
On the Complexity of Generating Optimal Left-Deep

Processing Trees with Cross Products

Sophie Cluet Guido Moerkotte

June 20, 1994

Abstract

Producing optimal left-deep trees is known to be NP-complete for general join

graphs and a quite complex cost function counting disk accesses for a special block-

wise nested-loop join [2]. Independent of any cost function is the dynamic program-

ming approach to join ordering. The number of alternatives this approach generates

is known as well [5]. Further, it is known that for some cost functions | those ful-

�lling the ASI property [4] | the problem can be solved in polynomial time for

acyclic query graph, i.e., tree queries [2, 3].

Unfortunatly, some cost functions like sort merge could not be treated so far.

We do so by a slight detour showing that this cost function (and others too) are

optimized if and only if the sum of the intermediate result sizes is minimized. This

validates the database folklore that minimizing intermediate result sizes is a good

heuristic. Then we show that summarizing the intermediate result sizes has the ASI

property. It further motivates us to restrict the subsequent investigations to this

cost function called C

out

for which we show that the problem remains NP-complete

in the general case.

Then, we concentrate on the main topic of the paper: the complexity of pro-

ducing left-deep processing trees possibly containing cross products. Considering

cross products is known to possibly result in cheaper plans [5]. More speci�cally, we

show that the problem (LD-X-Star) of generating optimal left-deep processing trees

possibly containing cross products is NP-complete for star queries. Further, we give

an algorithm for treating star queries which is more e�cient than dynamic program-

ming. The NP-completeness of LD-X-Star immediatly implies the NP-completness

for the more general tree queries.

1 Introduction

Not only in deductive databases but also in object bases, where each single dot in a

path expression corresponds to a join, the optimizer is faced with the problem of order-

ing large numbers of joins. The standard and, maybe even today, prevailing method to

determine an optimal join order is dynamic programming [6]. In 1984, the proof for the

NP-completeness of join ordering for cyclic queries was presented together with an algo-

rithm ordering joins for tree queries optimally in O(n

2

log n) time [2].

1

This algorithm

1

n denotes the number of relations.

1

was subsequently improved to O(n

2

) time complexity [3]. A heuristic for join ordering

applying this algorithm to the minimal spanning tree of the join graph started the inves-

tigation of non-trivial heuristics for join ordering [3]. However, these algorithms rejected

cross-products. Lately, Ono and Lohman gave real world examples that abandoning cross

products can lead to more expensive plans than those which incorporate a cross product

[5]. Furthermore, they gave n2

n�1

� n(n + 1=2) as the number of processing trees gener-

ated by dynamic programming in order to derive the cheapest left-deep processing tree

possibly containing a cross product.

The question arizes whether there exists a polynomial algorithm for treating the prob-

lem of generating optimal left-deep trees considering cross products. For general query

graphs, this is unlikely, since already the generation of ordinary left-deep trees without

cross products is NP-complete. For tree queries, the complexity of generating optimal

left-deep trees possibly containing cross products is | so far | an open question. In

this paper, we show that even for star shaped query graphs, which are a special case of a

general tree query, the optimization problem is NP-complete.

Of course, every complexity result for an optimization problem highly depends on

the chosen cost function. For example, in [2], a complex cost function counting disk

accesses for a special block-wise nested-loop algorithm was used. Furthermore, the proof

exploits of some special features of this cost function, not present in other cost functions.

Within this paper, we concentrate on a very easy cost function: the sum of the sizes of the

intermediate results. Let us call this cost function C

out

. This choice is motivated by several

facts. First, it is a very simple cost function. Second, as will be shown, NP-completeness

for C

out

implies NP-completeness for other cost functions, too. More speci�cally, we will

show that optimizing other cost functions is equivalent to optimizing C

out

which formally

justi�es the database folklore that optimizing intermediate result sizes is a good thing to

do.

