G})},

where the attribute values b, . .. by, are created by applying the
aggregation vector F' = (f1,..., fi), consisting of k aggregate
functions, to the tuples grouped according to . The grouping
criterion may also be defined on several attributes. If all 6
equal ’=’, we abbreviate I'_q.4.f by I'gg: 7.

The map operator () extends every input tuple by new
attributes:
cen(t)]|t € e}

ane,(€) :={tola :ei(t),...,an

.

As usual, selection is defined as

op(e) = {z|x € e, p(x)}.

The join operators we consider are the (inner) join (X),
left semijoin X, left antijoin (D), left outerjoin (IX), full
outerjoin (IX), and groupjoin (X'). The definitions of these
join operators are given in Figure 1. There, o denotes tuple
concatenation. Most of these operators are rather standard.
However, both the left and the full outerjoin are generalized
such that for tuples not finding a join partner, default values
can be provided instead of null padding. More specifically, let
D;=d!:ch,...,di:ci(i =1,2) be two vectors assigning
constants ¢; to attributes d; The definitions of the left and
full outerjoin with defaults are given in 7 and 8, respectively.
Fig. 2 provides examples.

The last row defines the left groupjoin X', introduced by
von Biiltzingsloewen [11]. First, for a given tuple ¢; € eq, it
determines the sets of all join partners for ¢; in ey using the
join predicate p. Then, it applies the aggregate function f to
these tuples and extends ¢; by a new attribute g containing the
result of this aggregation. Figure 2 gives an example.

e1 X e {roslr€ei,s€e} (1
e1Xpea = {roslr€ei,se€ep(rs)}t)
e1Xpea = {r|r€ei,Is €ea,p(r,s)} 3)
e1bpez = {rjrcer,Psceap(rs)} 4)
e1Mpex = (ex Mpe2)U((erdpe2) X {Laeyt)

e1 X, ez (61 Xy 62)
U((e1 Pp e2) X {L a(eq) }
U{Lagen} X (e2 Pp€1)) (6)

61}452 = (61 X eQ)U

((e1 Pp e2) X {La(eana(py) © [D2]} (1)
el Nf“Dz ez = (e1Mpez)U
((e1 Pp e2) X {La(eana(py) © [D2]} U
({Laenamy) o [Di]} X (e2bpe1)) (8)
e1Xpgrea = {rolg:G||r€ e,
G= f({8|5 € 62,[)(7‘7 S)})} ©))
Fig. 1. Join operators
€1 €2
a|b|c dle | f
0101 0101
11011 1111
21113 2121
31213 31412
€1 Mel.b:eg.d €2
a|b|c|dje]|f 1 be umen o s
00| 1]0]0]|1 a %'a_e2'z
1701 1]0]0]|1 3 3
20113111
3121312121
€1 [Xel.b:eg.d €2 €1 Mz; —eq.€ €2
a|b c a|b|c|d|e]|f
010 1 O[]0l 1 0|01
110 1 1o 1|1(|1]1
211 3 211132 12]1
312 3 31213 -17]-
€1 Ng:lr.;eje e €2
g 8 (1: g (e) f ep Mg .a=ey.f;g:sum(ea.f) €2
b|c
plof] oty :
21113121211 21113 2
31213 -17/|-
-7 -1314|2
Fig. 2. Examples of different join operators
C. Keys

We use information about keys to avoid unnecessary group-
ing operators. Thus, if the key information is incomplete,
unnecessary grouping operators are introduced. However, it
is important to note that this does not affect the correctness of
plans, but only their efficiency.

The keys for base relations are specified in the database
schema and therefore given. By using them and the join
operators and predicates contained in a given plan it is possible

905

to compute the keys for all intermediate results.

In the following paragraphs, we denote by x(e) the set of
keys for a relation resulting from an expression e. Note that
a single key is a set of attributes. Therefore, « is a set of
sets. Each of the following paragraphs covers one of the join
operators specified in Sec. II-B.

1) Inner Join: We have to distinguish three cases:

e In case A; is a key of e; and As is a key of es, we
have

k(er Ma, =4, €2) = k(e1) Uk(ea).

That is, each key from one of the input expressions is
again a key for the join result.

e In case A; is a key, but A, is not, we have
K(er Ma, =4, e2) = Kk(ea).
The reverse case is handled analogously.

e Without any assumption on the A; or the join predi-
cate, we have

k(er Mg eg) = U

ki1€r(e1),k2€r(e2)

ki U ko.

In other words, every pair of keys from e; and es
forms a key for the join result.

2) Left Outerjoin: Here, we have only two possible cases.
If Ay is a key of es, then

k(e Ma, =4, €2) = K(er).

Otherwise, we have to combine two arbitrary keys from e; and
eo to form a key:

k(er Mg ez) = U

ki1€r(er),k2€r(e2)

ki1 U ko,

where ¢ is an arbitrary predicate.

3) Full Outerjoin: Regardless of the join predicate, we
have to combine two arbitrary keys from e; and ey to form a
key for the join expression:

k(er Mg e2) = U

k1 EH(Gl),kQEH(Ez)

k1 U ko,

where ¢ is an arbitrary join predicate.

4) Left Semijoin/Left Antijoin/Left Groupjoin: Since the
attributes from the right input are no longer present in the
join result and the result is duplicate-free by definition, we
always have

k(e oex) = k(er)
for o € {X, >, M},

Using these basic rules, the keys for every subtree of an
operator tree can be computed bottom-up. Note that the keys
resulting from the full and left outerjoin contain null values.
We therefore assume that null values are treated as suggested
in [12], i.e., two attributes are equal if they agree in value or
they are both null.

III. EQUIVALENCES

This section is organized into two parts. The first part
shows how to push down/pull up a grouping operator, the sec-
ond part shows how to eliminate an unnecessary top grouping
operator.

A. Pushing Group-By

Since the work by Yan and Larson [5], [6], [8], [7], [4]
is the most general one, we take it as the basis for our work.
Figure 3 shows all known and new equivalences. The nine
equivalences already known from Yan and Larson’s work can
be recognized by the inner join on their left-hand side. The
different section headings within the figures are those proposed
by Yan and Larson (except for Others). A special case of
Eqv. 20 occured in [13]. The proofs of all equivalences are
provided in our technical report [14].

