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Abstract

We investigate the optimization and evaluation of

queries with universal quantification in the con-

text of the object-oriented and object-relational

data models. The queries are classified into 16

categories depending on the variables referenced

in the so-called range and quantifier predicates.

For the three most important classes we enumer-

ate the known query evaluation plans and devise

some new ones. These alternative plans are pri-

marily based on anti-semijoin, division, general-

ized grouping with count aggregation, and set dif-

ference. In order to evaluate the quality of the

many different evaluation plans a thorough perfor-

mance analysis on some sample database config-

urations was carried out. The quantitative analy-

sis reveals that—if applicable—the anti-semijoin-

based plans are superior to all the other alter-

natives, even if we employ the most sophisti-

cated division algorithms. Furthermore, exploit-

ing object-oriented features, anti-semijoin plans

can be derived even when this is not possible in

the relational context.

1 Introduction

There exist only few research papers on optimizing and

evaluating queries with universal quantification (see the

discussion of related work below). This lack of atten-

tion is largely due to the absence of an explicit language
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construct for universal quantification in SQL-92. In SQL,

the database users are forced to “work around” universal

quantification by nesting not exists-clauses or by formu-

lating the universal quantification as a counting problem.

Therefore, most optimizers of commercial DBMS products

cannot properly detect the hidden universal quantifications

and, as a consequence, generate query evaluation plans that

are far from optimal.

We predict that the interest in universal quantification

will drastically increase in the near future—basically for

three reasons: (1) It is obvious that universal quantifica-

tion is a very important concept in decision support queries

(e.g., finding the suppliers that offer all parts needed for

a particular assembly or finding the employees that have

all the skills required for a particular project). (2) Lan-

guage constructs for explicit universal quantification were

included in the ODMG standard object query language

OQL [Cat96] and are being considered in the SQL3 stan-

dardization [Dat97]. (3) As we will show in this paper,

queries with universal quantification can be evaluated very

efficiently in “modern” data models that support set/multi-

valued references such as the object-oriented model of

ODMG [Cat96] or the object-relational models [Sto96].

Existing work on universal quantification is mostly fo-

cused on a single facet of the problem: Integration into

the query language, equivalences for rewriting or special

implementations for operators supporting universal quan-

tification have been discussed. Almost all of the previous

work on universal quantification was performed in the con-

text of the pure/flat relational data model. Some work has

been done in the object-oriented/object-relational context,

e.g. [Ste95], however, only algebraic equivalences were

discussed. This paper is—to our knowledge—the first com-

prehensive treatment of universal quantification from the

query language level to the evaluation, including correct

treatment of null values.

Graefe and Cole [GC95] give a very thorough account of

evaluating relational division. Unfortunately, query evalu-



ation plans based on division are only reasonable for a spe-

cial class of universally quantified queries, i.e., those for

which the quantifier’s range constitutes a closed formula.

Furthermore, the division is a relational algebra operator

tailored for the flat relational model; in a data model sup-

porting multi-valued relationships via set attributes one can

usually do much better.

[HP95, RBG96, Car86, WMSB90] propose generalized

universal quantifiers in different variations for relational

languages, e.g., as SQL extensions. These works are at the

conceptual (i.e., language) level except for [RBG96] which

includes work on evaluating such generalized quantifiers

using special data structures (bit matrices).

Jarke and Koch [JK83] and Bry [Bry89a, Bry89b] de-

vised rules to move selections into the quantifier range def-

inition in order to reduce the number of tuples that have to

be evaluated. Steenhagen [Ste95] lists several alternative

algebra plans for universally quantified queries.

Dayal [Day83] proposed the graft operator which bears

some resemblance with a binary grouping (that we used as

one evaluation technique) except that tree scheme occur-

rences are used as a representation of (intermediate) results.

Later, [Day87] proposed the G-Join, G-Aggr and G-Restr.

The G-Join replaces the graft operator and a sequence of

G-Aggr and G-Restr replaces the previously used prune op-

erator.

[GL87] treated queries with quantification as a special

case of nested queries. The quantifiers exists and not exists

are replaced by count aggregations. More recently, Steen-

hagen [Ste95] investigated rules for unnesting queries in an

object-oriented model.

In this paper we begin with a systematic classification of

queries with universal quantification into 16 categories de-

pending on the bound variables of the so-called range and

quantifier predicates. Of these 16 classes we identify the

three most important ones. For each of them we enumer-

ate the known query evaluation plans and devise some new

ones. Our discussion focuses on “modern” data models

with set-valued attributes to represent N:M-relationships—

such as the object-oriented model or the object-relational

model. In such a data model queries with universal quan-

tification can usually be formulated in a much more natu-

ral way than in a flat relational model. To see this point

let us consider the example of Graefe and Cole’s paper:

Representing the N:M-relationship enrolled between Stu-

dents and Courses requires a separate relation Transcript

with StudentId and CourseNo attributes whereas this re-

lationship can be represented as a set-valued attribute en-

rolledCourses of Students in an object-oriented or object-

relational schema. In the relational model, finding the Stu-

dents who have taken all database classes1 is achieved by

the OQL query on the left-hand side. The correspond-

1We assume that database courses are those courses that contain the

string ’database’ in the title.

