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ABSTRACT
Estimating selectivities remains a critical task in query pro-
cessing. Optimizers rely on the accuracy of selectivities
when generating execution plans and, in approximate query
answering, estimated selectivities affect the quality of the
result. Many systems maintain synopses, e.g., histograms,
and, in addition, provide sampling facilities. In this paper,
we present a novel approach to combine knowledge from
synopses and sampling for the purpose of selectivity estima-
tion for conjunctive queries. We first show how to extract
information from synopses and sampling such that they are
mutually consistent. In a second step, we show how to com-
bine them and decide on an admissible selectivity estimate.
We compare our approach to state-of-the-art methods and
evaluate the strengths and limitations of each approach.

PVLDB Reference Format:
Magnus Müller, Guido Moerkotte, Oliver Kolb. Improved Selec-
tivity Estimation by Combining Knowledge from Sampling and
Synopses. PVLDB, 11(9): 1016-1028, 2018.
DOI: https://doi.org/10.14778/3213880.3213882

1. INTRODUCTION
The problem of estimating the selectivities of predicates

is of interest in various fields of data processing. In approxi-
mate query processing, selectivity estimation techniques are
employed in count queries where accuracy is traded for re-
sponse time [6, 8]. In query optimization, selectivity es-
timates are crucial parameters to cost functions which de-
termine the decision-making in query plan selection. Recent
research indicates that query optimizers benefit greatly from
improved selectivity estimates [16, 25].

Selectivities are estimated by available information. Many
systems maintain synopses, e.g., histograms, and, in addi-
tion, provide sampling facilities. The crux of the matter
is how to utilize this information: Consider a query with
predicates p1 ≡ A > 5, p2 ≡ B between 2.7 and 3.5, and
p3 ≡ C = ’green’ over a relation R with attributes A, B
and C. Suppose the system provides histograms over the
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single attributes that give approximate selectivities for p1,
p2, and p3 as well as a multi-dimensional histogram that
approximates the joint distribution of B and C and, thus,
gives an approximate selectivity for p2 ∧ p3. Furthermore,
assume that the system maintains a sample of R. One pos-
sibility of finding estimates for the unknown selectivities of
p1 ∧ p2 and p1 ∧ p2 ∧ p3 is to simply compute the ratio
of qualifying entries in the sample. However, if R is large
and the selectivities of the predicates are low, the quality of
this estimate is often insufficient. Another approach is to
derive estimates solely based on the known synopses. Elab-
orate methods based on the principle of maximum entropy
have been developed by Markl et al. to consistently process
multi-dimensional synopses [20]. The question remains how
to utilize both synopses and sampling to estimate selectivi-
ties. To the best of our knowledge, Yu, Koudas and Zuzarte
are the only ones who have attempted to answer this ques-
tion [34]. As the main problem, they consider selectivities
obtained from sampling that are inconsistent with selectiv-
ities obtained from synopses, e.g., the selectivity of p1 ∧ p2

derived from a sample may be larger than the selectivity of
p1 as provided by a histogram, regardless of the fact that
both cannot hold true simultaneously. Hence, their idea is
to refine estimates derived from sampling until they comply
with the selectivities known from synopses. However, as we
will see later, their approach has limited capabilities.

In this paper, we introduce CSE, a novel approach to selec-
tivity estimation for conjunctive queries for single relations,
that consistently combines sampling and synopses. To this
end, for each selectivity derived from a sample and each se-
lectivity obtained from a synopses structure, we construct
intervals that contain the true selectivity either guaranteed
or with high probability. We then go on to produce selectiv-
ity estimates by solving an optimization problem that is con-
strained to these intervals. A key property of our approach is
that it can incorporate multi-dimensional synopses. More-
over, our approach proves robust in our evaluation in all
scenarios. In particular, our approach not only outperforms
existing state-of-the-art methods in a scenario where the se-
lectivities of some of the predicates found in a query are
known precisely, but also performs best in real-world sce-
narios where synopses structures provide selectivities with
approximation errors. This is due to our method that ex-
tracts intervals, instead of point-estimates, from sampling
and synopses to overcome the issue of estimating selectivi-
ties based on inaccurate approximations.

The remainder of the paper is structured as follows: In
the next section, we discuss some preliminaries and intro-
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duce our notation. We then present related work in Section
3. In Section 4, we introduce our CSE approach. Section
5 contains an extensive evaluation of our approach in terms
of prediction accuracy and run time in comparison to other
state-of-the-art approaches under scenarios with varying pa-
rameters. To the best of our knowledge, we are the first who
consider synopses with approximation errors in our evalua-
tion, as it is the case in real-world scenarios. Finally, we
draw a conclusion and discuss future work.

2. PRELIMINARIES
In this section, we introduce our notation and discuss pre-

liminaries. A conjunctive query P , defined as a conjunction
of n simple predicates or boolean factors, over a relation R
represents the starting point of our discussion.

P := p1 ∧ p2 ∧ · · · ∧ pn
A predicate is simple if it compares an attribute value to a
literal. We denote by N = {1, . . . , n} the index set of P .

2.1 Predicates and Selectivities
A selectivity is a value in the interval [0, 1] and is defined

as the fraction of entries in a data set or relation that sat-
isfies some specified predicate. We distinguish selectivities
induced by predicates that are defined by two formulae. For
both, the argument X is a subset of the index set N of a
given conjunctive query P , i.e., X ⊆ N . The first formula
is defined as

Fβ(X) :=
∧
i∈X

pi,

i.e., Fβ(X) is a conjunction of those predicates whose index
is contained in X. In case X = ∅, we define Fβ(X) ≡ true.

The second formula is defined as

Fγ(X) :=
∧
i∈X

pi ∧
∧

i∈N\X

¬pi,

i.e., Fγ(X) defines the minterms of the conjunctive query P .
For a boolean function of n variables, a minterm is defined
as a conjunction in which each of the n variables appears
exactly once, possibly in its complement form.

To illustrate the difference in the formulae and their con-
sequence on the selectivity, consider the conjunctive query
p1∧p2∧p3 with index set N = {1, 2, 3}. Let X = {1, 3} ⊆ N .
Then β(X) is the selectivity of Fβ(X) = p1 ∧ p3, which we
call the β-selectivity of X. Similarly, γ(X) is the selectivity
of Fγ(X) = p1 ∧ p3 ∧ ¬p2, which we call the γ-selectivity of
X.

Note that for all X, the β-selectivity β(X) is greater than
or equal to the γ-selectivity γ(X). This is because Fγ(X)
contains at least the predicates in Fβ(X), and additional
predicates imply a lower or at most unchanged selectivity.
For the same reason we have that β(X ′) ≥ β(X) for all
X,X ′ ⊆ N with X ⊃ X ′. Furthermore note that from our
definition above Fβ(∅) ≡ true it follows that β(∅) = 1 since
every entry in a data set or relation satisfies this condition.

Observe that both Fβ and Fγ depend only on X ⊆ N .
Since all X ⊆ N form the power set of N , which is known
to contain 2n elements, the number of β- and γ-selectivities
is 2n each.

Finally, observe that all X ⊆ N can be numbered by
bitvectors bv(X) := (dn, . . . , d1), where di = 1 if i ∈ X,
and di = 0 otherwise, for 1 ≤ i ≤ n. Therefore, without

introducing ambiguity, we refer to a formula or selectivity
likewise by its characteristic bitvector bv(X) for some set of
indices X.