Within the equivalences, a couple of simple abbreviations
as well as some conventions occur. We give them in this
short paragraph and illustrate them by means of two examples
afterwards. By G we denote the set of grouping attributes, by
F" a vector of aggregation functions, and by ¢ a join predicate.
The grouping attributes coming from expression e; are denoted
by G, i.e., G; = A(e;)NG. The join attributes from expression
e; are denoted by J;, i.e.,, J; = A(e;) N F(q). The union
of the grouping and join attributes from e; are denoted by
Gj = G;UJ;. If Fy and/or F; occur in some equivalence, then
the equivalence assumes that F' is splittable into F; and F5. If
Fy or F5 do not occur in some equivalence, they are assumed
to be empty. If for some i € {1,2}, F! and F? occur in some
equivalence, the equivalence requires that £} is decomposable
into ' and F?. Last but not least, L abbreviates a special

tuple that returns the NULL value for every attribute.

1) Example 1: Join: Fig. 4 shows two relations e; and es,
which will be used to illustrate Eqv. 10 as well as Eqv. 12.

Let us start with Eqv. 10. In order to do so, we only look at
the top equivalences above each relation and ignore the tuples
below the separating horizontal line. Relations e; and es at the
top of Fig. 4 serve as input. The calculation of the result of
the left-hand side of Eqv. 10 is rather straightforward. Relation
ez gives the result of the join e; X;, —;, ea. The result is then
grouped by I'y, o..r(e3) for the aggregation vector F' = Fk :
count(x),b; : sum(ay),be : sum(az). The result is given as
e4. For our join example, it consists simply of a single tuple.
We have intentionally chosen an example with a single group,
since multiple groups make the example longer but do not give
more insights.

Before we start the calculation of the right-hand side of
Eqv. 10, we take apart the grouping attributes and the aggre-
gation vector F. Among the grouping attributes G = {g1, 92}
only g; occurs in e;. The only join attribute in the join
predicate j; = j» from e; is ji. Thus, Gf = {g1,51}. The
aggregation vector F' can be split into Fj, which references
only attributes in e;, and F,, which references only parts
in ey. This gives us F; = k : count(x),b; sum(ay),
where it does not matter whether we add k£ to F; or Fj,
since it does not reference any attributes. Next, we need to
decompose Fy into F! and F7? by applying the insights of
Sec. II-A. This gives us F}l = k' : count(x), b} : sum(a;) and

906

e €2
91 | J1 | a1 g2 | J2 | a2
1 1 2 1 1 2
1 2 4 1 1 4
1 2 8 1 2 8
1 3 7 1 4 9
e3 = e lezjz es
eg =e1 XM =j, €2 ey 1= F_ql,_,n;p(e;;)
91 [j1 [ai | g2 | g2 | a2 ey =Ty, go:r(ef)
| 2 4 1 2 8 i ! T 176 22
1 2 8 1 2 8 i 1 (;
1 3 7 - - -))
. 1| 4|9
e7 :=Tg; g5:7y (€6)
es :=Dg, jyFy (€1) L 1oy /
. / / e7 = Dgy,99;Fy (€5)
g1 | j1 | K'/ex | B}
1 1 T 2 91 | 92 | k b1 b2
Ll o2) 12 T [1 [4] 16 [2
T |3 1 7 1 -7 -
- 1 1 - 9
eg 1= e5 M, —j, e
P ({L}).er:1im
e = es X, ez
g1 | i | K /e [b7 [g2 | jo | a2
1 1 1 2 1 1 2
1 1 1 2 1 1 4
1 2 2 12 1 2 8
1 3 1 7 - - -
- - 1* - 1 4 9
where
F =k :count(x),by : sum(ay), by : sum(az)
Fy, = k:count(x),by : sum(ay)
F, = by:sum(az2)
F} = K :count(x),b} : sum(a1)
F2 = k:sum(k'),b; : sum(b))
Fx = Fl1 o (c1 : count(x))
Fy = (Fa®c1)oF;

by : sum(cy * az), k : sum(k’), by : sum(b})

and G = {g1,92}. Gf = {g1.51}.

Fig. 4. Example for Eqvs. 10 and 12

F? =k : sum(k’), by : sum(b}). The inner grouping operator
of Eqv. 10 requires us to add an attribute ¢; : count(x) to
F, which we abbreviate by Fy. Since there already exists
one count(x) the result of which is stored in %', we keep
only one of them in Fig. 4 and call it &’/c;. This finishes
our preprocessing on the aggregation functions of the inner
grouping operator. Its result is given as relation es in Fig. 4.
It consists of two tuples. The next step consists of calculating
the join es X, —;, €2. As this is rather straightforward, we just
give the result (relation eg). The final step is again a little more
complex. Eqv. 10 requires us to calculate F>®c;. Looking back
at the end of Sec. II-A, we see that sum is duplicate sensitive
and that F» ® ¢; = be : sum(cy * az). Concatenating this
aggregation vector with F2, as demanded by Eqv. 10, gives
us Fy as specified in Fig. 4. The final result of the left-hand
side of Eqv. 10, calculated as ez = I'g, 4,., (€6), is given in
Fig. 4. Note that this is the same as the result of the right-hand
side (ey).

2) Example 2: Full Outerjoin: The second example reuses
the relations e; and es given in Fig. 4. But this time, we
calculate the full outerjoin instead of the inner join, and we

Fig. 3.

FG;F(el Nq 62)
I‘G;p(el Nq 62)
Fg;p(el Nq 62)
FG;F(el Nq 62)
FG;F(el Nq 62)

)

FG;F(el Mq €9

FG;F(el Nq ()
Far(er Mg eo

)
)
Fg;p(el Nq 62)
FG;F(el Nq 62)
FG;F(el Nq 62)

)

FG;F(El Nq ()

Iar(er Mg e2)
Tgr(er My e2)
Tar(er Mg e2)
Ia.r(er My e2)
)
)

T'a. F(€1 Ny e

)
)
Ta.r(er Xy e)
Fa.r(er My e2)
)
)

)
)
Lair(er W 45,7 €2)
Lar(er WJloJQ;f e2)

)

Lg;r(er M—‘JIQJQ;f €2

Equivalences

Eager/Lazy Groupby-Count

FG (F2®c1)oF} (FG+;F110(cl:c0unt(*))(61) Mg 62)