select s

from s in Students

where for all c in

select c

from c in Courses

where c.Title like ”%database%”:

exists t in

select t

from t in Transcript:

(t.StudentId=s.StudentId

and t.CourseNo = c.CourseNo)

select s

from s in Students

where for all c in

select c

from c in Courses

where c.Title like ”%database%”:

c in s.enrolledCourses

ing query based on an object-oriented or object-relational

schema lacks the nested existential quantification which is

replaced by a set containment predicate, as shown on the

right-hand side. The latter query is certainly more natu-

ral to formulate—especially compared to an SQL-92 for-

mulation of the first query which has to be converted into

an equivalent, yet obscure formulation with two nested not

exists clauses. Aside from user friendliness, we will also

show that the object-oriented and object-relational models

facilitate a much more efficient evaluation of such univer-

sally quantified queries.

The remainder of this paper is organized as follows.

Section 2 presents our classification of universal quantifi-

cation queries and example queries for the three most im-

portant classes. In Section 3 alternative evaluation plans

are presented for the three classes, both in general form and

for the example queries. In addition, the treatment of null

values is discussed. The rest of the paper is dedicated to

a performance analysis: In Section 4 we sketch our query

execution engine and the implementation of some special

operators. They formed the basis for the experimental eval-

uation reported in Section 5. Section 6 concludes the paper

with a summary.

2 Classification and Running Example

2.1 Classification

As pointed out in the introduction, the OQL query language

of the ODMG standard supports universal quantification.

Therefore, we formulate our example queries in OQL.

The prototypical query pattern upon which we base our

discussion of universal quantifiers being nested within a

query block is

Q � select e1

from e1 in E1

where for all e2 in select e2

from e2 in E2

where p: q

where p (called the range predicate) and q (called the quan-

tifier predicate) are predicates in a subset of the variables

fe1;e2g. This query pattern is denoted by Q. In a calculus,

this query can be stated as follows:

Q � fe1 2 E1 j 8e2 2 E2 : (p) q)g (1)



Class-No. q() q(e1) q(e2) q(e1;e2)

p() 1 2 3 4

p(e1) 5 6 7 8

p(e2) 9 10 11 12

p(e1;e2) 13 14 15 16

Table 1: Classification Scheme According to the Variable

Bindings

Depending on the subset of variables fe1;e2g that occur

in the range and quantifier predicates p(: : :) and q(: : : ) we

distinguish 16 classes which are enumerated in Table 1.

In the subsequent discussion we will concentrate on the

following three most important classes:

(12) p(e2);q(e1;e2)

The range predicate refers to e2 and the quantifier

predicate depends on both, e1 and e2.

(15) p(e1;e2);q(e2)

The range predicate compares (information of) e1 and

e2 whereas the quantifier predicate is based on e2 only.

(16) p(e1;e2);q(e1;e2)

Both, range and quantifier predicates compare (prop-

erties of) e1 and e2.

Let us briefly contemplate why these are the three most im-

portant and—as far as optimization is concerned—also the

most difficult classes. If the range predicate p does not

refer to variable e2 the predicate p could be “moved up”

to the outer level query block because it is independent of

e2. Basically the same holds for the quantifier predicate q:

If it is independent of e2 the query could be rewritten by

pulling up the predicate q into the outer level query block

and thereby simplifying the query evaluation. Furthermore,

if neither the range predicate p nor the quantifier predicate

q refers to e1 the quantifier subquery is not correlated to

the outer level query over E1 and can be evaluated indepen-

dently. Classes 12, 15, and 16 constitute all possible query

patterns for a correlated quantified subquery in which both

the range and the quantifier predicates refer to e2. From a

user’s perspective, class 4 is also interesting because it cov-

ers the case where the range predicate is missing, i.e., the

entire set E2 constitutes the quantifier’s range. Fortunately,

class 4 can be considered as a simpler variant of class 12

such that all evaluation plans presented for query class 12

also apply for class 4. The remaining classes are handled

in a technical report [CKMP97]. There we present simpli-

fication rules that allow the rewriting of those query classes

either to simple plans that can be evaluated very efficiently

or they are reduced to plans derived for classes 12, 15, and

16.

2.2 Running Example

We want to base the subsequent discussion on the database

schema shown in Figure 1. In this schema there are three

object types: Flight, Airport, and Airline. The relationships

Flight Airport

Airline-

-

-

6

6

name
alctry

carrier lounges

to

from

code
apctry

location

Figure 1: OO Schema of an Airline Reservation System

from and to between Flight and Airport are single-valued—

denoted by single-ended vectors. The relationship carrier

between Flight and Airline is also single-valued. We as-

sume that all three relationships are represented by corre-

spondingly named relationships (reference attributes) in the

object type Flight. The relationship lounges between Air-

line and Airport is multi-valued and is assumed to be repre-

sented as a multi-valued relationship (set-valued attribute)

in object type Airline.