The paper is organized as follows. In the next section, we �rst give a short introduction

to the problem and present our notation. We then motivate our decision for considering

C

out

as a basic cost function for our complexity investigation on generating optimal left-

deep processing trees possibly containing cross products. Section 3 then presents the

proof of the NP-completeness of the LD-X-Star problem and ends with the sketch of an

algorithm more e�cient than dynamic programming. Section 4 presents open problems

for future research.

2 Preliminaries and �rst results

2.1 The join-ordering problem

Let us �rst introduce the join-ordering problem. An instance of a join-ordering problem

is fully described by the following parameters. First, n relations R

1

; : : : ; R

n

are given.

Associated with each relation is its size jR

i

j, also denoted by n

i

. Second, a query graph

whose nodes are the relations and whose edges connect two relations by an undirected

graph constitutes the second parameter. The edges of the query graph are labelled by their

according selectivity. Let (R

i

; R

j

) be an edge in the query graph. Then, the associated

selectivity is f

i;j

. We assume that 0 < f

i;j

< 1. If there is no edge between R

i

and R

j

,

i.e., we have a cross product, we assume f

i;j

= 1.

2

Since there exist several implementations for a join, there exist several cost functions.

The most common implementations of a join operator are

1. hash loop join

2. sort merge join

3. nested loop join

The according cost functions are usually given as (see, e.g., [3]):

C

hl

(R

i

1 R

j

) := jR

i

j1:2

C

sm

(R

i

1 R

j

) := jR

i

j log(jR

i

j) + jR

j

j log(jR

j

j)

C

nl

(R

i

1 R

j

) := jR

i

jjR

j

j

These cost functions are mostly applied for main memory databases.

Sometimes, only the costs of producing the intermediate results is counted for. This

makes sense if, e.g., the intermediate results must be written to disk, since then the costs

for accessing the disk clearly outweigh the CPU costs for checking the join predicate. This

cost function is called C

out

:

C

out

(R

i

1 R

j

) := jR

i

jjR

j

jf

i;j

Compared to the cost function used in [2] to proof the NP-completeness of join ordering,

this cost function is very simple. Hence, the question arizes if join ordering is still NP-

complete for this simple cost function. As we will see, the answer is yes. Before we proof

this, we need some more de�nitions.

For all cost functions, we will assume a binary equivalent whose input are just the

sizes n

i

and n

j

of the according relations R

i

and R

j

. For example, for C

out

, we have

C

out

(n

i

; n

j

) := n

i

n

j

f

i;j

The problem considered in this paper is the complexity of computing an optimal

join-order , i.e., a left-deep join-processing tree. More formally, given an instance of the

join-ordering problem, we ask for a sequence s of the n relations such that for some cost

function C

x

the total cost de�ned as

C(s) :=

n

X

i=2

C

x

(js

1

: : : s

i�1

j; s

i

)

is minimized. Some de�nitions are needed in order to understand the de�nition of the

cost function. Producing left-deep trees is equivalent to �xing a permutation � of the

relations, or �xing a sequence s

1

; : : : ; s

n

of all relations. The latter is what we do. By

js

1

; : : : ; s

i

j, we denote the intermediate result size of joining the relations s

1

; : : : ; s

i

. For

a single relation s

i

, we also write within cost functions s

i

instead of js

i

j or n

s

i

in order to

denote its size.

3

2.2 The �IR property

The goal of this section is to cut down the number of cost functions which have to be

considered for optimization. More speci�cally, we will argue that it is already quite

interesting to just consider C

out

. For this, we de�ne an equivalence relation on cost

functions.

De�nition 2.1 Let C and C

0

be two cost functions. Then

C � C

0

:�� (8s C(s) minimal �� C

0

(s) minimal)

Obviously, � is an equivalence relation.

Next, we overload the binary C

x

cost functions for a single join with those resulting

from applying it to each join necessary to join a sequence s of relations. For example, we

de�ne

C

out

(s) :=

n

X

i=2

js

1

; : : : ; s

i

j

Now we can de�ne the �IR property.