FG (F2®c1)oF} G+;F110(c1:count(*))(€1) Ny €2)

FG (Fo®c1)oFE\L gf; Flo(clzcount(*))(el) >y

FG (F1®c2)oF3
F F1®c2)oF2 €1 N

1_‘G;(F1®c2)oF22

(T
(T
(€1N I
(

Eager/Lazy Group-by
Lg;pe (FG+-F1 (e1) Mg €2)

FG;FZ

FG;FZ
FG;F2

(r
(r
(
(ex

FG F2

FG F2(61 M F ({L}) F +

Gt Fl(el) Nq e2)

Gt (e1) X

e1 X FG+ Fl(e2))

Fll({J-});f

(el N;ng({J—}%CZ:l T

3 (L) p ot (€2))
1 (e2))

Eager/Lazy Count

Fll({i})vclih— 62)

GfFlo(ea: count(*))<62))
Fy ({L}),e2:1 T

GF;Flo(ca:count(x)) (62))

62)

Le; (F2®c1) Gf,cl count *)(1) My €2)

FG (Fa®c1)

(c1:count(x)) (e1)

(c1:count(*))(61) My 62)
Nclzl;—

FG (F1®c2)\€1 M FG;,CQ :count(*)())

FG (F1®c2) 61

(T
Te
Lemee) (g
(
(

Double Eager/Lazy
FG'(F2®52) (FG+ Fl () X FG+,02:counl(*) (62))

2 i PG+,02 :count(*) (62))

FG;(F1®62) (61 Nq

G;;Féo(czcount(*)) (62))

62)

FGJr HEE count(*))())

FG (Ff®c2)\L G, Fl(1) :[X] o FG+;02:count(*)(62))

FG F2®02)

Gi(F3®c1) r G seq:count(x)(1) Mq2

c1: 1 FE({L
FG (F3®c1) * G ;5(c1 :count(*))(el) Mql 2 (L) r

(r
(r
11G F2®c1)(
T
(r

1

Eager/Lazy Split (with I'2

ot Fl(1) N51({l});02:1

e count(*)(el) My 1—‘G;r;Fz} (62))
FL(L) |
;’.

FG; ;(co:count(x*)) (62))

G ,Fg(e2))

= Lay(regen)o(Fpge)):

airp(€2))

FG?(F12®C2)°(F22®01) (FGT;Fllo(clzcoum(*)) (61) My FG;r;F21<)(C2:C(>ur1t(>i<)) (62))

FG?(F12®C2)O(F22®01) (FGT;Fllo(clzcoum(*)) (61

2 FUY{ L) ,en:LFEFY({ L)), et
r <FGT;F11’lo(cl:coum(*))(61) Mql 2 :

Others

FG;F(el) Kq €2
FG;F(el) bg €2

(F(q) N Aler)
(F(a) N Alen))

)

cG
cG

FG?(F2®61)0F12(FGT;Fllo(cl:coum(*)) (61) MJlng;f 62))'

rG;Fl2 (FGT;Fll (e1) WJler;F €2
FG;(F2®C1)(F

G7;(c1:count(x)) (e1)

)

907

M 000 F

e2))

) Ng'zl({l})&z:l T

r

G;;Féo(czcoum(*)) (62))

G’;’;Fg‘lo(cz:coum(*)) (62))

(10)
(11
(12)
(13)

(14)
15)

(16)
a7
(13)
(19)
(20)
2

(22)
(23)
(24)
(25)
(26)
27)

(28)
(29)

(30)
(3D

(32)
(33)

(34)
(35)
(36)

(37
(3%)
(39)
(40)
(41)

apply Eqv. 12. The according expressions are now given in the
lower header line of each relation. Now all tuples in each e; are
relevant, including those below the separating horizontal line.
The result of e; X;,—;, e2 is given in e, where we denote
NULL by ’-’. We can reuse all the different aggregation vectors
derived in the previous example. The only new calculation that
needs to be done is the one for the default values for the full
outerjoin on the right-hand side of Eqv. 12. Eqv. 12 defines
default values in case a tuple ¢ from ey does not find a join
partner from the other side. All ¢; values of orphaned es tuples
become 1. Further, F} ({L}) evaluates to 1 for k (count(*) on
a relation with a single element), and NULL for ao, since
SQL’s sum returns NULL for sets which contain only NULL
values. Thus prepared, we can calculate the left-hand side of
Eqv. 12 via es, which is the same as in the previous example
eg, which now uses a full outerjoin with default, and, finally,
€%, which shows the same result as €.

3) Remarks: The main equivalences are those under the
heading Eager/Lazy Group-by Count. They fall into two class-
es depending on whether the grouping is pushed into the left
or the right argument of the join. For commutative operators
like inner join and full outerjoin, deriving one from the other is
simple. For non-commutative operators like the left outerjoin,
an additional proof is necessary. Now, instead of pushing the
grouping operator only into one argument, we can combine
both equivalences to push it into both arguments. The resulting
equivalences are given under the heading Eager/Lazy Split.
The equivalences between these two blocks are specializations
in case an aggregation vector F' only accesses attributes
from one input. In this case, either F} or F5 is empty, and
the equivalences can be simplified. These simplifications are
shown in the blocks Eager/Lazy Group-By, Eager/Lazy Count
and Double Eager/Lazy. The last block of equivalences, termed
Others, shows how to push the grouping operator into the left
semijoin, left antijoin, and the groupjoin. The latter requires
another arbitrary aggregation vector F'. All have in common
that after they are applied, only the attributes from their left
input are accessible. Thus, the grouping operator can only be
pushed into their left argument.

B. Eliminating the Top Grouping

We wish to eliminate a top grouping from some expression
of the form I' r(e) for some aggregation vector F' = (b; :
agg,(a1),...,by : agg,(ay)). Clearly, this is only possible if
G is a key for e and e is duplicate-free, since in this case,
there exists exactly one tuple in e for each group. The only
detail left is to calculate the aggregation vector F'. This can
be done via a map operator as in

Lar(e) = Ha(xp(e) 42)

if we define F' to calculate the result of some aggregate
function for single values, i.e., F' := (b1 : agg,({a1}),...,bg :
agg.({ar})), and C =G U {by,..., by}

Remark. In SQL, a declaration of a primary key or a
uniqueness constraint implies not only a key but also that the
relation is duplicate-free.