Example queries for the classes 12, 15, and 16 (cf. Ta-

ble 1) are stated below:

� Query 1 (Class 12) retrieves those airlines that have

lounges in all US airports.

� Query 2 (Class 15) retrieves the airlines that do not

fly to Libya (i.e., all flights’ destinations are outside

Libya).

� Query 3 (Class 16) retrieves the airlines that have

lounges in all airports of their native country.

Query 1: Class 12

select al.name

from al in Airline

where for all ap in

(select ap

from ap in Airport

where apctry = ”USA”):

ap in al.lounges

Query 2: Class 15

select al.name

from al in Airline

where for all f in

(select f

from f in Flight

where al = f.carrier):

f.to.apctry != ”Libya”

Query 3: Class 16

select al.name

from al in Airline

where for all ap in

(select ap

from ap in Airport

where apctry = alctry):

ap in al.lounges

3 Alternative Query Evaluation Plans

In this section, we present evaluation plans for the three

main query classes. Beforehand, we have to introduce the

used algebra operators.

3.1 Algebra Operators

For the subsequent evaluation plans, we enhance OQL

by an “if : : : then : : : else : : :”-expression. It is use-

ful for rewriting outer restrictions as proposed in [Mur88,

SPMK95, CM95a]. At the algebraic level, this is reflected

by an algebra operator

if p(Etrue;Efalse)

where Etrue is the result if p evaluates to true and other-

wise Efalse is the result. Actually, the if-constructs are much

more often used in the simplification rules to optimize the

13 less important classes than in the plans derived here for

the three important classes.

As basic operator for reading an object extent we use the

notation
E[e;A1; : : : ;An]



for an extent belonging to object type E. It returns tuples

consisting of the object identifier e and projects on the (pos-

sibly set-valued) attributes A1; : : : ;An. The algebraic coun-

terpart of the “dot” operator in OQL is the expand opera-

tor χ [KM90], also called, e.g., materialize [BMG93]. It

may be used both to retrieve attributes and to invoke mem-

ber functions of a referenced object. In this paper, we only

need the attribute access variant (The operator � denotes

tuple concatenation and g is a newly introduced attribute):

χg : e:a(E) := fe� [g : e:a] j e 2 Eg

To flatten (unnest) set-valued attributes we use the unnest

operator µ. Applied on an object type E with a set of at-

tributes A and a set-valued attribute a 62 A, it introduces a

new atomic attribute g:

µg:a(E[A;a]) := fe1:[A]� [g : e2] j e1 2 E;e2 2 e1:ag

Furthermore, a scalar aggregation count(E) is used to cal-

culate the cardinality of a collection E.

Relational division E1[A1;A2]�E2[A2] is defined as fol-

lows, cf. [Mai83]:

E1�E2 := ftjt 2 πA1
(E1)^ (ftg�E2)� E1g

The anti-semijoin is defined as the complement of the

semijoin operator, cf. also [Gra93, Bry89b, RGL90]:

E1
�

�p E2 := fe1je1 2 E1^:9e2 2 E2 : p(e1;e2)g

The binary grouping operator Γ [CM95a] is similar to a

join where the intermediate result is nested. That is, for ev-

ery tuple in the left (outer) operand, a set of matching tuples

from the right (inner) operand is constructed. This leads to

more efficiency [RRS91] due to a smaller representation of

the intermediate result. The nestjoin operator as defined

in [Ste95] has similar functionality. While the nestjoin ap-

plies a function to each element before it is added to the set,

the binary grouping operator Γ may evaluate a function on

the resulting group, replacing the group by the result value

and thus further diminishing its size (e.g., in case of an ag-

gregate function). The binary grouping operator is defined

as follows, cf. [CM95a]:

E1[e1] Γg;p; f E2[e2] :=

fe1 � [g : G]je1 2 E1;G = f (fe2je2 2 E2^ pg)g (2)

For each tuple e1 of E1, the inner relation E2 is selected by

p, is mapped by f , and the result is assigned to the new

attribute g.

3.2 Alternative Evaluation Plans for the Most Impor-

tant Cases

Let us now enumerate alternative query evaluation plans

for the three most important query classes 12, 15, and 16.

3.2.1 Query Class 12: p(e2), q(e1;e2)

For illustration, we present the concrete plans for the ex-

ample query in Figure 2.