De�nition 2.2 A cost function C is �IR :�� C � C

out

.

Let us consider a very simple example. The last element of the sum in C

out

is the size of

the �nal join (all relations are joined). This is not the case for the following cost function:

C

0

out

(s) :=

n�1

X

i=2

js

1

; : : : ; s

i

j

Obviously, we have C

0

out

is �IR. The next observation shows that we can construct quite

complex �IR cost functions:

Observation 2.3 Let C

1

and C

2

be two �IR cost functions. For non-decreasing func-

tions f

1

: R! R and f

2

: R �R! R and a constant c we have that

C

1

+ c

C

1

� c

f

1

� C

1

f

2

� (C

1

; C

2

)

are �IR. Here, � denotes function composition and (�; �) function pairing.

There are of course many more possibilites of constructing �IR functions.

For the above cost functions C

hl

, C

sm

, and C

nl

, we derive for a sequence s of relations

C

hl

(s) =

n

X

i=2

1:2js

1

; : : : ; s

i�1

j

C

sm

(s) =

n

X

i=2

js

1

; : : : ; s

i�1

j log(js

1

; : : : ; s

i�1

j) +

n

X

i=1

js

i

j log(js

i

j)

C

nl

(s) =

n

X

i=2

js

1

; : : : ; s

i�1

j � s

i

4

We investigate which of these cost functions are �IR.

Let us consider C

hl

�rst. From

C

hl

(s) =

n

X

i=2

1:2js

1

; : : : ; s

i�1

j

= 1:2js

1

j+ 1:2

n�1

X

i=2

js

1

; : : : ; s

i

j

= 1:2js

1

j+ 1:2C

0

out

(s)

and observation 2.3, we conclude that C

hl

is �IR for a �xed relation to be joined �rst. If

we can optimize C

out

in polynomial time, than we can optimize C

out

for a �xed starting

relation. Indeed, by trying each relation as a starting relation, we can �nd the optimal.

Thus, we stay within PTIME.

Now, consider C

sm

. Since

n

X

i=2

js

1

; : : : ; s

i�1

jlog(js

1

; : : : ; s

i�1

j)

is minimal if and only if

n

X

i=2

js

1

; : : : ; s

i�1

j

is minimal and

P

n

i=2

js

i

j log(js

i

j) is independent of the order of the relations within s |

that is constant | we conclude that C

sm

is �IR.

Last, we have that C

nl

is not �IR. To see this, consider the following counter example

with three relations R

1

, R

2

, and R

3

of sizes 10, 10, and 100, resp. The selectivities are

f

1;2

=

9

10

, f

2;3

=

1

10

, and f

1;3

=

1

10

. Now,

jR

1

R

2

j = 90

jR

1

R

3

j = 100

jR

2

R

3

j = 100

and

C

nl

(R

1

R

2

R

3

) = 10 � 10 + 90 � 100 = 9100

C

nl

(R

1

R

3

R

2

) = 10 � 100 + 100 � 10 = 2000

C

nl

(R

2

R

3

R

1

) = 10 � 100 + 100 � 10 = 2000

We see that R

1

R

2

R

3

has the smallest intermediate result size but produces the highest

cost. Hence, C

nl

is not �IR.

The rest of the section deals with the complexity of producing optimal left-deep join

trees, that is, we do not consider cross products yet. The next subsection deals with the

general problem, subsection 2.4 treats tree queries.

2.3 On the complexity of optimizing C

out

Since the cost function C

out

is much simpler than the cost function used to proof the

NP-completeness of the general join ordering problem [2], we give a simple sketch of a

5

proof that the join-ordering problem remains NP-complete even if the simple cost function

C

out

is considered. This seems necessary, since the proof in [2] makes use of some special

features of the cost functions which are absent in C

out

.