908

IV. DYNAMIC PROGRAMMING
A. Plan Generation Basics

We briefly repeat the basics of a bottom-up plan gener-
ator. Fig. 5 shows the basic structure of a typical dynamic
programming-based plan generator. Its input consists of three
major pieces: the set of relations to be joined, the set of
operators to be used for this, and a hypergraph representing
the query graph. Clearly, the relations and the operators are
derived from the initial SQL query in a straightforward manner.
The hypergraph is constructed by a conflict detector [1]. It
encodes possible reordering conflicts as far as possible into
the hypergraph. This is necessary since inner joins and outer
joins are not freely reorderable.

The major data structure used is the DPTable, which stores
(an) optimal plan(s) for a given set of relations. The basic
algorithm in Fig. 5 uses a single plan per DPTuble entry.
Later on, multiple plans exists per DPTable entry.

The plan generator consists of four major components.
The first component initializes the DPTable with plans for
access paths for single relations, such as table scans and index
accesses (Line 1,2). The second component enumerates csg-
cmp-pairs of the hypergraph H (Line 3), where a csg-cmp-pair
(ccp for short) is defined as follows:

Definition 3: Let H = (V, E) be a hypergraph and Si, So
two subsets of V. (S1,.52) is a csg-cmp-pair (ccp for short) if
the following three conditions hold:

D SiNS, =0,

2) 51 and S, induce connected subgraphs of H, and

3) F(u,v) € EuC Sy AvC Sy, that is S; and Sy are
connected by some edge.

An efficient enumerator for csg-cmp-pairs has been proposed
in [15].

The third component (Line 5) is an applicability test for
operators. It builds upon the conflict representation and checks
whether some operator o, can be safely applied. This is
necessary since it is not possible to exactly cover all conflicts
within a hypergraph representation of the query [1].

The fourth component (BUILDPLANS) is a procedure that
builds plans using some operator o, as the top operator and
the optimal plans for the subsets of relations S; and S, which
can be looked up in the DP7Tuble. Finally, the optimal plan is
returned (Line 9).

Subsequently, we will see that all components except
for the last one can remain unmodified if we introduce the
capability of pushing grouping operators down. Thus, our
approach is minimally invasive.

B. Applying Eager Aggregation

Before we continue with the first plan generator, we
introduce the routine OPTREES (Fig. 6) that is utilized by all
plan generators in this paper. Its arguments are two join trees
T1 and 75, and a join operator o,. The result consists of a
set of at most four trees which join 7} and 7%, including all
possible variants of eager aggregation.

DP-PLANGEN

> Input: a set of relations R = {Rp,...,R,_1}
a set of operators O with associated predicates
a query hypergraph H

> Output: an optimal bushy operator tree

1 forall R, € R

2 DPTable[R;] = R; t> initial access paths

3 for all csg-cmp-pairs (S7,52) of H

4 for all o, € O

5 if APPLICABLE(S:, S2,0p)

6 BUILDPLANS(S1, S2,0p)

7 if o, is commutative

8 BUILDPLANS(S2, S1,0p)

9 return DPTable[R]

BUILDPLANS(S1, S2,0p)

OptimalCost = oo

S = S US,

T; = DPTable|S;]

if DPTable[S] # NULL
OptimalCost = COST(DPTable[S])

if CosT(T; op T2) < OptimalCost
OptimalCost = COST(T; o, T2)
DPTable[S] = (T; op T2)

1
2
3
4
5
6
7
8
9

Fig. 5. Basic DP Algorithm

The relation sets S; and S, are obtained from 73 and 15,
respectively, by extracting their leaf nodes. This is denoted by
T (T) for a tree T The first tree is the one which joins 77 and
T using o,, without any grouping.

One situation that requires some care is when we create
a join tree containing all the relations in our query, which is
equivalent to S = R, where R is the set of all relations. Then
we have to add another grouping on top of o, if and only if
the grouping attributes do not comprise a key (cf. Sec. III-B).
This is checked by calling NEEDSGROUPING, which is listed
in Figure 7.

The next tree is the one that groups the left argument before
the join. In order to do so, we have to make sure that the
corresponding transformation is valid. This check is accom-
plished by calling the subroutine VALID, which implements
the equivalences presented in Sec. III. Additionally, we have
to avoid the case in which the grouping attributes G;" form a
key for the set S;, with ¢ € {1,2}, because then the grouping
would be a waste. And again, if necessary, we have to add a
grouping on top.

Once the routine terminates, the returned set 7Trees contains
up to four different join trees which are depicted in Fig. 8.
Note that the introduction of OPTREES only serves the purpose
of increasing the readability of the following algorithms and
should not be included in a real implementation since it
produces plans that not all of the subsequent algorithms will
need.

909

OPTREES(T;, T2, 0p)

1 S =T(Ty)

2 Sy =T(Te)

3 §5=5/U8,

4 Trees = ()

5 NewTree = (T o, Ty)

6 if S == R A NEEDSGROUPING(G, NewTree)

7 NewTree = (I'¢(NewTree))

8 Trees.insert(NewT'ree)

9 NewTree = FGT(TI) op Ty
10 if VALID(NewTree) A NEEDSGROUPING (G, NewTree)
11 if S == R A NEEDSGROUPING(G, NewTree)
12 NewTree = (I'¢(NewTree))
13 Trees.insert(NewTree)

14 NewTree = T o) FG;(TQ)

15 if VALID(NewTree) A NEEDSGROUPING(Gy , NewTree)
16 if S == R A NEEDSGROUPING(G, NewTree)
17 NewTree = (I'g(NewTree))

18 Trees.insert(NewTree)

19 NewTree = FGT(TI) op I‘G;(Tg)
20 if VALID(NewTree)

A NEEDSGROUPING(G, NewTree)
A NEEDSGROUPING (G, NewTree))

21 if S == R A NEEDSGROUPING(G, NewTree)
22 NewTree = (Dg(NewTree))
23 Trees.insert(NewTree)
24 return Trees
Fig. 6. OPTREES

NEEDSGROUPING(G, T')

1 if 3k € k(T),k C G A the result of T is duplicate-free
2 return FALSE

3 else

4 return TRUE

Fig. 7. NEEDSGROUPING

C. Enumerating the Complete Search Space

Our goal is to make use of eager aggregation and the equiv-
alences presented in the previous section in a plan generator
like the basic DP-algorithm described above.