2.2 Relation between β- and γ-selectivities
Every conjunctive query Fβ(X) can be expressed as the

disjunction of those minterms Fγ(Y ) that positively contain
at least the literals in Fβ(X). For instance, for conjunctive
query p1∧p2 and Fβ({1}) = p1 the minterms that positively
contain at least the literals in Fβ({1}) are Fγ({1}) = p1∧¬p2

and Fγ({1, 2}) = p1 ∧ p2 and, thus, we have that p1 ≡
(p1 ∧ ¬p2) ∨ (p1 ∧ p2).

It follows that every β-selectivity β(X), X ⊆ N can be
computed from γ-selectivities as

β(X) =
∑

X⊆Y⊆N

γ(Y ), (1)

or in words: β(X) is composed of those γ(Y ) where at least
the predicates contained in Fβ(X) occur positively in Fγ(Y ).
Figure 1 illustrates the relationship between β-selectivities
and γ-selectivities according to Equation 1 for the previous
example p1 ∧ p2.

Figure 1: Grey ellipses mark the γ-selectivities that con-
tribute to each β-selectivity for the conjunctive query p1∧p2.

Note that we can compute all X ⊆ Y ⊆ N efficiently by
considering bitvector bv(X) and enumerating all bitvectors
bv(Y ) that contain a 1 at least at those positions where
bv(X) contains a 1 since

{Y |N ⊇ Y ⊇ X} ⇐⇒ {Y |bv(X) = bv(X)&bv(Y )},

where & denotes bitwise AND. Observe that β(∅) is the sum
of all complete conjuncts, since all Y ⊇ ∅.

As an example, consider the conjunctive query p1∧p2 and
let X = {1}=̂01. Then the set of all Y ⊇ X is {{1}, {1, 2}}=̂
{01, 11} and β({1}) = γ(01) + γ(11).

2.3 Matrix Representation
Since for all X ⊆ N Equation 1 gives one linear equa-

tion, together these equations form a system of linear equa-
tions b = Cx with vectors b = (β(∅), . . . , β(N))T and x =
(γ(∅), . . . , γ(N))T , where T as superscript denotes trans-
posed, and design matrix C, to which we refer as the com-
plete design matrix. For zero-based indexing, the definition
of the 2n × 2n matrix C follows directly from the enumera-
tion of summands in Equation 1:

Ci,j =

{
1 if bv(i) ⊆ bv(j)

0 else
(2)

Note that C is Boolean and each row indicates which γ-
selectivities contribute to a β-selectivity. Furthermore note
that we assume the β(X) in b and the γ(X) in x to be sorted
in ascending order of their bitvector-value bv(X).
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Consider the example system Cx = b for p1 ∧ p2:
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1



γ(00)
γ(01)
γ(10)
γ(11)

 =


β(00)
β(01)
β(10)
β(11)

 .

Given all γ-selectivities, compute all β-selectivities as Cx.
In case we are given all β-selectivities, we (conceptually)
compute all γ-selectivities by inverting C and computing
C−1b.

Note that it is easy to prove that the matrix C is indeed
invertible by showing that it is upper-triangular with no
zeros on the main diagonal.

2.4 A Linear System Induced by Synopses
Synopses structures, like histograms, sketches or wavelets,

approximate the distribution of single attributes or attribute
groups. In terms of our notation, synopses structures pro-
vide β-selectivities. Ideally, a database system would main-
tain synopses over all possible combinations of attributes
in the database. Selectivity estimation would be easy then
since for every conjunctive query P with index set N , we
could simply obtain the selectivity of P , i.e., β(N), from
the synopses structures. Additionally, we could obtain the
selectivity β(X) for all X ⊆ N and formulate the linear
system b = Cx that we saw in the previous section. Unfor-
tunately though, since the number of attribute combinations
grows exponentially in the number of attributes, it is infea-
sible to maintain synopses for all attribute groups. In real-
ity, synopses are only available for low-dimensional attribute
groups. For instance, a database system may maintain single
attribute statistics, referred to as 1D synopses, and statis-
tics for attribute combinations of two attributes, referred to
as 2D synopses. In this section, we derive a system of equa-
tions similar to the one in the previous section, but this time
induced by the synopses maintained in a database system.

As before, let N be the index set of a given conjunc-
tive query P . Suppose we know, due to synopses, the β-
selectivities β(X) for some but not all X ⊆ N . We collect
these X in a set G, to which we refer as the knowledge set,
since it specifies the β-selectivities that are known from syn-
opses. Denote by b the corresponding |G|-dimensional vec-
tor of β-selectivities β(X), X ∈ G to which we refer as the
known selectivities. Each β-selectivity in b induces a linear
equation defined by Equation 1. Together these equations
form the linear system b = Ax where x = (γ(∅), . . . , γ(N))T

holds all γ-selectivities and A is a |G| × 2n design matrix
defined as follows

Ai,j =

{
1 if bv(Gi) ⊆ bv(j),

0 else.

We refer to A as the partial design matrix. Note that every
partial design matrix A is simply the selection of those rows
in the complete design matrix C that correspond to equa-
tions for which the β(X) is known. Furthermore note that
for the linear system b = Ax we assume the β(X) in b, the
γ(X) in x, and the sets of indices X in the knowledge set
G to be sorted in ascending order by their bitvector-value
bv(X). Finally note that, unless all X ⊆ N are part of
the knowledge set G, the linear system Ax = b is underde-
termined. Thus, assuming Ax = b is solvable, there exist
infinitely many solutions for x.

As an example, consider the conjunctive query p1∧p2∧p3

with index set N = {1, 2, 3} over the attributes A,B,C of
some relation R. Let p1 ≡ A between 1 and 10 with a se-
lectivity of 0.1, p2 ≡ B ≤ 100 with a selectivity of 0.2 and
p3 ≡ C = 5 with a selectivity of 0.01. Assume the database
system maintains statistics for each individual attribute and
multivariate statistics for the attribute group A,B. Then,
the knowledge set is G = {{∅}, {1}, {2}, {1, 2}, {3}}=̂{000,
001, 010, 011, 100}. The β-selectivity of each simple predi-
cate is already given above. For p1∧p2 suppose a selectivity
of 0.05; note that it would be 0.02 if p1 and p2 were in-
dependent. Then, the system of linear equations Ax = b
is


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1





γ(000)
γ(001)
γ(010)
γ(011)
γ(100)
γ(101)
γ(110)
γ(111)


=


1

0.1
0.2
0.05
0.01

 ,

where solutions for vector x, i.e., (γ(000), γ(001), . . . , γ(111))T

are admissible if all γ-selectivities lay in [0, 1].
In general, the linear system b = Ax captures all knowl-

edge that is available due to synopses in a database system.
In [20] the linear system b = Ax is given in implicit form,
where Markl et al. substitute the design matrix A by so-
called components induced by the elements of the knowledge
set.

Note that by now we assumed that synopses structures
allow us to know some β-selectivity. This is not correct.
Synopses structures approximate β-selectivities, and we will
see the impact of this distinction in later sections.

3. RELATED WORK
Many research areas relate to selectivity estimation. Lit-

erally all estimation techniques rely on some background
information in the form of a sample or synopses. For an
extensive survey on sampling and synopses, see the book
by Cormode, Garofalakis, Haas and Jermaine [8]. Recently
Shekelyan et al. presented a novel approach to construct his-
tograms for multi-dimensional data that give error bounds
for estimates. Here we review selected selectivity estimation
techniques. Some of them will serve as competitors in our
evaluation. We first present techniques that rely on syn-
opses only. Then, we mention techniques that exploit sam-
pling only. Finally, we show how Yu, Koudas and Zuzarte
combine synopses and sampling [34].