Theorem 2.4 The join-ordering problem with the cost model C

out

is NP-complete.

Sketch of proof: Obviously the join-ordering problem 2 NP. We will restrict the join-

ordering problem to the Clique problem which is known to be NP-complete [1]. (The

question asked in the Clique problem is, whether a graph G contains a clique of at least

size K or not.) We will represent all n nodes in a graph G by relations of cardinality 1.

If there is an edge between two nodes in G, then the according selectivity of the edge the

corresponding relations is set to

1

2

. Let G be a graph where each relation has at least one

connection to another another relation. Now, it is obvious that if there is a clique of size

K, then the optimal sequence must start by the K relations involved in this clique. 2

From this it also follows that the more general problem where cross products are

considered, is NP-complete, too.

2.4 Tree queries, C

out

, and the ASI property

In this subsection, we assume that the query graph is acyclic, i.e., a tree. Still, we do not

consider cross products. For two special cases of a tree, we know the number of alter-

natives generated by the dynamic programming approach to join-ordering [5]. For chain

queries, i.e., where the query graph is a chain, dynamic programming generates (n � 1)

2

alternatives. For star queries, i.e., where there exists one relation to which all other rela-

tions are connected and there exists no other connection, dynamic programming generates

(n� 1)2

(n�2)

nodes. Note that the dynamic programming approach is independent of the

chosen cost function. Nevertheless, the question arises, whether one can do better with

specialized algorithms, if something is known about the cost functions.

The answer is yes, if the cost function has the ASI (Adjacent Sequence Interchange)

property [4]. For these cost functions, there exist polynomial time algorithms (the fastest

is O(n

2

)) producing optimal left-deep trees for tree queries [2, 3]. Let us shortly review

this approach.

From a query graph, a precedence tree is constructed by arbitrarily choosing one rela-

tion as a root and directing the edges away from it. The main idea then is, to produce for

every possible precedence graph the optimal solution and take the cheapest of these. The

optimal solution for a precedence graph is obtained by an algorithm that is an adaptation

of the Monma/Sydney procedure for job sequencing with precedence constraints[4]. The

ASI property allows to assign a rank to each relation such that if a sequence of relations

is ordered by rank, it is optimal. Furthermore, if two relations linked by a precedence

edge have unorded ranks, it guaranties that the two relations have to stick together in the

optimal sequence. Thus, the idea is to (i) stick together relations that cannot be parted

in the optimal sequence and (ii) merge the di�erent chains using rank ordering.

Let us now come back to this ASI property. The selectivity f

i;j

of an edge within

the original query graph corresponds to a selectivity of an edge within the precedence

graph. For notational convenience, this selectivity is renamed to f

j

, if the relation R

i

is the (immediate) predecessor of the relation R

j

within the precedence graph. We will

rename the root node to R

1

and de�ne f

1

to be 1.

6

Assume that we can write a cost function in the following form where f

i

is used for

denoting the selectivity attached to the relation s

i

, given s

i�1

.

Cost(s) =

n

X

i=2

[js

1

: : : ; s

i�1

j � g

i

(s

i

)]

=

n

X

i=2

[(

i�1

Y

j=1

f

j

� s

j

) � g

i

(s

i

)]

for some arbitrary functions g

j

. Then, for sequences S

1

and S

2

of relations, we can de�ne

this cost function recursively by

C(�) = 0

C(R

j

) = 0 if R

j

is the root

C(R

j

) = g

j

(n

j

) else

C(s

1

s

2

) = C(s

1

) + T (s

1

) � C(s

2

)

with

T (�) = 1

T (s) =

Y

R

i

2s

(f

i

� s

i

)

We have that C is well-de�ned and, for all sequences s, C(s) = Cost(s).