U � πap(σapctry=’USA’(Airport[ap,apctry]))

(a) Division

if U =
/0

then Airline[name]

else

(b) Set Difference (c) Anti-Semijoin

�

µap:lounges

Airline[name,lounges]

U

�

Airline[name] πname

�ap62lounges

Airline[name,lounges] U

πname

�

�ap62lounges

Airline[name,lounges] U

Grouping with Counting (d) qualifying (e) not qualifying objects
πname

σc1=c2

�

Γc2 ;ap2lounges;count

Airline[name,lounges] U

c1:count

U

πname

σc=0

Γc;ap 62lounges;count

Airline[name,lounges] U

Figure 2: Evaluation Plans for Query 1 (Class 12)

Division This is the principal case for applying the rela-

tional division operator (see, e.g., [Nak90] and [GC95]):

if σp(e2)
(E2[e2])6= /0

�

(E1[e1]�q(e1;e2)
E2[e2])�σp(e2)

(E2[e2]);E1[e1]
�

(3)

If the selection σp(e2)
(E2[e2]) yields at least one object we

can also apply the predicate p to the dividend. We obtain

the following expression:

if σp(e2)
(E2[e2])6= /0

�

(E1[e1]�q(e1;e2)
σp(e2)

(E2[e2]))

�σp(e2)
(E2[e2]);E1[e1]

�

(4)

If the quantifier predicate q(e1;e2) is of the form e2 2

e1:SetAttribute—as will most often be the case in an object-

oriented or object-relational schema—the join can be re-

placed by an unnest (µ) operator (see also the plan for

Query 1 in Figure 2(a):

if σp(e2)
(E2[e2])6= /0

�

µe2:SetAttribute(E1[e1;SetAttribute])

�σp(e2)
(E2[e2]);E1[e1]

�

(5)

Set Difference Using set difference, the translation is

E1[e1]�πe1

�

(E1[e1]�σp(e2)
(E2[e2]))

� (E1[e1]�q(e1;e2)
σp(e2)

(E2[e2]))
�

(6)

This may be optimized to

E1[e1]�
�

E1[e1]�
:q(e1;e2)

σp(e2)
(E2[e2])

�

(7)

This plan is mentioned, e.g., in [Ste95], however using a

regular join instead of a semijoin.

Anti-Semijoin The anti-semijoin can be employed to

eliminate the set difference yielding the following plan (A

similar plan—without range predicate—was proposed in

[Ste95]):

E1[e1]
�

�

:q(e1;e2)
σp(e2)

(E2[e2]) (8)

The plan depends on the uniqueness of e1, i.e., the at-

tribute(s) e1 must be a (super) key of E1. This is especially

fulfilled in the object-oriented context if e1 constitutes the

object identifier (OID).



Grouping with Count Aggregation A common ap-

proach to express universal quantification in SQL is count-

ing. In the following evaluation plan, c1 materializes the

number of objects satisfying the range predicate. On the

left-hand side, for each ei
1 2 E1 the number of objects in E2

satisfying both the range and quantifier predicate is counted

and materialized in ci
2. The objects of E1 with equal count

values c1 and c2, i.e., the quantifier predicate is fulfilled for

all elements of the range, qualify.

Πe1

�

σc1=c2

�

(E1[e1] Γc2;q(e1;e2);count σp(e2)
(E2[e2]))

| {z }

f[e1
1
;c1

2
];::: ;[en

1
;cn

2
]g

� f[c1 : count(σp(e2)
(E2[e2]))]g

��

(9)

Plan (10) is an optimization of (9). Instead of counting

matches and comparing with the range count, mismatches

are counted.

Πe1

�

σc=0(E1[e1] Γc;:q(e1;e2);count σp(e2)
(E2[e2]))

�

(10)

Actually, as we will see in the quantitative evaluation,

plan (10) may be more costly than (9) due to the negation

of the quantifier predicate q which may prevent the appli-

cation of efficient join methods, e.g., hash join.

3.2.2 Query Class 15: p(e1;e2), q(e2)

Division The division operator is not directly applica-

ble for this class of universal quantification queries. The

division can only be applied if the divisor constitutes a

closed formula not dependent on the dividend. Here, the

quantifier’s range formula σp(e1;e2)
(E2[e2]) is obviously not

closed since it has the free variable e1 depending on the

outer level query over E1.

According to the reduction algorithm of [Cod72] a divi-

sion plan would be

(E1[e1]�
:p(e1;e2)_q(e2)

E2[e2])�E2[e2] (11)

This plan is certainly not competitive because typically p

would be a selective predicate. Thus the join in (11) can be

expected to produce almost the cartesian product. There-

fore, this plan was not further considered in the quantitative

evaluation.

Set Difference The set difference plan is

E1[e1]�πe1

�

(E1[e1]�p(e1;e2)
E2[e2])

� (E1[e1]�p(e1;e2)
σq(e2)

E2[e2])
�

(12)

Negating the quantifier predicate q and thus eliminating the

inner difference results in the following plan:

E1[e1]�
�

E1[e1]�p(e1;e2)
σ
:q(e2)

(E2[e2])
�

(13)

Anti-Semijoin The above “set difference” form can eas-

ily be transformed into an equivalent—and obviously more

efficient—anti-semijoin formulation:

E1[e1]
�

�p(e1;e2)
σ
:q(e2)

(E2[e2]) (14)

It is also possible to move the predicate :q(e2) into the

anti-semijoin predicate—thereby creating a conjunctive

join predicate. Again, the uniqueness constraint of e1 as

described for plan (8) applies.