To find the best possible join tree taking eager aggregation
into account, we have to keep all subtrees found by our plan
generator, combine them to produce all possible trees for our
query and pick the best one.

05,55 054,55 054,55

/\ /\ /\
051,82 G Sz S1 FG; ot Tor
Sl/ \SQ J] SL S‘H SL

Fig. 8. Possible trees for grouping and join

BUILDPLANSALL(S;, S2,0p)
1 S=5US,
2 for each T, € DPTable[S,]
for each Ty € DPTable[Ss)
for each T' € OPTREES(T;, T2, 0p)

if S==R
INSERTTOPLEVELPLAN(S,T)
else

[e IR le) WV, B SR O8]

DPTable[S; U S2].APPEND(T)

INSERTTOPLEVELPLAN(S, T)

1 if DPTable[S] == v CosT(T) < CoST(DPTable[S])
2 DPTable[S] = 0
3 DPTable. APPEND(T)

Fig. 9. BUILDPLANSALL

To do this, we change the dynamic programming table in
such a way that it can not only contain one optimal join tree
for every set S C R, but also a list of possible trees. Figure
9 shows the routine BUILDPLANSALL, which is derived from
the routine BUILDPLANS depicted in Figure 5 and illustrates
the necessary modifications.

Like before, we enumerate all pairs of subsets S7, 5o with
S = S1US5 to find possible join trees for S. We then combine
every tree for S; with every tree for Sy using two loops. We
call OPTREES for each pair of join trees, which results in up to
four different trees for every combination. The newly created
trees are added to the list for S.

Eventually, we face the situation where S = R holds
and we need to build a join tree for the complete query.
At this point, we call another subroutine named INSERTTO-
PLEVELPLAN. Inside this routine, we compare the join trees
for S to find the one with minimal costs because there are no
subsequent join operators that need to be taken into account.
Before we can do this, we have to decide whether we need
a top-level grouping by calling NEEDSGROUPING (cf. Figure
7). In contrast to the other relation sets, we do not have to
keep a list of trees for R, but only the best tree found so far
and replace it if a better one is found.

Obviously, the runtime complexity of this algorithm is
O(22"~4ccp) for n relations if #ccp denotes the number of
csg-cmp-pairs for the query.

D. A First Heuristic

In this subsection, we present a plan generator that is
capable of applying eager aggregation without the exponential
overhead induced by the algorithm depicted in Figure 9. The
downside of this is the fact that the new less complex plan
generator does not guarantee an optimal solution any longer.

The major difficulty we face in incorporating eager aggre-
gation into a DP-based plan generator is that Bellman’s Prin-
ciple of Optimality is no longer valid. If we push a grouping
operator into one or both arguments of a join operator, this can
influence the costs of subsequent join operations. This means
that it might be necessary to use a suboptimal join tree for a
set S7 to construct an optimal solution for some set .S D 5.

910

BUILDPLANSHI1(S;, S2,0,)

1 for each T € OPTREES(DPTable[S;], DPTable[Ss], 0p)
2 if CosT(T') < COST(DPTable[S; U Sz])

Fig. 10. BUILDPLANSHI

Lol did :count (=) Lol asa’:sumar)
Neg.a,eq. f Neg.a,en. f
co >d2\ e Mey.dyeq-c
€1 €2 / \
Fel.d;d/:cou,nt(*) €2
e1
€0 €1 e2
a b c d e i
0|0 0 [1 00
1 0 1 0 1 1
2 1 2 1 2 3
3 1 3 1 3 4
4 4
€1,2 := €1 Mej.a,en.c €2 €1 = Lyt icount() (€1)
c d e : d d’
0 1 1 1 0 1
1 0 0 0 1 3
2 1 1 1 4 1
3 1 1 1
€0,1,2 1= €0 Meg a,eq. f €1,2 €l o =€ Me| dey.c €2
a b c d e f d d e f
0 0 1 0 0 0 0 1 0 0
1 0 0 1 1 1 1 3 1 1
1 0 2 1 1 1
1 0 3 1 1 1
Ty did’ count(e; .d)(€0,1,2) €0,1,2 7= €0 Megaen.f €1n
d d’ a b d d’ e f
1 3 1 0 1 3 1 1
0 1 0 0 0 1 0 0
Ty :a:sum(a’)(€0.1.2)
d d/l
1 3
0 1
Fig. 11. Exemplary query with alternative join trees

That is because the higher costs of the non-optimal subplan
under certain circumstances are compensated by cost savings
for the subsequent joins.

Figure 10 again shows a modified version of BUILDPLANS.
We refer to the resulting plan generator as our first heuristic or
H1. The modified routine is called BUILDPLANSHI. It serves
to demonstrate the problems that arise from the violation of
Bellman’s Principle of Optimality.

The only difference to the basic version of BUILDPLANS
we presented in Section I'V-A is that the new algorithm makes
use of OPTREES to find all possible trees for the current
csg-cmp-pair. For each of them the cost function is called to
compute the combined costs for the join and the groupings
contained in the tree, if any. If the costs are lower than those
of an existing plan or if this is the first plan for the current set
of relations, the plan is added to the DP-table. In summary,
HI records only the single cheapest plan for every plan class.

To clarify why this approach can lead to problems, Fig. 11
provides a sample query. At the top of the figure there are
two equivalent operator trees. Both of them involve a grouping
operation. The left one does not make use of eager aggregation,
so the grouping remains at the top of the tree and is evaluated
after all join operations. In the tree on the right side, a grouping
operator has been pushed down into the left argument of
Me,.d,e,.c. Note how the aggregation vector of the original
grouping operator at the top of the tree is adjusted according
to our observations from Section III. That is, we now have to
sum up the values created by the other grouping operator to
get the originally intended count(x). Below the two operator
trees, there are instances of the three relations eg, e; and es,
and all the intermediate results for both operator trees.

Cout (60) = Cout (61) = Cout (62) =0
Cout(er,2) =4 Cout(e]) =3
Cout(€o,1,2) =8 Cout(€12) =5
Cout(I'(€0,1,2)) = 10 Cout(ep,1,2) =7
Cout(T(eg,1,2) =9

COSTS FOR INTERMEDIATE RESULTS

TABLE L.