De�nition 2.5 A cost function C has the ASI property, if and only if there exists a rank

runction rank(s) for sequences s, such that for all sequences a and b and all non-empty

sequences v und u the following holds:

C(auvb)� C(avub) �� rank(u) � rank(v)

For a cost function of the above form, we have the following Lemma:

Lemma 2.6 Let C be a cost function which can be written in the above form. Then C

has the ASI property for the rank function

rank(s) =

T (s)� 1

C(s)

for nonempty sequences s.

Since C

hl

and C

nl

can be written in the above mentioned special form for cost functions,

they have the ASI property and tree queries involving these cost functions can be solved

in polynomial time [3]. Further, C

sm

cannot be written in the above form. This is the

reason why it was so far abondoned from being treated by the Monma/Sidney-procedure

[3]. Nevertheless, since C

sm

is �IR, it su�ces to show that C

out

has the ASI property. If

so, we can also treat tree queries involving C

sm

in polynomial time. But obviously, C

out

can be written in the above form with g

j

(s

j

) = f

j

s

j

. Hence,

7

Observation 2.7 C

out

has the ASI property.

Summarizing, for tree queries, especially for chain and star queries, optimal left-deep trees

can be constructed in polynomial time for all cost functions mentioned in this section;

moreover, for all cost functions being �IR or having the ASI property.

Let us take a look at the rank function for C

out

, in case of one relation only:

rank(s

i

) =

T (s

i

)� 1

C(s

i

)

=

f

i

s

i

� 1

f

i

s

i

Since

x�1

x

is strictly increasing, ordering by rank is the same as ordering by f

i

s

i

, for

sequences consisting of a single relations.

All this only holds if we do not consider cross products. But as pointed out by

Ono and Lohman, introducing cross products can lead to considerably cheaper plans [5].

Consequently, the next section deals with the complexity of constructing optimal left-

deep join trees where some joins may in fact be cross products. Further, the dynamic

programming approach considers n2

n�1

�

n(n+1)

2

| independently of the join graph [5]

and the cost function. The question arises, whether we can do better for tree queries and

the C

out

cost function.

3 Star Queries

Consider a star query where the inner relation | or center is called R

0

and the relations

R

1

; : : : ; R

n

are the satellites. In any plan, there must exist a k such that some relations

s

1

; : : : ; s

k

are connected by a cross product, then, R

0

is joined and subsequently all the

missing relations s

k+1

; : : : ; s

n

. The only cost function we will consider for the rest of the

paper is C

out

. Hence, we will write C instead of C

out

.

The following is helpful in reducing the search space to be considered in order to �nd

an optimal solution.

Lemma 3.1

Any optimal sequence must obey

(1) s

1

� s

2

� : : : � s

k

(2) s

k

�

Q

j<k

f

j;0

n

0

(3) f

s

k+1

;0

s

k+1

� f

s

k+2

;0

s

k+2

� : : : � f

s

n

;0

s

n

We call a sequence s

1

; : : : ; s

k

size-ordered, if and only if s

1

� : : : � s

k

, and we call it

�-ordered, if and only if f

s

1

;0

s

1

� : : : � f

s

k

;0

s

k

. Instead of f

s

i

;0

, we will also write simply

f

i;0

or f

i

, if a sequence s is implied by the context.

Something can also be said about the placement of R

0

:

Lemma 3.2

C(s

1

� � � s

k

R

0

s

k+1

� � � s

n

) < C(s

1

� � � s

k�1

R

0

s

k

s

k+1

� � � s

n

)

,

s

k

<

Y

j<k

f

j

n

0

8

Also, on the relations to the left and right or R

0

, we have:

Lemma 3.3

C(s

1

� � � s

k

R

0

s

k+1

� � � s

n

) < C(s

1

� � � s

k�1

s

k+1

R

0

s

k

� � � s

n

)

,

s

k

+ s

k

f

k

(

Y

j<k

f

j

)n

0

< s

k+1

+ s

k+1

f

k+1

(

Y

j<k

f

j

)n

0

,

s

k

� s

k+1

< [s

k+1

f

k+1

� s

k

f

k

]n

0

Y

j<k

f

j

We next consider the cost di�erences of some more complex swap operations on se-

quences.