Grouping with Count Aggregation

Πe1

�

σc1=c2

�

(E1[e1] Γc2;p(e1;e2);count σq(e2)
(E2[e2]))

� (E1[e1] Γc1;p(e1;e2);count E2[e2])
�

�

(15)

Let us explain the above plan from right to left. In the right-

hand side’s binary grouping, for each object e1 2 E1 the

number of objects in the quantifier’s range is counted and

materialized in attribute c1. In the left-hand side’s binary

grouping, for each object of E1 the number of objects of

E2 that are in the quantifier’s range and satisfy the quanti-

fier predicate is counted in attribute c2. The two relations

are joined on object identity—i.e., on equal e1-attributes—

and then the values c1 and c2 are compared in the selec-

tion predicate. Equal count values guarantee that the corre-

sponding object e1 2 E1 qualifies.

The above plan appears to be rather inefficient in com-

parison to the anti-semijoin plan because it determines the

quantifier’s range twice. There are two possible optimiza-

tions: we could factor out the range computation or, as we

do in the next plan, we could collapse the two groupings

into one by negating the quantifier predicate.

Πe1

�

σc=0

�

E1[e1] Γc;p(e1;e2);count σ
:q(e2)

(E2[e2])
��

(16)

This plan is very similar to the anti-semijoin plan except

that an object e1 2 E1 is not discarded as soon as the first

disqualifying object e2 2E2 is encountered; rather the num-

ber of objects of E2 that disqualify e1 is counted. Therefore,

the plan does more work than is needed and, as a conse-

quence, cannot be better than the anti-semijoin plan.

3.2.3 Query Class 16: p(e1;e2), q(e1;e2)

Division Here, again, the range predicate depends on the

outer level variable e1. A valid division plan looks similar

to the one for case 15.

Set Difference A translation using set difference is

E1[e1]�πe1

�

(E1[e1]�p(e1;e2)
E2[e2])

� (E1[e1]�p(e1;e2)^q(e1;e2)
E2[e2])

�

(17)

Anti-Semijoin The above query evaluation plan based on

set difference can also be formulated as an equivalent anti-

semijoin plan. First, the difference of the two join expres-

sions can be replaced by a semijoin:

E1[e1]�
�

E1[e1]�p(e1;e2)^:q(e1;e2)
E2[e2]

�

Finally, the remaining set difference is transformed into an

anti-semijoin which also “covers” the semijoin:

E1[e1]
�

�p(e1;e2)^:q(e1;e2)
E2[e2] (18)

The uniqueness constraint of e1 applies as discussed before

(cf. plan (8)).



Grouping with Count Aggregation The plans are basi-

cally the same as those devised for query class 15 above.

However, the quantifier predicate q(e1;e2) cannot be eval-

uated beforehand by a selection on E2 but is transferred into

the grouping predicate by a conjunction:

Πe1

�

σc1=c2

�

(E1[e1] Γc2;p(e1;e2)^q(e1;e2);count E2[e2])

� (E1[e1] Γc1;p(e1;e2);count E2[e2])
�

�

(19)

Πe1

�

σc=0

�

E1[e1] Γc;p(e1;e2)^:q(e1;e2);count E2[e2]
��

(20)

3.3 Null Values

In this subsection, we will revisit our equivalences under

the aspect of unknown attribute values. The ODMG stan-

dard [Cat96] addresses null values only for object refer-

ences (nil references). Since null values are, however, inte-

gral part of SQL, we will assume SQL semantics [MS93]

for null values, i.e., we use a three-valued logic with a third

value unknown. In this three-valued logic the truth value of

(true^unknown) is unknown, of (false^unknown) is false,

of (true_unknown) is true, of (false_unknown) is unknown,

and (:unknown) is unknown. An object qualifies for a sub-

query if the value of the selection predicate is true; an un-

known value of the query predicate is implicitly mapped to

false.

In the presence of null values the semantics of the OQL

query

select e1 from e1 in E1 where for all e2 in

select e2 from e2 in E2 where p: q

has to be refined to the following calculus formula:

Q� fe1 2 E1 j 8e2 2 fe2 2 E2 j p(e1;e2)g : q(e1;e2)g (10)

Note that in the presence of null values this expression has

a different semantic than the previously stated calculus for-

mula

Q� fe1 2 E1 j 8e2 2 E2 : (p ) q)g (1)

Take a fixed object e01 2 E1 and consider an object e02 2 E2

for which p(e01;e02) evaluates to unknown. According to (10)

the object e02 is discarded from the range such that the out-

come of q(e01;e02) is irrelevant for the “fate” of e01. However,

in the calculus formula (1) the entire predicate p(e01;e02))

q(e01;e02) with the standard meaning :p(e01;e02)_ q(e01;e02)

is evaluated. Therefore, if q(e01;e02) evaluates to false or

unknown the composite predicate p ) q evaluates to un-

known—given that p(e01;e02) was unknown. Consequently,

e01 is discarded from the result.