Table I contains the costs of all subexpressions of both
operator trees, where, for simplicity, we used the cost function
Cout, Which simply sums up the intermediate result sizes:

0 if T is a single table
Cout(T) = { |T| + Cout(T1) + Cous(To) if T=Ty 0T
7| + Cout(T1) it T=T(T)

According to the definition of C,,;, scanning the base
relations does not cause any costs at all, which is reflected
in the first line of Table I. (Note that the scan costs would
be the same constant in both plans anyway.) Beginning on the
second line, the left (right) column contains the cost of the
intermediate results of the left (right) plan of Fig. 11.

Let us now go through our heuristic. It will decide against
early aggregation of relation e; because the combined costs for
the grouping and the following join operation are higher than
the costs for joining without prior grouping. Taking a closer
look at the following lines in our table, we see that the costs
for joining e; o with eq amount to 8, whereas the right column
states a value of 7 for the join between ¢} 5, and eg. For the
total costs of the query, we notice the same cost difference: the
left tree causes costs of 10, the right one only 9. This means
the tree that is eliminated by our naive plan generator is in
fact less expensive than the other one.

The reason for this behaviour can be seen in Figure 11. The
early grouping of relation e; causes additional costs of 3, but
it also reduces the cardinality of the following expressions €/ ,
and 66,172 compared to e; 2 and eq,1,2. The additional costs for
the first grouping operation are therefore compensated by the
reduced cardinalities and costs of the following expressions.
Considering only the costs of expression 6/172, this benefit is
not obvious because it becomes visible only further up in the
tree.

In the example above, the influence of an early grouping on
the cardinalities of subsequent expressions is already enough
to make eager aggregation beneficial. But there is also a second
aspect to it that allows for even bigger cost savings. The

911

introduction of new grouping operators also influences the
functional dependencies that hold for the intermediate results.

Looking back at the values for ef; 5 in Figure 11, we
can see that the final grouping is not necessary to produce
the same result as the left join tree. Instead, a projection
on the attribute set {e;.d,d'} suffices because the functional
dependency e;.d — A(ej ;o) holds, ie., e1.d is a key for
€p,1,0 and the attribute d’ already contains the correct value
for the original aggregate function count(x). We can therefore
leave out the final grouping and replace it by a much cheaper
duplicate-preserving projection II., 4 4. As our cost function
does not take projection costs into account, we end up with
a cost value of 7 for the tree applying eager aggregation, in
contrast to a value of 10 for the other tree.

These findings lead to the conclusion that it is not sufficient
to “locally” assess the profitability of eager aggregation for
one join operation, as described above, if we want to consider
the whole search space. Still, this approach can be used as a
simple heuristic producing only a moderate overhead on top
of dynamic programming and at the same time exploiting at
least some of the potential benefits of eager aggregation.

E. Improving the Heuristic

As we have seen in the previous subsection, the routine
BUILDPLANSHI tends to discard trees applying eager aggre-
gation even in cases where it might be beneficial because the
accumulated costs of the aggregation and the join are higher
than those of the join alone.

It is therefore possible to improve the heuristic by making
this cost comparison less strict and thereby enabling the plan
generator to prefer plans that are “more eager” even though
they might cause slightly higher costs locally. For this purpose,
we introduce the simple notion of the eagerness of a plan,
which is defined as follows:

0 ifT=T)XT,
Eagerness(T)=¢1 fT=T(Ty)X Ty or T =T XT(T3)
2 if T =T(T}) X D(Th)

The eagerness of a join tree 7' is simply defined as the number
of grouping operators that are a direct child of the topmost
join operator. Figure 12 shows the pseudocode for the routine
BUILDPLANSH?2, which exploits eagerness.

The main difference to BUILDPLANSH1 is the new sub-
routine COMPAREADIJUSTEDCOSTS, which is called from line
2. It takes two join trees and compares the costs of the two,
whereby it adjusts the costs of the less eager tree using a
constant factor F'. The value of F' determines the degree to
which more eager plans are preferred when compared to less
eager plans. If the eagerness of the two join trees passed to
COMPAREADJUSTEDCOSTS is equal or if the trees form a
plan for the whole query, no cost adjustment is applied. In the
evaluation, we experiment with different values for F'.

F. Optimality Preserving Pruning

In Subsection IV-D we showed that it is not possible to
decide whether or not a particular subtree is part of the final
solution solely based on its costs. Instead, there are some

BUILDPLANSH2(S;, S2,0,)

1 for each T € OPTREES(DPTable[S;], DPTable[Ss], 0p)
2 if COMPAREADJUSTEDCOSTS (T, DPTable[S; U Sz))

COMPAREADJUSTEDCOSTS(T}, T5)

1 if T is top-level plan V
EAGERNESS(T}) == EAGERNESS(T5)

2 return CosT(7;) < CosT(T3)

3 if (EAGERNESS(T7) < EAGERNESS(T?))

4 return (F' x CosT(T1)) < CosT(T3)

5 elseif (EAGERNESS(T}) > EAGERNESS(7%))
6 return COST(7T}) < (F x CosT(T3))

Fig. 12. BUILDPLANSH2 and COMPAREADJUSTEDCOSTS

more properties we have to check before we can safely discard
suboptimal trees.

As we have seen in Subsection IV-C, keeping all possible
trees in the solution table guarantees an optimal solution but,
on the other hand, causes such a big overhead that it is
impractical for most queries. This leads us to the question
if we can find a way to reduce the number of DP-table entries
and still preserve the optimality of the resulting solution.

The first observation we made for the example query shown
in Figure 11 was that we have to take the cardinalities of
intermediate results into account. That is because subtrees
with suboptimal costs caused by the introduction of additional
grouping operators can in turn produce smaller results and
thereby lower the costs of subsequent operations.

In addition to that, we discovered that the functional
dependencies that hold for the result of an intermediate join
expression can influence the costs of the final join tree. These
functional dependencies are in turn influenced by the grouping
operators present in the expression.

As a result of these findings, we can define dominance of
one tree over another tree by means of three criteria:

Definition 4: A join tree T} dominates another join tree 75
for the same set of relations if all of the following conditions
hold:

o Cost(Ty) < Cost(T3)
o [N <IT
e FD™(Ty) D FD'(T3).