3.1 Synopses-based Selectivity Estimation
As discussed in Section 2.4, synopses structures provide β-

selectivities for certain single attributes or attribute groups.
Synopses-based estimators use this information to derive es-
timates for the unknown selectivities.

Traditionally, synopses-based estimators assume indepen-
dence. Thus, given a query with index set N and two
approximately known β-selectivities β(X) and β(Y ) with
X,Y ⊆ N and X ∩ Y = ∅, the joint selectivity β(X ∪ Y ) is
simply computed as β(X) ∗ β(Y ).

A novel heuristic by Microsoft [5] takes statistical rela-
tionships into account by assuming that there naturally ex-
ist similar statistical relationships among attributes. Since
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database systems usually store statistics for at least all single
columns, the β-selectivity for each of the n simple predicates
in a query can be extracted. In a next step, these selectivities
are sorted in ascending order, i.e., β(1) ≤ β(2) ≤ · · · ≤ β(n).
The core idea is then to take the first k selectivities and com-
pute an estimate as

∏k
i=1 β(i)0.5(i−1)

. Note that this implies
that n − k selectivities do not contribute to the estimate.
However, since β(i + 1) ≥ β(i) and due to the exponen-

tial back-off, the factor β(i)0.5(i−1)

converges to the limit
1, where it does not change to the product and, therefore,
to the estimate anyway. The Microsoft SQL Server Team
choses k = 4 and justifies their choice with the rapid speed
of convergence. To give some intuition for this choice of k,
note that for an estimate computed with k = 4 to differ from

an estimate computed with k = 5 by 50%, i.e., s
1/16
5 = 0.5,

the fifth most selective selectivity s5 must have a value of
around 0.00002.

In their work on synopses-based consistent selectivity esti-
mation via maximum entropy [20], Markl et al. show how to
exploit all available synopses to obtain more accurate esti-
mates. Their method is based on the principle of maximum
entropy. Thus, in absence of knowledge, their estimator as-
sumes independence. One benefit of maximum entropy is
its interpretability: When estimates are bad, more informa-
tion on attribute combinations not satisfying the indepen-
dence assumption is needed. To find the desired selectivities,
Markl et al. formulate an optimization problem. The objec-
tive is to find the γ-selectivities that maximize the entropy
subject to the constraints given by the system of equations
Ax = b that we introduced in Section 2.4. However, it may
be the case that Ax = b is unsolvable, in which case there
exists no solution to the optimization problem. Ax = b is
unsolvable if the β-selectivities in b are mutually inconsis-
tent, meaning that not all selectivities in b can hold true at
the same time. Such inconsistencies occur because synopses
structures usually only yield approximations for selectivi-
ties. To ensure that Ax = b is solvable, Markl et al. adjust
the β-selectivities in b when necessary. The adjustments are
computed in a minimal way with respect to a metric. Differ-
ent approaches exist in the literature to compute minimal
adjustments of b, based on l1-norm [20] and based on lq-
norm [24]. Once a solution for the vector of γ-selectivities x
is found, Equation 1 is applied to obtain estimates for the
unknown β-selectivities.

3.2 Sampling-based Selectivity Estimation
A different approach to selectivity estimation is to rely

on sampling. Many sampling-based only approaches can be
found in the literature [19, 17, 10]. Oracle recently pre-
sented a sampling approach that adapts the sample size to
the confidence intervals of the obtained selectivities [7].

3.3 HASE
To the best of our knowledge, Yu et al., in their HASE

paper [34], were the first and only ones who combine se-
lectivities from sampling and synopses. The core idea is to
introduce variables that compensate for differences between
sampling and synopses. Then, find the smallest compensa-
tion factors possible.

In the following, we describe in a nutshell how HASE
works. Note that we have reformulated their problem spec-
ification to make it consistent with our notation: As be-
fore, let N denote the index set of a given conjunctive query

HASE(b, x)

Input: known selectivities b,
sampling results x

Output: estimated β-selectivities
1 let w be a variable weight vector
2 let c be a constant dampening vector
3 minimize

w
cD(w)

subject to A(x ◦ w) = b
4 return C(x ◦ w)

P . Assume, due to some synopses, we are given a 1+|N |-
dimensional vector of β-selectivities containing the β-select-
ivity when no predicate is applied, i.e., 1, and the β-select-
ivity of each simple predicate in the given conjunctive query.
In addition, suppose, due to sampling, we are given a 2|N|-
dimensional vector x that contains an estimate for each γ-
selectivity.

That is, synopses give us some β-selectivities and sampling
gives us γ-selectivities. However, due to the imprecise nature
of sampling, we expect that the sampling-selectivities are
not consistent with the synopses-selectivities, i.e., Ax 6= b.
Here, A is a (1 + |N |) × 2|N| partial design matrix, as de-
scribed in Section 2.4. Hence, Yu et al. introduce a weight
vector w for compensation. Then, an admissible solution
satisfies A(x ◦ w) = b, where ◦ denotes entry-wise multipli-
cation. In general, there exist infinitely many of such assign-
ments for the weights. The objective is to find the one with
a minimal sum of (mapped) weights. The weight vector w is
mapped using a distance function D and a dampening vec-
tor c, that associates a user-defined dampening factor with
each component in w. A codification of this process is given
in Algorithm HASE.

The limitation of HASE is that they can handle 1-dimen-
sional synopses only. A generalization to multi-dimensional
synopses introduces potential mutual inconsistencies, how-
ever they do not consider methods to overcome inconsisten-
cies in the known selectivities. In addition, as we will see
in our evaluation, HASE fails at exploiting the potential of
combining sampling and synopses in terms of accuracy.

4. COMBINED SELECTIVITY ESTIMATION
In this section, we present CSE, a novel technique to es-

timate the selectivities for some conjunctive query P . Sec-
tion 4.1 demonstrates how to construct sampling bounds
by deriving confidence intervals for all γ-selectivities asso-
ciated with P . Section 4.2 shows how to derive bounds on
β-selectivities from synopses. In Section 4.3 we show how
to formulate a constrained optimization problem where the
constraints are given by the bounds obtained in Sections 4.1
and 4.2. The optimal solution to this optimization problem
serves as the selectivity estimate. One approach to compute
the optimal solution is presented in Section 4.4.

4.1 Sampling Bounds
Sampling allows one to estimate the selectivity of any type

of predicate. It is well-known that an unbiased estimate of
the selectivity of some conjunctive query can be obtained
by counting the number of qualifying samples and dividing
this number by the sample size. However, if the number of
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qualifying samples is low, the quality of the estimate is often
insufficient. Here we want to investigate a method that uses
a sample to construct confidence intervals for γ-selectivities
such that the true γ-selectivity is contained in the interval
with high probability.

Assume we draw a random sample of size m from a pop-
ulation of size M . Say we observe that kX items in the
sample satisfy the predicate Fγ(X) corresponding to some
X ⊆ N , where N refers to the index set of some conjunctive
query. The goal is to determine KX , the number of items in
the population that qualify, since KX/M = γ(X). Clearly,
using M , m, kX , we cannot find an approximation for KX

that is guaranteed to be correct.
However, we can bring certainty, to an arbitrary degree, to

sampling by constructing confidence intervals [γl(X), γu(X)]
with high confidence levels. Later, we use these confidence
intervals to estimate unknown β-selectivities.