In order to enforce the intended semantics of OQL

queries we have to slightly modify the evaluation plans

devised in Subsection 3.2. For this purpose we utilize a

notation introduced by [vB91] which we call polarization:

A predicate φ� with negative polarization means that af-

ter evaluating φ a possibly obtained truth value unknown is

mapped to false. A predicate φ+ with positive polarization

means that a truth value unknown obtained by evaluating

φ is mapped to true. We will assume that :φ� has the

meaning :(φ�); that is, the polarization has priority over

negation. Then the following equivalence holds:

:φ� = (:φ)+ (21)

Using this polarization notation we replace the range and

quantifier predicates p(: : : ) and q(: : : ) in all evaluation

plans (3)–(20) by p�(: : : ) and q�(: : : ). That way, unknown

values obtained by evaluating p or q are always mapped

to false before further processing the composite predicate.

We will demonstrate the correctness of this approach on

two example plans for query class 12: First, we consider

the “null value robust” variant of plan (7):

E1[e1]�
�

E1[e1]�
:q�(e1;e2)

σp�(e2)
(E2[e2])

�

(70)

The negatively polarized range predicate p�(e2) maps un-

known predicate values to false, thus dropping objects e2

with unknown range predicate from the range subquery.

According to the equivalence (21), the semijoin predi-

cate :q�(e1;e2) yields true for an unknown truth value,

such that an object pair (e1;e2) for which p(e2) holds but

q(e1;e2) is unknown qualifies for the semijoin result and is

correctly subtracted from the final result.

Next, we consider the anti-semijoin plan:

E1[e1]
�

�

:q�(e1;e2)
σp�(e2)

(E2[e2]) (80)

In this plan, corresponding to plan (8), the range predicate

p�(e2) remains the same as above, again discarding ob-

jects e2 with unknown result of p(e2) from the range. The

anti-semijoin predicate :q�(e1;e2) again becomes true for

an unknown quantifier predicate q—because of equiva-

lence (21). Consequently, the object e1 does not qualify for

the query result, since the anti-semijoin only returns objects

e1 with no match found.

It is fairly straightforward to verify the validity of this

approach to treat unknown for the remaining plans.

4 Query Evaluation

For comparison of the different evaluation plans, we ex-

ecuted them using our query engine. Its architecture and

some special operators are described in the following.

4.1 Architecture of our Query Engine

The query engine is based on the Merlin client/server stor-

age system [Ger96]. The Merlin system consists of a multi-

threaded page server and a C++ library that provides the

client run time system, including basic components like

storage manager and page buffer. The query engine con-

sists of a query compiler and an operator library. The com-

piler accepts evaluation plans as input and generates a C++

driver program that is linked with the operator library. The

library provides common relational and object-oriented al-

gebra operators, each encapsulated into a C++ class as an



iterator [Gra93]. The hashing variants of matching opera-

tors, e.g., join, set operations, and duplicate elimination use

hybrid hashing [Sha86, Gra93].

4.2 Implementation of the Algebra Operators

Hash Division We have implemented the relational divi-

sion based on hashing as proposed in [GC95]. The algo-

rithm employs two hash tables, a divisor hash table to map

divisor objects to a unique number and a quotient hash ta-

ble to map each quotient candidate to a bit vector. The bit

vector contains one bit position for each divisor object to

keep track of the matched divisor objects (quotient candi-

dates with all bits set are returned as result). Since the bit

vector size scales proportionally to the number of divisor

objects, a large number of divisor objects causes large bit

vectors, necessitating quotient partitioning.

Anti-Semijoin For an anti-semijoin E1
�

�p E2 all com-

mon implementation alternatives like sort merge, hash, and

nested-loops come into account. We have implemented

block nested-loop and hybrid hash variants. Since a semi-

join is not symmetric, there are two variants of each algo-

rithm.

As a nested-loop algorithm, the input stream that will be

returned from the operator (E1) is used as outer loop. The

inner loop is scanned once for each cluster of outer blocks.

A bit vector containing one bit for each outer record is used

to mark if a match has been found for the record. The inner

scan may be terminated early if a match has been found for

all records. Those records with their bit not set are returned.

The other variant of the nested-loops join algorithm (inner

loop to be returned as result) does not seem to be useful

since for all records of the inner input, the operator has to

remember which records have already been returned, ei-

ther by a bit vector or by writing the remaining records to

a temporary file for each scan. An index nested-loops im-

plementation might be advantageous, especially if the join

predicate contains only the index key attribute, such that the

retrieval of the record (object) itself is not even necessary.

The hash variants of the anti-semijoin have been de-

rived from the full hash join which uses the aforementioned

hybrid hashing scheme. Again, two variants are possi-

ble: one returning records from the build input (build
�

�

probe, called semi-build), the other returning probe records

(build
�

�

probe, called semi-probe). The semi-probe al-

gorithm is straightforward: As soon as a matching build

record is found in the hash table, the probe record is

dropped, otherwise it qualifies for the result. The semi-

build uses a bit vector like in the nested-loop implementa-

tion. Both hash variants work without problems if one or

more partitioning levels are required.