We can safely discard any join tree 75 that is dominated
by another join tree 77. Note that the third item makes
use of the closure of the functional dependencies, denoted
by FD™, that hold in 77 and 75, respectively. Since the
computation and comparison of these two sets is expensive,
this condition can be weakened in an actual implementation
by comparing the sets of candidate keys instead. Figure 13
shows the routine PRUNEDOMINATEDPLANS, which checks
these three conditions.

The routine expects as arguments a set of relations S and
a join tree 7' for this set. The loop beginning in line 1 iterates
through the existing join trees for S taken from the DP-table

912

PRUNEDOMINATEDPLANS(S, T')

1 for Tpq € DPTable[S]

2 if COST(Told) < COST(T) A |Told| < |T‘
A FD¥(Tpq) 2 FD*(T)

3 return

4 if COST(Ty14) > COST(T) A |Tp1a| > |T|
A FD¥(Ty4) € FD*(T)

5 discard T4

6 DPTable[S].APPEND(T)

Fig. 13. PRUNEDOMINATEDPLANS

BUILDPLANSPRUNE(S7, S2,0p)

1 §S=85,US8,
2 for each T, € DPTable[S,]

3 for each Ty, € DPTable[S,]

4 for each T' € OPTREES(T;, Ty, 0p)
5 if S==R

6 INSERTTOPLEVELPLAN(S,T)
7 else

8

PRUNEDOMINATEDPLANS(S, T')

Fig. 14. BUILDPLANSPRUNE

and compares each of them with the new tree 7. If there is an
existing tree T,;4 with lower or equal costs and lower or equal
cardinality than 7" and the functional dependencies holding for
the new tree are a subset of the ones for 1,;4, T cannot result
in a better solution than T,;4. Therefore, the routine returns
without adding 7" to the tree list for S.

If T dominates an existing tree, we can safely delete T;,;4
from the DP-table. In this case, we continue to loop through
the existing trees because there may exist more dominated trees
to discard. Eventually, the loop ends and 7" is added to the list
for S.

This pruning routine is called by BUILDPLANSALL for
every new join tree found for a set S # R. Note that there
is no need to prune in case of S = R because then the list
contains only one tree anyway. Summarizing, this gives us the
routine BUILDPLANSPRUNE depicted in Figure 14.

V. EVALUATION

We evaluate the algorithms experimentally with respect to
runtime and plan optimality. For our experiments, we extended
the DP-based plan generator DPhyp [16] and generated 10,000
operator trees each for a certain number of relations from three
to twenty. Therefore, we first generated random binary trees
using the unranking procedure proposed by Liebehenschel
[17]. Next, we randomly attached join operators to the internal
node and relations to the leaves. Then, the attributes for
equality join predicates and grouping are randomly selected.
Finally, random cardinalities and selectivities are generated.

A. The Gain

First of all, we demonstrate the potential benefit that arises
from the application of eager aggregation in terms of plan qual-
ity. Fig. 15 shows the average total plan cost achieved without

18

‘ DPhyp ———
16 - EA-All/EA-Prune - - - - ; |
14 + |
% 12f |
(]
& 10 |
a
: st |
©
g 6 |
4 i -
2 i -
0 i i i ‘ ‘
2 4 6 8 10 12 s
Relations
Fig. 15. Plan Cost DPhyp and EA-Prune

eager aggregation in relation to the values produced by EA-
Prune/EA-AlL i.e., the complete plan generators with/without
pruning. As we have stated in the previous section, our pruning
criterion does not affect plan optimality. The values of the two
algorithms are therefore identical.

As can be seen in the graphic, the plan quality for queries
with three relations is nearly equal for the two plan generators,
but EA-Prune is already slightly ahead. As the number of
relations increases, the cost difference also increases. The
curves stop at 13 relations, where the plans produced by DPhyp
are on average 18 times as expensive as the ones produced
by EA-Prune. However, there are some extreme outliers. The
biggest cost difference was observed for a query with 10
tables where the plan produced by DPhyp was 17,500 times
as expensive as the one achieved with eager aggregation.

B. The Price

These gains come at the price of increased runtime and
memory usage. Fig. 16 shows the runtime for DPhyp, the
two complete enumeration algorithms EA-Prune and EA-AIl
and our first heuristic Hl. Note that the y-axis is scaled
logarithmically. The curves for EA-Prune and EA-AII stop at 8
and 13 relations, respectively, since running them with 10,000
different input queries for up to 20 relations was not feasible
because of their extremely long runtimes. As can be seen in
the figure, EA-Prune takes more than one second for a query
with 11 relations. If pruning is not applied, this threshold is
reached with only 7 relations. DPhyp, on the other hand, stays
below one second even for 20 relations. H1 differs from DPhyp
by an almost constant factor of 2.6 on average. This leads us
to the conclusion that the complete enumeration of the search
space including eager aggregation is only practical for small
to medium queries, even if pruning is applied.

C. The Details

Now we take a closer look at the heuristic algorithms. First
of all, we are interested in how close to the optimal solution
they actually get. Fig. 17 compares the total cost achieved by
H1, H2 and the complete algorithm with pruning. Again, all
values are relative to the ones produced by EA-Prune. For
the second (improved) heuristic H2, the figure contains four
curves, each with a different value for the tolerance factor
F. These values are drawn from a wide range of alternative

913

100 ¢ T T
r DPhyp ———
L EA-Prune - ---]
10F EA-AIl -
1
— 01k
@ £
[L
£ 0.01 -
= £
3 L
€ 0001
0.0001 F
le-05 |
1e-06 L i i i i i i i i
2 4 6 8 10 12 14 16 18 20
Relations
Fig. 16. Runtime EA-Prune, EA-All and H1
1.14 :
EA-AlI/EA-Prune P
L H1 ---- 7 ,
112 H2, F=1.03 -
H2, F=1.05 —-—— A
11t H2, F=1.1 ——- : ‘ S 7
H2, F=1.01 —— -
1.08 - : 1
3 1.06 | .
O
1.04 .
1.02 i
1r i
098 i i i i i
2 4 6 8 10 12 14
Relations
Fig. 17. Plan Cost Heuristics and EA-Prune

tolerance factors that we used in the course of our experiments.
They serve to show the influence of different factors on the
resulting plan quality.