We model sampling as an urn problem with the following
characteristics: (1) each item either qualifies or does not
qualify, (2) we draw without replacement. This urn problem
induces the hypergeometric distribution [15, Chapt. 3.2]

Pr(Z = kX) =

(
KX
kX

)(
M−KX
m−kX

)(
M
m

) ,

where Pr(Z = kX) denotes the probability of drawing ex-
actly kX items that qualify in m draws.

The goal is to determine the pair of random variables
lower-KX , denoted by Kl

X , and upper-KX , denoted by Ku
X ,

such that

Pr(Kl
X ≤ KX ≤ Ku

X) = 1− α,

where α ∈ (0, 1). Then, [Kl
X ,K

u
X ] is a confidence interval

for KX with confidence level 1−α. We experimentally found
α = 10−3 to be a good value. Therefore, we are quite certain
the true cardinality KX lays in the computed bounds.

Unfortunately, exact methods are computationally expen-
sive [30]. However, assuming m � M , the hypergeometric
distribution coincides with the binomial distribution1. Then
the Wilson Score interval method with continuity correction
[26] provides us with an approximation for

[
Kl
X

M
,
Ku
X

M
] =: [γl(X), γu(X)].

The method is derived by the Yate’s chi-squared test, used
to test how likely it is that differences in observations occur
by chance. The interval boundaries are efficiently computed
as

[
2kX + z2 − T

2(m+ z2)
,

2kX + z2 + T

2(m+ z2)
], (3)

where T = z
√
z2 − 1

m
+ 4kX(1− kX

m
) + (4 kX

m
− 2) + 1, and

z denotes the 1− α
2

quantile of a standard normal distribu-
tion. However, if no sample items qualify, the lower bound
must be taken as 0. Similarly, if all items qualify, the upper
bound must be taken as 1.

Note that there exist several other methods to construct
(approximate) confidence intervals for the given distribution
[31].

1which refers to sampling with replacement

GetSamplingBounds(P, n,N, S,m, α)

1 let counts be an associative array
2 for each t ∈ S
3 let X be a bitvector of size n
4 for i = 0 to n
5 if pi(t)
6 X[i] = 1
7 else
8 X[i] = 0
9 counts[X] = counts[X] + 1

10 z = QuantileStandardNormalDist(1− α
2

)
11 let xl and xu be associative arrays of size 2n

12 for each X ⊆ N
13 kX = counts[bv(X)]

14 T = z
√
z2 − 1

m
+ 4kX(1− kX

m
) + (4 kX

m
− 2) + 1

15 xl[X] = (2kX + z2 − T )/(2(m+ z2))
16 xu[X] = (2kX + z2 + T )/(2(m+ z2))
17 return (xl, xu)

Algorithm GetSamplingBounds describes how to com-
pute [γl(X), γu(X)] for all X ⊆ N . The result is stored in
two vectors xl and xu for which it holds that

xl ≤ x ≤ xu, (4)

with high probability. The algorithm first computes kX for
all X ⊆ N in a single pass over the sample. Then, Equation
3 is applied to compute lower and upper bounds given a
significance level α. The input is the conjunctive query P
with n simple predicates and index set N , a sample S of size
m and significance level α.

A notable property is that if the confidence interval is wide
for some X it must be tighter for others, since each item in
the sample must qualify the γ-predicate corresponding to
some X ⊆ N . To see that, recall the discussion of minterms
in Section 2.

4.2 Synopses Bounds
We have seen in Section 2.4 that synopses structures pro-

vide β-selectivities for certain single attributes or attribute
groups. As mentioned in the related work section, pro-
vided β-selectivities are usually approximations of the true
β-selectivity of some predicate. As such, they are subject
to approximation errors. Approximation errors occur since,
e.g., histograms, approximate selectivities based on frequen-
cies and boundaries of buckets and make assumptions re-
garding the distribution of values in histogram buckets. This
can cause a system of equations induced by synopses Ax = b
to be unsolvable. As mentioned in the related work section,
in such cases Markl et al. propose adjustments of the β-
selectivities in the vector b to make Ax = b solvable. How-
ever, adjusting selectivities adds a time-consuming step to
the selectivity estimation process, cf. [20] where adjusting
took longer than estimation.

Here, we investigate an approach that relies on bound-
aries of histogram buckets. Figure 2 shows an example his-
togram that approximates the distribution of an attribute
Age. The bar ranging from the first to the third bucket
represents a range predicate. Clearly, since we have a his-
togram for Age, the index of this predicate would be part
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Figure 2: Example histogram with an example range pred-
icate.

of the knowledge set G. However, the only thing we ac-
tually know is that the frequency of the second bucket is
part of the result frequency, since the range of the predi-
cate spans further than the bucket. The frequencies of the
first and third bucket can only be approximated via an intra
bucket approximation scheme, that is, e.g., simply assuming
an uniform distribution. Such assumptions can translate to
wrong approximations, which ultimately lead to unsolvable
systems of equations induced by synopses Ax = b.

Hence, we use bucket boundaries to derive an interval that
contains the true frequency. In our example, this interval
ranges from the frequency of the second bucket to the cu-
mulated frequencies of the first three buckets. Note that a
selectivity is simply the relative counterpart of a frequency.
Therefore, for a given conjunctive query P with index set
N , we can derive a lower bound βl(X) and an upper bound
βu(X) for each X in the knowledge set G.

The bounds depend on the bucketing scheme of a his-
togram. In commercial database systems, histograms with
different bucketing schemes can be found. Oracle uses top
frequency histograms and equi-depth histograms. By de-
fault, the maximum number of buckets is 254 [1]. In IBM
DB2, they employ equi-depth histograms with a maximum
of 100 buckets [2]. In Microsoft SQL Server or Azure SQL
Database, respectively, maxdiff histograms with a maximum
of 200 buckets are used [4]. For multi-dimensional synopses,
we recommend histograms with tight bounds, e.g., [29].

SAP HANA uses maxdiff histograms and q-optimal his-
tograms, i.e., histograms with a maximum multiplicative er-
ror for estimates [3]. Q-optimal histograms give intra bucket
guarantees that allow one to specify the width of the bounds
upon histogram construction. Hence, given an obtained fre-
quency, the bounds are already known.

The obtained lower bound βl(X) and upper bound βu(X)
for each X in G then allow us to formulate the system of
inequalities

bl ≤ Ax ≤ bu, (5)

where bl = (βl(∅), . . . , βl(N))T is the vector of known lower
bounds and bu = (βu(∅), . . . , βu(N))T the vector of known
upper bounds. Note that we always have that βl(∅) =
βu(∅) = 1. This system of inequalities is consistent and
solvable. Thus, we can find solutions for x, the vector of
γ-selectivities.

4.3 Estimating Selectivities: The Optimiza-
tion Problem

Suppose, we are given sampling bounds xl and xu as
stated in Inequality 3 and, in addition, synopses bounds
bl and bu as stated in Inequality 5. In this section, we show

how to constrain an optimization problem to these bounds
for the purpose of selectivity estimation.

For the objective function, we adopt the maximum en-
tropy principle [20], since we consider it reasonable to as-
sume independence in absence of knowledge. The entropy is
maximized by the most uniform admissible solution. In vec-
tor form, the entropy function is given by −xT log(x) and
can be maximized by minimizing its negative form. Note
that in principle, every convex objective function allows one
to find a global optimum.