In comparison to the nested-loop algorithm, hashing

suffers from the restriction that it is only generally appli-

cable for equi-joins. This condition may be relaxed to the

demand that at least one logical factor in a conjunctive

join predicate must be an equality-comparison. This means

that hashing is not directly applicable for predicates like

e2 2 e1:SetAttribute, but works for a conjunctive predicate

e2 2 e1:SetAttribute^ e1:a = e2:b by performing hashing

over the second factor and then verifying the truth of the

first [Gra93].

Grouping The implementation of a binary grouping op-

erator E1 Γg;p;aggr E2 as used for our application, i.e., per-

forming an aggregation on the groups, is similar to a semi-

join. The hash implementations are based on the cor-

responding semijoin variants semi-build and semi-probe.

The result set consists of all objects e1 2 E1, each aug-

mented by an attribute g for the aggregate value. If no

matches are found for a specific e1, g is set to a default

value (e.g., 0 for count aggregation). Based on the semijoin

implementation, partitioning is applicable. The intermedi-

ate aggregate results are merged as discussed in [CM95b].

Since the group members may be dropped immediately af-

ter they are processed by the aggregate function, the oper-

ator will perform more efficiently than a full join, however

more costly than a semijoin, since all records of E1 are re-

turned and no early abort (after first match) is possible. A

nested-loops implementation is straightforward.

Element Test and Set Comparison For predicates like

e2 2 e1:SetAttribute a set element test is needed. In our

object model implementation, sets are stored as variable-

length unsorted lists. Apart from a naive scan through the

list, sorting in combination with binary search is feasible.

The lists are sorted on demand as soon as an element test is

carried out.

For anti-semijoin plans, the repeated element test e2 2

e1:SetAttribute iterating through a fixed set of elements

e2 2 S, can be replaced by a subset test S� e1:SetAttribute.

This allows to introduce a cardinality test: If the number

of elements in S is larger than the number of elements in

e1:SetAttribute, the subset test returns false immediately

(Of course, the presence of duplicates in the (multi-)set S

has to be precluded). Otherwise, the subset test must really

be carried out, i.e., the sets are sorted (if necessary) and

compared in a single linear scan. The “smart anti-semijoin”

variant of Query 1 employs this subset test. Details about

set comparison techniques in join predicates, especially

signature-based set comparison, are discussed in [HM97].

5 Benchmarking

In this section, we present performance experiments com-

paring the alternative evaluation plans that we have dis-

cussed in Section 3.

5.1 Benchmark Platform Parameters

The experiments were performed with the query engine as

described in the previous section. The query client and



small large

total size [MB] 1.7 17.2

#Airports (E2) 1000 10,000

#Airlines (E1) 1000 10,000

#Flights 10,000 10,000

avg. #Lounges per Airline 35 40

Table 2: Database Configurations

page server were run on two separate two-processor SUN

SparcStation 20/502MP under Solaris 2.5. The database

was held on the server’s disk of type Seagate ST31230WC

with an average access time of 10.4/11.4ms (read/write).

For the first set of experiments, we have generated

two different databases. A small one for initial assess-

ment and a larger one. Table 2 shows the size and car-

dinality of both databases. All attribute values except for

Airline.lounges were pseudo-randomly generated and dis-

tributed uniformly. The cardinality of the set-valued at-

tribute Airline.lounges was also distributed uniformly in a

certain range. For an easy modification of the selectivity

of σapctry=’USA’ and σapctry!=’Libya’, apctry is an integer at-

tribute and the predicate is in fact a comparison with an

integer constant, e.g., σapctry�20. Note that this transition

from an equality predicate to a range predicate does not

change the examined evaluation plans. The individual set

elements of lounges have been filtered such that the num-

ber of US-airports is higher than average, in order to get a

non-empty result for Query 1.

In our query engine, memory allocation is performed on

a per-operator basis. For each hash table and for each ex-

tension scan operator a memory area of 1.5MB was used,

such that more complex plans employing several hash ta-

bles get more resources than simpler ones. If we had as-

signed a unique global amount of memory to all plans,

the performance gap between cheap ones (especially anti-

semijoin plans) and more expensive plans like set differ-

ence would have become even larger. Since we wanted to

assess the “pure” evaluation plans, we have not created any

indexes for the experiments.

5.2 Benchmark Results

Small DB (Figure 3 – Figure 5) Let us start with

Query 1. Figure 3 shows run times for all evaluation plans

presented in Section 3. In addition, a “canonical” plan with

a nested-loop implementation is evaluated. On the x-axis

the selectivity of the range predicate, i.e., σapctry=’USA’, has

been varied. This influences the number of Airport records

in the divisor respectively in the join input. (Note the log-

arithmic scaling in this and some of the following plots.)

The query result cardinality ranges from 576 objects at the

leftmost point (selectivity=0.002) to 0 records on the right.