None of the heuristic plan generators produces optimal
costs for every query, but all of them are significantly closer to
optimality than DPhyp. Out of the plan generators that were
run for this experiment, H2 with a tolerance factor of 1.03
is the best as its plan quality is closest to that produced by
EA-Prune. For 13 relations, the plans produced by H2 are
on average only 7 percent more expensive than the optimal
solution. The largest factor we observed for H1 is 10.3, and
for H2 it is 9.7 (F' = 1.03), both resulting from queries with
13 relations.

The runtimes of H1 and H2 are given in Fig. 18. In many
cases H2 is slightly faster. The reason for this is that H2 has
a tendency to apply eager aggregation more often than HI,
which has an influence on the key constraints that hold in the
produced subplans. While H2 has to do more work for every
plan it considers because it has to determine the eagerness of
the plan and calculate the adjusted cost, it considers fewer
plans because pushing a grouping often makes a group-by
further up in the operator tree obsolete. The latter is due to
the fact that the grouping attributes become a key.

1.08

1.06

1.04

1.02

Relative Runtime
-

0.98

T T
HL ——
H2, F=1.03 - - - - |

discover better heuristic algorithms and to develop even more
effective optimality preserving pruning techniques.

ACKNOWLEDGMENT

We thank Simone Seeger for her help preparing the
manuscript and the anonymous referees for their helpful
comments.

0.94 : N : : g -

0.92 I I I

18 20

Relations

Fig. 18. Runtime H1 and H2

D. TPC-H Queries

Table II shows a comparison of DPhyp and our new
algorithms with respect to optimization times and optimized
plan costs for the example query from Section I (Ex) and three
selected TPC-H queries (Q3, QS5, Q10). Query statistics were
taken from a scale factor 1 instance of TPC-H. Since only Ex
contains an outer join, it is important to stress that the presence
of outer joins does not increase the complexity of EA-Prune
or any of the algorithms presented in this paper.

Among the listed queries, Ex benefits most from eager
aggregation, which is also reflected by the execution times we
observed on different existing systems (see Section I). TPCH-
Q5, on the other hand, provides the smallest possible gain.

Ex Q3 Q5 Q10
Time EA [ms] 0.184 0.163 2.4 0.31
Time H1 [ms] 0.15 0.13 0.333 | 0.183
Time H2 [ms] 0.122 0.151 | 0.413 | 0.323
Time DPhyp [ms] 0.097 0.115 0.327 0.158
Rel. Time EA/DPhyp | 1.9 1.42 7.34 1.96
Rel. Time H1/DPhyp 1.55 1.13 1.02 1.16
Rel. Time H2/DPhyp 1.26 1.31 1.26 2.04
Rel. Cost EA/DPhyp | 6.1x10~% | 065 | 0.9 0.58
Rel. Cost H1/DPhyp 6.1x107% | 0.92 0.9 0.58
Rel. Cost H2/DPhyp 6.1x10~% | 0.65 0.9 0.58

TABLE II. OPTIMIZATION TIME AND PLAN COST FOR TPC-H
QUERIES
VI. CONCLUSION

We presented a complete set of equivalences that allows
us to push grouping into inner joins, left outerjoins, full
outerjoins, semijoins, antijoins, and groupjoins. Further, we
introduced four novel algorithms to integrate the exploita-
tion of these equivalences within a state-of-the-art dynamic
programming-based plan generator. Both, a simple complexity
analysis and the experiments indicate that the complete enu-
meration of the extended search space is possible for only up to
7 relations. A newly introduced optimality preserving pruning
technique allows to extend this bound to 10. Beyond that, only
heuristic approaches are possible. One of them, H2, produces
competitive plans which are on average only 7% worse than
the optimal plan. However, some extreme outliers exist where
the plan produced by H2 is a factor of 9.7 worse than the
optimal plan. Thus, two directions for future research are to

(1]

(2]

31
(4]

(5]

(6]
(71

(8]

(9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

914

REFERENCES

G. Moerkotte, P. Fender, and M. Eich, “On the correct and complete
enumeration of the core search space,” in ACM SIGMOD, 2013, pp.
493-504.
A. Shanbhag and S. Sudarshan, “Optimizing join enumeration in
transformation-based query optimizers,” Proc. of the VLDB Endowment
(PVLDB), vol. 7, no. 12, pp. 1243-1254, 2014.
S. Chaudhuri and K. Shim, “Including group-by in query optimization,”
in VLDB, 1994, pp. 354-366.
W. Yan, “Rewriting optimization of sql queries containing group-by,”
Ph.D. dissertation, University of Waterloo, 1995.
W. Yan and P.-A. Larson, “Performing group-by before join,” Dept. of
Computer Science, University of Waterloo, Canada, Technical Report
CS 93-46, 1993.
——, “Performing group-by before join,” in IEEE ICDE, 1994, pp.
89-100.
——, “Eager aggregation and lazy aggregation,” in Proc. Int. Conf. on
Very Large Data Bases (VLDB), 1995, pp. 345-357.
——, “Interchanging the order of grouping and join,” Dept. of Com-
puter Science, University of Waterloo, Canada, Technical Report CS
95-09, 1995.
A. K. et al., “Processing in the hybrid OLTP & OLAP main-memory
database system HyPer,” IEEE Data Engineering Bulletin, vol. 36, no. 2,
pp. 4147, 2013.
S. Cluet and G. Moerkotte, “Efficient evaluation of aggregates on bulk
types,” in Int. Workshop on Database Programming Languages, 1995.
G. von Bultzingsloewen, “Optimizing sql queries for parallel execution,”
SIGMOD Rec., vol. 18, December 1989.
G. Paulley, “Exploiting functional dependence in query optimization,”
Ph.D. dissertation, University of Waterloo, 2000.
C. Galindo-Legaria and M. Joshi, “Orthogonal optimization of sub-
queries and aggregation,” in Proc. of the ACM SIGMOD Conf. on
Management of Data, 2001, pp. 571-581.
M. Eich and G. Moerkotte, “Dynamic programming: The next step,”
University of Mannheim, Tech. Rep., 2014.
G. Moerkotte and T. Neumann, “Analysis of two existing and one new
dynamic programming algorithm for the generation of optimal bushy
join trees without cross products,” in VLDB, 2006, pp. 930-941.
——, “Dynamic programming strikes back,” in ACM SIGMOD, 2008,
pp. 539-552.
J. Liebehenschel, “Lexicographical generation of a generalized dyck
language,” University of Frankfurt, Tech. Rep. 5/98, 1998.