Then, using the negated entropy function as objective
function and the bounds from sampling and synopses as con-
straints, we formulate the constrained optimization problem

minimize
x

xT log(x)

subject to bl≤Ax≤bu,

xl≤x≤xu.

(6)

The solution vector x serves as an estimate for all γ-select-
ivities. By applying Equation 1 to all X ⊆ N , we obtain
estimates for all β-selectivities.

Note that the optimization problem is subject to two types
of constraints: (1) bounds on variables, often referred to as
box constraints, and (2) linear inequality constraints. Fur-
thermore note that the objective function is strictly convex,
which allows one to find the global minimum by searching for
a local one. Strict convexity of a multidimensional function
can be shown by proving that its Hessian matrix is positive
definite.

Further note that in rare cases it happens that the solution
space of Problem 6 is empty. One solution to this problem
is to widen the bounds and try to solve the problem again.
Another possibility is to find a solution that minimizes the
constraint violation, e.g., in l1-norm. We apply a solver that
implements the latter, as discussed in Section 4.4.4.

Example: Suppose we are to estimate the selectivity of a
conjunctive query that only contains one predicate p with
index set {1}. In the preliminaries we observed that the
selectivity of no predicate being applied β(∅) is always 1.
However, assume for the sake of the graphical illustration of
the optimization problem in Figure 3 that we only know bl =
(βl(∅)) = (0.3) and bu = (βu(∅)) = (1) for the lower and
upper bounds on β-selectivities, respectively. In addition,
suppose that sampling, as described in Section 4.1, gives us
xl = (γl(0), γl(1))T = (0.1, 0.05)T for the lower bounds and
xu = (γu(0), γu(1))T = (0.6, 0.7)T for the upper bounds
on γ-selectivities, where γ(0) denotes the selectivity of ¬p
and γ(1) denotes the selectivity of p. Then our knowledge
induces the following optimization problem

minimize
x

xT log(x)

subject to (0.3)≤
(
1 1

)
x≤(1),(

0.1
0.05

)
≤x≤

(
0.6
0.7

)
,

where
(
1 1

)
defines the 1 × 2 design matrix that corre-

sponds to matrix A in optimization problem 6.
The optimal solution is x = (0.367, 0.367) and is marked

as the point of Max Entropy in Figure 3. Note that this
point is no vertex. Furthermore note that the sum over all
estimated γ-selectivities given in vector x does not add up
to 1, since we did not set βl(∅) = βu(∅) = 1 in this example.

1021



γ(0)

γ(1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ(1) +
γ(2) ≥

β l(∅) =
0.3

γ(1) +
γ(2) ≤

β u
(∅) =

1

γ(1) ≥ γl(1) = 0.05

γ(1) ≤ γu(1) = 0.7

γ
(0
)
≥
γ
l (
0)

=
0
.1

γ
(0
)
≤
γ
u
(0
)
=

0
.6

Max Entropy

Figure 3: Graphical representation of an optimization
problem example for a single predicate.

The final estimate for the selectivity of p, denoted by β(1),
is obtained by applying Equation 1, which yields β(1) =∑
{1}⊆Y⊆N γ(Y ) = 0.367.

4.4 Solving the Optimization Problem
In this section, we describe Mehrotra’s predictor-

corrector algorithm, which can be applied to Problem 6.
Note that this section is complementary to the previous one:
Those who are not interested in how to solve optimization
problems may skip this section.

Mehrotra’s algorithm is well-established and implemented
in optimization libraries such as IPOPT [33], which we ap-
ply. The algorithm belongs to the class of interior point
methods, which find an optimal solution by following a path
through the feasible region.

4.4.1 Rewrite
We rewrite the constraints in Problem 6 to simplify the

discussion of Mehrotra’s predictor-corrector algorithm. Note
that no rewrite is required to apply IPOPT. After the rewrite
of the constraints, the optimization problem is subject to
greater-equals inequality constraints only. To this end, we
leave Ax ≥ bl unchanged and write Ax ≤ bu ⇐⇒ −Ax ≥
−bu. For the variable constraints, we make use of the 2n×2n

identity matrix I and rewrite x ≥ xl to Ix ≥ xl and x ≤ xu
to −Ix ≥ −xu.

Then, the rewritten problem is given by

minimize xT log(x)

subject to


A
−A
I
−I

x≥

bl

−bu
xl

−xu

. (7)

We write Mx ≥ c as the short version of the constraints and
denote by m the number of rows in M or c.

4.4.2 Optimality Conditions
An optimal solution to optimization problem 7 satisfies

the Karush-Kuhn-Tucker conditions. In our case we have

log(x) + e−MTλ = 0 (8a)

Mx− y − c = 0 (8b)

yiλi = 0 i = 1, 2, . . . ,m (8c)

y, λ ≥ 0 (8d)

where 8a states that the gradient with respect to x of the La-
grangian for Problem 7 ∇xL(x, y, λ) must be zero. log(x)+e
with e = (1, 1, . . . , 1)T is the gradient of the objective func-
tion xT log(x). Condition 8b states that the constraints in

Problem 7 must hold. Here, y ∈ R|G|+|G|+2n+2n

is a slack
vector that compensates for the inequalities Mx − c ≥ 0.
The conditions 8c state that either (1) constraint i is active,
meaning its slack variable yi is zero and constraint i effec-
tively imposes an equality constraint at this point, or (2)
constraint i is inactive at this point, then its Lagrange mul-
tiplier λi must be zero. Hence, an equivalent way of writing
conditions 8c is (Mx− c)iλi = 0 for i = 1, 2, . . . ,m.

Since our objective function is strictly convex and all our
constraints are linear, the aforementioned necessary condi-
tions are also sufficient.

Mehrotra’s predictor-corrector algorithm finds a solution
that satisfies the optimality conditions in 8 in an iterative
process. In each iteration, a new iterate is computed as

(x, y, λ) + α(∆x,∆y,∆λ),

where (x, y, λ) is the current iterate, (∆x,∆y,∆λ) is the
search direction and α is the step size.

Conceptually speaking, while iterating, the search direc-
tion handles optimality conditions 8a-8c, while the step size
selection provides an α that respects condition 8d and the
sufficient decrease condition, which will be discussed later.

4.4.3 Search Direction
When determining the search direction we do two things.

(1) We ignore 8d. (2) We do not force yiλi to be zero
in 8c, but to be a pre-defined fraction σ ∈ [0, 1] of the
average value of the pairwise products in y and λ, i.e.,
µ := 1/m

∑m
i=1 yiλi = yTλ/m. A choice of σ > 0 tends to

allow for larger step sizes, since y and λ are biased towards
positivity. The system we obtain for the search direction is

F (x, y, λ) :=

log(x) + e−MTλ
Mx− y − c
Y Λe− σµe

 = 0, (9)

where Y := diag(y1, y2, . . . , ym) and Λ := diag(λ1, λ2, . . . ,
λm).

Those solutions to Equation 9 that additionally satisfy
y, λ > 0 represent the so-called central path that leads to
an optimal solution as σµ approaches zero, since then the
optimality conditions, stated in 8, are satisfied.