Lemma 3.4 Let

s = s

1

� � � s

k�1

s

k

R

0

s

k+1

� � � s

l�1

s

l

s

l+1

� � � s

n

s

0

= s

1

� � � s

k�1

s

l

R

0

s

k+1

� � � s

l�1

s

k

s

l+1

� � � s

n

Then

C(s) =

k�1

X

i=2

Y

j�i

s

j

+(

Y

j<k

s

j

)n

k

+(

Y

j<k

s

j

)s

k

(

Y

j<k

f

j

)f

k

n

0

+[(

Y

j<k

s

j

)s

k

(

Y

j<k

f

j

)f

k

n

0

] � (

l�1

X

i=k+1

Y

k+1�j�i

f

j

s

j

)

+[(

Y

j<k

s

j

)s

k

(

Y

j<k

f

j

)f

k

n

0

] � (

Y

k+1�j<l

f

j

s

j

) � f

l

s

l

+[[(

Y

j<k

s

j

)s

k

(

Y

j<k

f

j

)f

k

n

0

](

Y

k+1�j<l

f

j

s

j

)f

l

s

l

] �

n

X

i=l+1

Y

l<j�i

f

j

s

j

Analogously for s

0

. Thus

C(s) < C(s

0

)

,

s

k

+ s

k

f

k

n

0

Y

j<k

f

j

(1 +

l�1

X

i=k+1

Y

k+1�j�i

f

j

s

j

) < s

l

+ s

l

f

l

n

0

Y

j<k

f

j

(1 +

l�1

X

i=k+1

Y

k+1�j�i

f

j

s

j

)

Hence, s

k

< s

l

^ s

k

f

k

< s

l

f

l

� C(s) < C(s

0

). 2

This is an important observation since we can now derive that if there is no contradiction

between the order implied by the size and the one implied by the s

i

f

i

, then ordering the

satellites by their size already results in an optimal order, except that the placement of

R

0

within the sequence is unknown. But placing R

0

can easily be done using Lemma 3.2.

To summarize:

9

Theorem 3.5 If there is no contradition between the size-rank and the �-rank of the

satellites of the star query, optimal left-deep processing trees possibly containing cross

products can be generated in polynomial time (O(n log(n))).

This already looks promising. But the following theorem is slightly discouraging for

the general star queries. Denote by LD-X-Star the problem of generating an optimal join

sequence under the consideration of cross products.

Theorem 3.6 LD-X-Star is NP-complete.

Proof: Obviously, LD-Star 2 NP. We show that LD-Star is NP-hard by reducing 3DM

to LD-Star.

Let

X = fx

1

; : : : ; x

q

g

Y = fy

1

; : : : ; y

q

g

Z = fz

1

; : : : ; z

q

g

M = fm

1

; : : : ;m

n

g � X � Y � Z

be an instance of 3DM. W.l.o.g. we assume

� n > q and

(Other instances can be checked immediatly anyway.)

� z

q

occurs at least in two elements of M .

(If z

q

does not occur at all, we are done. If it occurs only once, we can reduce it to

a problem of size q � 1 and n� 1.)

We will number the x

i

, y

i

and z

i

subsequently and use the symbols to identify the

numbers.

Denote by p

i

the i-th prime number greater than or equal to 5. Then we de�ne

x

i

:= p

i

1 � i � q

y

i

:= p

q+i

1 � i � q

z

i

:= p

2q+i

1 � i < q

A :=

Q

q

j=1

x

j

Q

q

j=1

y

j

�

Q

q�1

j=1

z

j

z

q

:= A

2

B := A

3

Note that we can apply a sieve method to get all the needed polynomial number of primes

in polynomial time.