The run times of the hash-based evaluation plans are all in

the same order of magnitude. Division shows a slight run

time increase with growing number of airports qualifying

for the range. This is due to the increasing number of di-

visor records, resulting in more entries in the divisor hash

table and larger bitmaps in the quotient hash table. Count-

ing matches—denoted “count pos” in the figures—shows

the same tendency. Set difference shows nearly constant

run time, while anti-semijoin run-time decreases with in-

creasing number of airports in the range. The reason is

that a larger number of airports causes an earlier disqual-

ification of airlines, especially in the “smart” implemen-

tation where the cardinalities of both sets are compared

first. For counting mismatches—denoted “count neg”—no

hash implementation is possible. Consequently its nested-

loops implementation is only competitive for a very small

number of airports in the range and behaves similar to the

“canonical” variant for a larger airport count.

For Query 2 (Figure 4), the result ranged from one

record at the left-most point to 959 records at the right-

most end. Anti-semijoin and count negative are the fastest

plans. Both use only a single hash table, as opposed to

set difference and count positive, using two and three hash

tables, respectively. Since in this query, the quantifier pred-

icate is not a set comparison, anti-semijoin cannot exploit

the comparison of set cardinalities. The growing execution

time for count positive is caused by the increasing number

of matches in the final join, whereas the final difference in

the set difference plan becomes cheaper.

The result of Query 3 cannot be changed by simply mod-

ifying a constant in a selection predicate, since both range

and quantifier predicate are join predicates, i.e., they both

depend on e1 and e2. For this reason, we present only single

bars for each plan (Figure 5). Again, anti-semijoin is the

best plan, followed by count negative. Set difference and

count positive show similar run times around 2 seconds,

while the “canonical” nested-loop implementation again is

an order of magnitude more expensive than anti-semijoin.

Large DB (Figure 6 – Figure 8) After this initial assess-

ment, we have scaled our database to an amount of 10.000

objects of each type. The results (Figures 6–8) confirm the

initial assessment. For all three queries, the anti-semijoin

plan remains the winner. Figure 6 shows the run-times

for Query 1. Division causes moderate costs by the quite

large bit vectors stored in the quotient table (up to 1250

bytes for 10000 divisor records), leading even to quotient

partitioning—causing the drastic increase in run time at the

right-hand side of the figure. Set difference shows nearly

constant run time, while anti-semijoin draws profit from the

“early abort”. Especially “smart antisemi” is very cheap

because of the cardinality test. Count positive contains

three hash operations and thus performs only moderately,

while the run times for the nested-loop plans “count nega-

tive” and “canon” are several orders of magnitudes higher.

In the plot for Query 2 (Figure 7), the canonical variant

is omitted (run time of approx. 2000 sec). The remain-

ing four plans behave as before. Figure 8 shows a similar

scenario for Query 3.
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Looking at the Result Cardinality In the following ex-

periment, we wanted to investigate the influence of the re-

sult cardinality upon query run time. For this purpose,

Query 1 was run on variants of the small database with

modified lounges attribute. Given a range of 318 airport

objects, three databases were built. The first one with a

lounges cardinality uniformly distributed between 317 and

318 with airport references chosen from the range. On this

database, about 50 percent of the airline objects qualified

for the result. In the same way, two further databases were

built, one with constant lounges cardinality of 318 (i.e.,

all airlines qualified for the result), and another one with

lounges cardinality between 315 and 318, selecting roughly

25 percent of the airlines for the result. The 0 percent mark

was obtained by raising the range to 319, such that no air-

line qualified. Figure 9 shows the run time for the different

plans of Query 1. While division and counting are hardly

influenced by the result cardinality, both anti-semijoin vari-

ants draw profit on the fact. This gain is caused by cardinal-

ity comparison and a cheap element/subset test by means

of sorting. The set difference plan requires an additional

hash operation and is thus more expensive than naive anti-

semijoin.

To avoid the early abort of the smart anti-semijoin due to

mismatching cardinalities, the (rather unrealistic) scenario

was built that all lounges sets and the range have the same

cardinality of 318 elements. Instead of the cardinality, the

probability for each of the 318 airports in the range (i.e.,

USA airports) to be element of a lounges set has been var-

ied. Figure 10 depicts the run times of the different plans

for Query 1. The anti-semijoin plans show nearly constant

run times (although the run time for the naive variant in-

creases at a probability close to 100 percent due to an in-

creasing number of element tests), while the run time of

division and counting plans increases with the number of

hits for the quantifier predicate. Since the query result set

is empty except for probabilities close to 99 percent, we

have zoomed the area around 99 percent in the plot.



6 Conclusion

We investigated the processing of queries with universal

quantification from the source level over algebraic rewrit-

ing down to query plan generation and evaluation. Due

to our main focus on object-oriented and object-relational

data models, we were able to derive more valid and much

more efficient algebraic rewritings than known from the re-

lational context. The correct handling of null values was

incorporated into the equivalences.

The quality of the different evaluation plans was eval-

uated by a performance analysis on some sample data-

base configurations. The quantitative analysis has revealed

that—especially if set-valued attributes can be employed—

the new anti-semijoin-based plans are superior to all other

alternatives, even if we employ the most sophisticated di-

vision algorithms. This is due to the fact that the anti-

semijoin is able to draw profit from object-oriented fea-

tures like object identity and the compact representation of

multi-valued relationships.
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