We then formulate the following linear approximation F̂
for F to predict a search direction

F̂ (x+∆xp, y+∆yp, λ+∆λp) = F (x, y, λ)+J(x, y, λ)

∆xp

∆yp

∆λp

 ,
where J(x, y, λ) denotes the Jacobian of F .
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Equations 9 tell us to find a root of F , and hence, we set
F̂ (x+ ∆xp, y + ∆yp, λ+ ∆λp) = 0. Computing −F (x, y, λ)
and plugging in the values for F and J we getL′ 0 −MT

M −I 0
0 Λ Y

∆xp

∆yp

∆λp

 =

 −L+MTλ
−Mx+ y + c
−Y Λe+ σµe

 , (10)

where L := log(x) + e and L′ := ∂L
∂xi

= diag(1/x) denotes

the Hessian of the objective function. Solving this system
for (∆xp,∆yp,∆λp)T is called the predictor step. Its result
can be used as a search direction. Note that for σ = 0
the search direction is the same as in Newton’s method in
optimization when solving 8a - 8c.

However, additionally performing a so-called correction
step, defined by the following system, tends to reduce the
number of iterations until convergence [27, Chapt. 14.2,
16.6]L′ 0 −MT

M −I 0
0 Λ Y

∆xc

∆yc

∆λc

 =

 0
0

−∆Xp∆Spe

 , (11)

where we solve for (∆xc,∆yc,∆λc)T . Finally, the search di-
rection for the current iteration becomes (∆xp,∆yp,∆λp)+
(∆xc,∆yc,∆λc).

4.4.4 Step Size
In each iteration, a step size α is selected such that the by

now ignored condition 8d, stating y, λ ≥ 0, is satisfied. The
maximum step size we consider is αmax = max{α ∈ (0, 1] :
(y, λ) + α(∆y,∆λ) ≥ τ(y, λ)}, which satisfies the condition
(y, λ)+α(∆y,∆λ) ≥ 0 with a buffer controlled by τ ∈ (0, 1).
In addition, a step size α must lead to sufficient decrease of
a so-called merit function. A merit function combines the
two goals, reducing the objective function and satisfying the
constraints, in one function. For our problem, a valid merit
function is

φ(x, y) = xT log(x)− v||Mx− y − c||, (12)

where v is a penalty parameter and can be chosen to be the
largest Lagrange multiplier λi in λ, but many other choices
exist [27, Chapt. 15.4, 18.3], and || · || can be chosen to be
the l1-norm. With regard to solvability of Problem 6, the
merit function φ gives interesting insights. For a solvable
problem, the second term of φ eventually vanishes and the
merit function coincides with the objective function. While,
given an unsolvable problem, as φ is decreased, we find a
solution that minimizes the constraint violation.

Then, to find an α ∈ (0, αmax] that provides sufficient
decrease of the merit function φ, we perform a backtracking
line search, where we start with α = αmax and iteratively
decrease α until

φ(x+α∆x, y+α∆y) ≤ φ(x, y) + ηαD∆x,∆yφ(x, y), (13)

where η ∈ (0, 1) and D∆x,∆yφ(x, y) denotes the directional
derivative of φ(x, y) in the direction ∆x and ∆y, see [27,
Chapt. A.2] for details.

4.4.5 Starting Point
A starting point has to satisfy only the positivity con-

straints x, y, λ > 0. In particular, it is not required to lay in
the feasible region. However, the choice of the starting point
impacts how fast the algorithm converges. Various heuris-
tics exist [27, Chapt. 14.2, 16.6]. In our case, we choose

CSE(bl, bu, xl, xu, ε,maxDuration)

1 let Mx ≥ c be the constraints as written in Eq. 7
2 let y be a slack vector

3 Choose (x(0), y(0), λ(0)) > 0
4 k = 0
5 maxTimePoint = Time() +maxDuration
6 repeat

7 (x, y, λ) = (x(k), y(k), λ(k))
8 µ = yT ∗ λ/m
9 Choose σ ∈ [0, 1]

10 Solve eq. 10 to obtain (∆xp,∆yp,∆λp)
11 Solve eq. 11 to obtain (∆xc,∆yc,∆λc)
12 (∆x,∆y,∆λ) = (∆xp,∆yp,∆λp)

+(∆xc,∆yc,∆λc)
13 Choose τ ∈ (0, 1)
14 α = max{α ∈ (0, 1] : (y, λ)+α(∆y,∆λ) ≥ τ(y, λ)}
15 while Eq. 13 not satisfied
16 α = α/2

17 (x(k+1), y(k+1), λ(k+1)) = (x, y, λ)+α(∆x,∆y,∆λ)
18 k = k + 1

19 until ||(x(k), y(k), λ(k))−(x(k−1), y(k−1), λ(k−1))|| < ε
or Time() > maxTimePoint

20 return Cxk

x0 = (xl + xu)/2 and leave the initialization of y and λ to
IPOPT [33].

4.4.6 Exit Condition and Codification
Ideally, we iterate until the optimality conditions, stated

in 8, are satisfied. However, a practical convergence criterion
is to terminate when the distance between consecutive iter-
ates ||(x(k), y(k), λ(k)) − (x(k−1), y(k−1), λ(k−1))|| is smaller
than some small value ε, since we cannot expect to make
significant progress beyond this point. Here, || · || denotes
l2-norm. In many applications, though, it is critical to ob-
tain a fast estimate. We account for that by a maximum
time span. Of course, time constraints provide no guaran-
tees with respect to optimality.

Algorithm CSE shows the complete pseudo code. The pa-
rameters are synopses bounds bl and bu, sampling bounds
xl and xu, as well as arguments to test the exit condition as
described above. In line 1, the system Mx ≥ c is formulated
as in Equation 7. Then, a slack vector y is introduced. In
line 5, the latest time point for another iteration is deter-
mined. Then, in each iteration, µ and σ are computed to
determine how much optimality condition 8c is relaxed. A
simple strategy is to always choose σ = 0. For a description
of adaptive choices, as used in IPOPT, see [27, Chapt. 14.2,
19.3]. Next, predictor and corrector steps are performed by
solving Equation 10 and 11, respectively, to obtain a search
direction. To determine a step size α, we first find the max-
imum step size α that preserves the positivity condition 8d
with some specified buffer τ ∈ (0, 1), e.g., τ = 0.005. Then,
we iteratively halve α until the sufficient decrease condition,
given by Inequality 13, is satisfied. The current iterate plus
a step of length α in the search direction gives the new it-
erate. After the last iteration, the vector of all estimated
β-selectivities Cxk is returned, where C denotes the com-
plete design matrix introduced in Section 2.3.
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5. EXPERIMENTAL EVALUATION
We evaluate our approach (CSE) and compare it to the

accuracy and run time of several existing estimation tech-
niques that we have seen in the related work section. To
this end, we consider the sophisticated methods by Yu et
al. (HASE) [34] and Markl et al. (MaxEntropy) [20]. In
addition, we include Microsoft’s exponential back-off esti-
mator (MsExpBackOff ) [5] as an up-to-date industry ap-
proach as well as simple random sampling (Sampling), i.e.,
the number of qualifying samples divided by the sample size,
as a sampling-only estimator in our evaluation. Lastly, in
the first part of our evaluation, we consider the estimates
obtained by applying the independence assumption (Ind.
Ass.). The following table shows for each estimator the type
of information it processes:

Estimator Sampling Synopses
CSE X X
HASE X X
MaxEntropy X
MsExpBackOff X
Sampling X
Ind. Ass. X

Note that HASE, MsExpBackOff and Ind. Ass. all process
only one-dimensional synopses, i.e., single column statis-
tics. Furthermore note that MaxEntropy requires adjust-
ment steps when processing multi-dimensional synopses as
described in Section 3. For further details, recall the de-
scription of each model given in the related work section.
If nothing else is mentioned, we model a data management
system that provides estimators with a 1% sample of the
data, as in related work [8, Chapt. 2], and one-dimensional
histograms as well as two-dimensional histograms that cap-
ture correlations present in the data.