Map each (a

j

; b

j

; c

j

) 2M , 1 � j � n, to a relation R

j

and de�ne

n

j

:= a

j

� b

j

� c

j

f

j

:=

1

n

2

j

Last, de�ne for relation R

0

its size n

0

:= B

2

. Again, these numbers can be constructed

in polynomial time.

We will show that

10

there exists a solution to 3DM �� the optimal solution sR

0

s of the trans-

formed LD-Star problem ful�ls jjsjj = q and jsj = B.

Clearly, if there is no solution to the 3DM problem, no such sR

0

s exists. Indeed, the

conditions we imposed on s (jjsjj = q and jsj = B) guaranty that it has to contain the

3DM solution. Hence, it remains to proof that if 3DM has a solution, then the optimal

join order sR

0

s ful�lls jjsjj = q and jsj = B where s = s

1

: : : s

l

is size-ordered and

s = s

l+1

: : : s

n

is �-ordered.

Let us �rst compute the cost C(sR

0

s) using the recursive de�nition given in the

previous section. Knowing that jjsjj = q and jsj = B, we have:

C(s) =

q

X

i=2

i

Y

j=1

s

j

= s

1

s

2

+ s

1

s

2

s

3

+ : : :+ s

1

s

2

:::s

q

= s

1

s

2

+ s

1

s

2

s

3

+ : : :+ jsj

C(s)

jsj

=

1

s

3

s

4

:::s

q

+

1

s

4

:::s

q

+ : : :+

1

s

q

+ 1

= 1 +

q

X

i=3

q

Y

j=1

1

s

j

=: 1 + C

1

(s)

C(s) =

n

X

i=q+1

i

Y

j=q+1

1

s

j

C(sR

0

s) = C(s) + T (s)C(R

0

) + T (sR

0

)C(s)

= jsj(1 + C

1

(s)) +

jsjn

0

s

2

1

s

2

2

: : : s

2

q

+

s

1

s

2

: : : s

q

n

0

s

2

1

s

2

2

: : : s

2

q

C(s)

= jsj(1 + C

1

(s)) +

jsj

3

jsj

2

(1 + C(s))

= jsj(2 + C

1

(s) + C(s))

Now, note that the conditions imposed on s guaranties that z

q

appears once and only

once in s and, accordingly, at least once in s (since z

q

occurs at least in two elements of

M). Thus, knowing that s is size ordered and s is �-ordered, we have:

C

1

(s) =

1

z

q

y

s

q

z

s

q

(1 +

1

z

s

q�1

y

s

q�1

z

s

q�1

(1 + : : :))

C(s) =

1

z

q

y

s

1

z

s

1

(1 +

1

z

s

2

y

s

2

z

s

2

(1 + : : :))

Now, knowing that all x

i

's y

i

's are bigger than 4, we can derive the following upper-bound

for C(sR

0

s):

C(sR

0

s) < jsj[2 +

1

4z

q

] (1)

Let us now estimate the cost of any C(uR

0

u) for size-ordered u and �-ordered u where

u = u

1

: : : u

k

u = u

k+1

: : : u

n

11

and 1 < k < n (the cases u = � and u = � trivially result in costs higher than C(sR

0

s)).

Analogously to sR

0

s, we have:

C

1

(u) :=

k

X

i=3

k

Y

j=i

1

u

j

C(u) :=

m

X

i=k+1

i

Y

j=k+1

1

u

j

C(uR

0

u) = juj(1 + C

1

(u)) +

n

0

juj

(1 + C(u))

= juj(1 + C

1

(u)) +

jsj

2

juj

(1 + C(u))

With K de�ned as

K :=

jsj

juj

we have

C(uR

0

u) =

1

K

jsj(1 + C

1

(u)) +Kjsj(1 + C(u))

= jsj[K +

1

K

+

1

K

C

1

(u) +KC(u)] (2)

Note thatK +

1

K

� � 2

� strictly decreasing for K < 1

� strictly increasing for K > 1

For K �

3

2

and K �

1

2

, it follows from Eqns 1 and 2 that C(uR

0

u) > C(sR

0

s).