We use two real-world data sets in our experiments. (1)
The forest cover type (forest) data set [18], which is popular
in the machine learning community and contains more than
580k entries with 55 attributes. (2) The second data set
represents joined data from the daily global historical clima-
tology network (weather) [22, 21]. It comprises daily obser-
vations of climate records and contains about 3.4M entries
with 7 attributes.

In our experiments, we consider different test scenarios
that are defined by a data set and a number of predicates.
For each test scenario, we run 10’000 conjunctive queries as
in

SELECT ∗ FROM dataset
WHERE p1 and . . . and pn

where each pi represents a range predicate over an attribute
A with constants c1, c2

A between c1 and c2

The range predicates pi are generated by drawing a random
unused attribute A and choosing two random values from
A’s domain. The smaller value is used for c1 and the larger
value is used for c2. In case A’s domain has only two values,
e.g., 0 and 1, we set c1 = c2. This effectively creates a point
predicate.

5.1 Accuracy
In this subsection, we look at the accuracy of estimates.

The error metric used to measure the deviation between a se-
lectivity estimate ŝ and the true selectivity s is the q-error
[14] defined as max{ s

ŝ
, ŝ
s
}. Observe that this is a relative

and symmetric metric. In query optimization, the q-error
directly relates to query plan quality [25]. Choosing a suit-
able error metric is essential in model selection. While it
may be obvious to see why an absolute error metric is a bad
choice for our domain, it is harder to see that the commonly
used relative error (s− ŝ)/s is insufficient for its asymmetry.
To get an intuition, observe that in case of underestimation
the worst possible error is 1, whereas in case of overestima-
tion the error is unbounded. This causes an unacceptable
systematic preference for estimators that underestimate the
selectivity [32].

Notice that the q-error is undefined in case either the es-
timated or the true selectivity is zero. We configured all
queries to return a non-empty result, hence, we do not have
to worry about the true selectivity being zero. In addition,
we programmed all estimators to estimate that at least one
entry qualifies. Therefore, we do not have to worry about
the estimated selectivity being zero. In a query optimiza-
tion context, this makes sense to prevent faulty prunings in
query plans.
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Figure 4: Sorted q-errors for the weather data set given one and two-dimensional synopses without approximation errors
and a 1% sample.
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Figure 5: Sorted q-errors given one and two-dimensional synopses with approximation errors and a 1% sample.

5.1.1 The Idealistic Case: Synopses Without Approx-
imation Errors

We first consider the idealistic case where histograms yield
perfectly accurate selectivities. Note that in reality no data-
base system has access to such histograms. We include this
case to pick up the scenario that was considered in the re-
lated works on MaxEntropy [20] and HASE [34], where ap-
proximation errors were not considered.

In [20] queries with 3 predicates find special attention.
Figure 4a shows the q-errors sorted in ascending order for
each estimator for queries with 3 predicates over the weather
data set. Note that the longer a curve remains flat, the
better the corresponding estimator. Further note that the
largest q-errors tend to occur in cases where either the esti-
mate or the true selectivity is very small. We make the fol-
lowing observations in Figure 4a. (1) CSE and HASE tend to
be the best-performing models, supporting the idea of com-
bining synopses and sampling. (2) HASE mostly resembles
Sampling. (3) For some queries MaxEntropy outperforms
Sampling, while for others, it is the other way around. (4)
The difference between CSE and MaxEntropy or Sampling,
respectively, illustrates the benefit of combining synopses
and sampling as we propose it. (5) Independence assump-
tion and Microsoft’s exponential back-off estimator tend to
be less accurate than the other estimators.

The largest queries considered in [34] contain 5 predicates.
Figure 4b shows the accuracy of each estimator for queries
of this size for the weather data set. Observe that (1) the
curves of all estimators are shifted to the upper left as the
number of predicates is increased from 3 to 5. This shift
captures how selectivity estimation gets harder in the num-
ber of predicates in the conjunctive query. (2) The accuracy
of HASE aligns with the accuracy of Sampling. (3) Max-
Entropy worsens less than HASE or Sampling. (4) Inde-
pendence assumption and Microsoft’s exponential back-off
estimator perform worst. Neither assuming independence
nor a certain fixed degree of correlation seems to be the key
to success.

5.1.2 The Realistic Case: Synopses With Approxi-
mation Errors

In this subsection, we consider the realistic case where
synopses structures, such as histograms, yield selectivities
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(b) CSE, synopses with approximation errors

Figure 6: q-errors in the number of qualifying samples for
7 predicate queries and a sample size of 1.000.

with approximation errors. We model q-optimal histograms
[23], as can be found in SAP HANA [3], that guarantee a
user-specified maximum multiplicative error for estimates,
for which we choose a value of 2. Therefore, for each β-
selectivity we want to provide to an estimator, we take the
true β-selectivity, multiply it with a uniformly distributed
multiplicative error in the range [0.5, 2], and provide the
product to the estimator.

Under this scenario, MaxEntropy requires adjustments of
the provided selectivities as discussed in Section 3. We com-
pute adjustments that are optimal under lq, as described in
[24]. CSE instead sets the lower bounds to 0.5× β(X) and
the upper bounds to 2× β(X) for each provided selectivity
β(X) and is guaranteed to yield a feasible optimization prob-
lem. HASE, MsExpBackOff and Sampling operate as before,
since they do not process multi-dimensional synopses.

1025



0 2000 4000 6000 8000 10000

1
5

5
0

5
0
0

Query

Q
-E

rr
o
r

MaxEntropy 1D w/o app. err.
MaxEntropy 2D w/o app. err.
MaxEntropy 1D w/ app. err.
MaxEntropy 2D w/ app. err.

(a) Max Entropy

0 2000 4000 6000 8000 10000

1
5

5
0

5
0
0

Query

Q
-E

rr
o
r

CSE 1D w/o app. err., 1% sample
CSE 2D w/o app. err., 1% sample
CSE 1D w/ app. err., 1% sample
CSE 2D w/ app. err., 1% sample

(b) CSE with a sample rate of 1%

0 2000 4000 6000 8000 10000

1
5

5
0

5
0
0

Query

Q
-E

rr
o
r

CSE 1D w/o app. err., 1k sample
CSE 2D w/o app. err., 1k sample
CSE 1D w/ app. err., 1k sample
CSE 2D w/ app. err., 1k sample

(c) CSE with a sample of size 1000

Figure 7: Sorted q-errors for queries with 7 predicates for the forest data set.

Figure 5 shows the sorted q-errors for queries with 7 pred-
icates for both the weather and the forest data set. Taking a
closer look, we make the following observations. (1) Depend-
ing on the data set, synopses-based estimators like MaxEn-
tropy or sampling-based estimators yield more accurate esti-
mates, cf. Figure 5a, where MaxEntropy outperforms Sam-
pling, and Figure 5b, where Sampling outperforms MaxEn-
tropy. (2) Generally, CSE does not perform (significantly)
worse than the best of MaxEntropy and Sampling. This
makes it a robust estimator. In addition, in most cases CSE
clearly produces the best estimates. (3) HASE performs no
better than Sampling. (4) MsExpBackOff only considers the
four most selective one-dimensional predicates, hence, it ig-
nores three given selectivities. As a result, MsExpBackOff
lags far behind the other estimators for both data sets.