Hence, we can assume that

1

K

>

1

2

. Assume that u

k

does not contain z

q

. Then

1

K

C

1

(u) �

1

2

1

z

q�1

x

q

y

q

�

1

2z

q

and, hence, C(uR

0

u) > C(sR

0

s).

Assume u

k

= z

q

x

u

k

y

u

k

. Then we de�ne P such that K =

jsj

juj

=

jsj

Pz

q

. Then K =

A

P

.

Since both A and P are odd, we can conclude for A 6= P that either A � P + 2 or

A � P � 2. For the �rst case, we have

K =

A

P

�

P + 2

P

� 1 +

2

P

> 1 +

2

A

=

A+ 2

A

We now proof that for K =

A+2

A

:

K +

1

K

> 2 +

1

4z

q

(3)

Since K > 1 and, hence, K +

1

K

is strictly increasing, C(uR

0

u) > C(sR

0

s).

12

Equation 3 now follows from (remember that z

q

= A

2

):

A+ 2

A

+

A

A+ 2

> 2 +

1

4A

2

��

2A

2

+ 4A+ 4

A

2

+ 2A

>

8A

2

+ 1

4A

2

��

8A

4

+ 16A

3

+ 16A

2

> 8A

4

+ 16A

3

+A

2

+ 2A

��

15A

2

� 2A > 0

��

A(15A� 2) > 0

The latter is true since A > 1.

Now consider the second case. Here, we had A � P � 2 and hence

P

A

�

A+2

A

. Thus

K =

A

P

�

A

A+2

. From Eqn. 3 we know that K +

1

K

> 2 +

1

4z

q

for K =

A+2

A

, and hence also

for K =

A

A+2

. Since K < 1 and, hence, K+

1

K

is strictly decreasing, C(uR

0

u) > C(sR

0

s).

Summarizing, any optimal sequence uR

0

u must obey juj = A

3

with one occurrence of

z

q

in u. Since juj = A

3

and u

k

= z

q

x

u

k

y

u

k

implies that jjujj = q, we are done.

2

From the above lemmata, we can infer an algorithm with complexity O(2

c

) where c is

the number of cross products to consider. All we have to do is to generate systematically

subsets of the relations R

1

; : : : ; R

n

, which will precede R

0

within the join graph. Since we

can stop as soon as the rank of R

0

becomes smaller than the size of any of the remaining

relations, we can be sure that we do not consider sets containing more relations than

necessary. Further, if the rank of R

0

is still smaller than the size of a remaining relation,

we can expand the set. Hence, we have a procedure that is within the claimed complexity

class. Note, that it is faster than dynamic programming, if the number of cross products

is less than the total number of relations.

4 Conclusion and Future Work

We have shown that the problem of constructing optimal left-deep processing trees for star

queries is NP-complete. Hence, it is NP-complete for tree queries. The �rst open question

to answer is whether there exists a polynomial algorithm for treating chain queries, i.e.

those, whose join graph is a chain, or whether this problem is NP-complete, too.

Also open for future research is the complexity of generating optimal bushy trees,

where except for number of plans dynamic programming generates [5], nothing is known.

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory

of NP-Completeness. Freeman, San Francisco, 1979.

13

[2] T. Ibaraki and T. Kameda. Optimal nesting for computing n-relational joins. ACM

Trans. on Database Systems, 9(3):482{502, 1984.

[3] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.

In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 128{137, 1986.

[4] C. Monma and J. Sidney. Sequencing with series-parallel precedence constraints.Math.

Oper. Res., 4:215{224, 1979.

[5] K. Ono and G. M. Lohman. Measuring the complexity of join enumeration in query

optimization. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 314{325,

1990.

[6] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proc. of the

ACM SIGMOD Conf. on Management of Data, pages 23{34, 1979.

14