5.1.3 Common Aspects in Sampling and CSE
We now further investigate the impact of applying sam-

pling, in addition to exploiting synopses, as we do it. Figure
6a shows a boxplot representation of the errors in the num-
ber of qualifying sample tuples. As usual, the bottom and
top of the box are the first and third quartiles and the band
in between represents the median. The lower and upper end
of the whiskers represent the 1% and 99% percentile respec-
tively. The last box aggregates the errors of all queries with
more than 19 qualifying samples.

Observe how the errors of Sampling in Figure 6a decrease
as more samples qualify, i.e., the estimates become more ac-
curate. A practical way to see why the errors decrease is
to observe how the confidence intervals close in in the num-
ber of qualifying samples. Since our approach incorporates
sampling, it roughly follows this desirable trend, however,
starting from a much lower error-level for few qualifying
samples, cf. the y-axis-scales in Figures 6a and 6b. This
is a competitive edge our approach gains over approaches
that do not incorporate sampling.

One might get the impression that sampling is the method
of choice in almost all cases, since the errors become accept-
able quickly in the number of qualifying samples. This is a
misperception, since the case where very few samples qual-
ify are the dominant ones. For instance, in the experiments
conducted to produce the graphs in Figure 6, in more than
7,000 out of 10,000 queries with 7 simple predicates the sam-
ple had zero qualifying tuples.

5.2 Dimensionality of the Given Synopses and
Sample Size

Multi-attribute statistics are well-established in the re-
search community. However, many database systems still
maintain only single attribute statistics. In this subsection,
we show how the accuracy of MaxEntropy and CSE changes
as we provide one- or two-dimensional synopses. Ideally,
more information results in more accurate estimates. In-
deed, we observe that for each estimator in each test sce-
nario the estimates improve as we go from one-dimensional
synopses to two-dimensional synopses if the selectivities pro-
vided by the synopses structures have no approximation er-
rors. As discussed earlier, though, this is an unrealistic as-
sumption. In the realistic case, where synopses are subject
to approximation errors, we observe in some test scenar-
ios that the estimates become worse as more approximated
selectivities were provided. Figure 7a compares the sorted
q-errors of MaxEntropy for one-dimensional (1D) and one-
and two-dimensional (2D) synopses. Note how the estimates
improve in the idealistic case of synopses without approxi-
mation errors (w/o app. err.) but how they worsen in the
case of synopses with approximation errors (w/ app. err.).
This means that an estimator might perform better using
less than all available information. However, this effect is
data-dependent. For the weather data set, we do not observe
this effect: more synopses always results in better estimates
in all test scenarios for the weather data set.

Figure 7b shows the same graphs for CSE. This time in
both cases, synopses with or without approximation errors,
the estimates improve as we go from one-dimensional to one-
and two-dimensional synopses. Since the same holds for the
weather data set and different numbers of predicates, we
conclude that CSE is robust in the sense that additional
synopses has no negative impact on the estimates. Note that
it is irrelevant how CSE 2D inacc performs in comparison
to CSE 1D acc since CSE 1D acc represents a hypothetical
case and we do not get to choose between synopses with
or without approximation errors. Figure 7c illustrates that
the graphs look similar even if the sample used in CSE is
only of size 1.000. Compared to the 1% sample a sample of
size 1.000 is more than a factor of 5 smaller for the forest
data set. We observed that the results with a sample of size
1.000 are similar in many cases. From an industry point of
view, that is good news since many database systems use
such small samples.
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Figure 8: Sorted runtimes given one and two-dimensional synopses with approximation errors.

Finally, note that CSE is designed for multi-dimensional
synopses in combination with a sample, and we advise its
application primarily in that context. In principle, CSE can
be even applied to a sample only. However, as we experi-
mentally confirmed, the most independent solution subject
to sampling bounds is a terribly wrong estimate! Due to
space constraints, we cannot include graphs.

5.3 Runtime
We performed single-threaded runtime measurements on

a machine with Intel Skylake i5-6500 CPU with a clock rate
of 3.20GHz with 16GB RAM. The machine is operated by
a 64-bit linux. We employ the IPOPT library [33] to solve
the optimization problem underlying our approach.

We only look at the run times of CSE, HASE and MaxEn-
tropy. Note that Sampling and MsExpBackOff run orders of
magnitude faster since they perform only simple arithmetics.
Furthermore, we do not consider the cost of drawing a sam-
ple or extracting information from synopses structures but
only the time it takes to produce an estimate given some
information.

Figure 8 shows the run times of CSE, HASE and Max-
Entropy for several problem sizes, i.e., various numbers of
simple predicates. Note that we consider the realistic case
where synopses are subject to approximation errors.

Looking at Figure 8a, we note that (1) MaxEntropy, which
applies iterative scaling to solve the underlying optimization
problem [20], works best in about 20% of all queries contain-
ing three simple predicates. That is, the overhead to get the
algorithm started is low. (2) Furthermore the graph of Max-
Entropy suggests that the runtime heavily depends on the
known selectivities that define the constraints. (3) HASE
and our approach CSE both seem to be much more indepen-
dent from the values of the selectivities in the optimization
problem. (4) HASE runs slower than our approach.

To see how the algorithms scale in the problem size, we
analyze Figures 8a, 8b and 8c. Looking at the graphs of
MaxEntropy, we observe that the runtime grows exponen-
tially in the number of predicates which the authors stated
themselves [20]. In their future work section they suspect an
algorithm based on Newton’s method to be faster. We have
strong indication that this is true. After all, note that our
approach solves the maximum entropy approach, as Markl
et al. have stated it, when setting all lower and upper bounds

on the variables to 0 and 1, respectively, and imposing equal-
ity constraints on the β-selectivities.

HASE and CSE both scale well. Looking at the changes
in the underlying optimization problems, we find that the
complexity of HASE grows slower due to fewer constraints:
As we increase the number of simple predicates from n to
n+ 2, the number of variables in the optimization problem
quadruples since the number of γ-selectivities grows from
2n to 2n+2 = 4 × 2n for both HASE and CSE. Only in
CSE, a box constraint is associated with each variable, cf.
Problem 6. For both approaches, the number of constraints
induced by one-dimensional synopses grows from n to n+2.
Additionally, CSE has constraints due to two-dimensional

synopses which grow by a factor of 4n + 2 from n(n−1)
2

to
(n+2)((n+2)−1)

2
= (4n+ 2)n(n−1)

2
.

6. CONCLUSION
We proposed CSE, a novel approach to combine sampling

with synopses for the purpose of estimating the selectivity
of conjunctive queries. The results of our experiments sug-
gest that CSE indeed leads to more accurate selectivity esti-
mates. Using two real-world data sets and a large number of
queries, we showed the strengths and limitations of our and
various other state-of-the-art approaches. Depending on the
patterns in data set, a purely sampling-based estimator or
a purely synopses-based estimator yields better selectivity
estimates. Our approach, however, yields estimates that are
at least as accurate as the estimates of the best compet-
ing estimator. This makes CSE a robust estimator, whose
applicability does not depend on the data set.

For future work, we aim to enhance our method to ad-
dress join selectivity estimation. Query optimizers are very
sensitive to the accuracy of join selectivity estimates since
errors propagate exponentially through joins [13]. There ex-
ist methods based on sampling [11, 12] as well as based on
synopses [9, 28]. However, so far, methods that combine
sampling and synopses for the purpose of join selectivity
estimation seem to be missing.
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