Research track — Query Processing and Optimization |
Cardinality Estimation for Having-Clauses

G. Moerkotte

Problem to solve

Estimate the result cardinality of

select A,...

from R

[where p |

group by A

having aggr(B) [= b | between | and u]

» Approach: extend simple profile (eSP)
» Motivation: simple profile is default in many DBMSs

The Simple Profile (System R)

consists of
» cardinality |R)|
» for every attribute X: minx, maxx, dx (number of distinct
values)
Cardinality estimation and propagation over algebraic operators
require assumptions:

» uniform distribution assumption (UDA)
(of attribute values in base relations)

» independence assumption (IA)
(if not obviously violated)

> ...

Query for Count

We start with the aggregate function count and consider the
following example query:

select

from Lineitem

group by |_orderkey

having count(*) [= b | between | and u]

Note:

» TPC-H attribute values are uniformly distributed
» TPC-H is well-known

count(x): data analysis

Query Q. Result of Q.

C Fc
select C, count(*) as F. 1 214'172
from (select count(*) as C 2 214434
from Lineitem 3 214’379
group by |_orderkey) 4 213728
group by C 5 214'217
order by C 6 214'449
7 214’621

We observe that
» the values of C are all in [1,7], and
» the values of F. are all about equal.

An estimate for F. is denoted by F.. If we assume the counts C to

A n

be uniformly distributed, then all F. (F.) are equal, we use F (F)
to denote that number.

Extended Simple Profile (eSP)

relations and attributes
R relation in the from clause
A | attribute(s) of R in the group by clause
B (derived) attribute of R in some aggregate function
in the having clause
C defined as count (*) as C (see Query Qf)
simple profile for R, X € {A, B}
|R| | cardinality of relation R
minyx | minimum value of attribute X
maxx | maximum value of attribute X
dx number of distinct values of attribute X
extension
min¢c | minimum value of count (*)
max¢ | maximum value of count (*)
dc number of distinct values for count (*)

Calculation of Extensions using DuckDB

Query QE:

select min(C), max(C), count(distinct C)
from (select count(*) as C

from R

group by A)

Thus, no big extension to DBMS necessary.

count: Cardinality Estimation Alternatives

blind Use some constant for the selectivity (e.g. 0.3).

one eyed guess some distribution for C and its moments
(without looking at the result of Query Q.)

eSP Store the result of Query Qg (minimum, maximum, number
of distinct values of C) and assume a uniform distribution.

cmp Compactify the result of Query Q. using

» a histogram,

» some standard approximation techniques, or

> some parameterized distribution (preferable: finite support,
discrete)

all Completely store the result of Q. (if it is small).

count: Cardinality Estimation with UDA (eSP)

The estimates for the number of result tuples of our query
template for

» having count(*) = c or
» having count(*) between 1 and u

are then produced by

A d,
Elent](c) = maxe rﬁinc 1 // independent of ¢

A

Elent](l,u) = > Elent](k) = (u—I+1)F
k=1

count: Cardinality Estimation Precision (g-error)

having count(*) = c

1.181 | 1.181 | 1.001 | 1.001
2.180 | 2.180 | 1.386 | 1.002
inf inf 1 1

c | White | Fent | g-D eSP
0 inf inf 1 1
1] 3.678 | 3.677 | 1.389 | 1.001
2| 1.182|1.182 | 1.001 | 1.001
3] 1.222|1.222|1.321 1
4| 1.385 | 1.385 | 1.407 | 1.003
5| 1.223 | 1.223 | 1.320 1
6

7

8

White 2017 (SqlServer); Fent, Neumann PVLDB 2019; eSP:
extended simple profile (UDA for C).

Query for Sum

select

from Lineitem

group by |_orderkey

having sum(l_quantity) [= b | between | and u]

sum(B): data analysis: distribution of 1_quantity

Query Qq Result of Qq
1 _quantity count(*)
select [_quantit 1 120°401
Cfunt(*)y' 2 119'460
from Lineitem 3 120°047
sy o B i
yl-quantity 49 119624
50 119'846

We observe that the values of 1_quantity are all in [1,50].
Further, they are uniformly distributed.

sum(B): distribution of sum(1 _quantity)

select C, sum_quant, count(*) as cnt
from (select |_orderkey,
count(*) as C,
sum(l_quantity) as sum_quant
from Lineitem
group by |_orderkey)
group by C, sum_quant
order by C, sum_quant;

sum(B): distribution of sum(1 _quantity)

4500

4000
3500
3000

PR
NoOouhswWN-=

2500

cnt

2000
1500
1000

500

L

0 50 100 150 200 250 300 350

1

sum_quant

Observation: except for small C: sum is normally distributed

sum(B): solutions

» for C = 0 use uniform distribution to produce estimate
» for C > 0 we have a choice:

» for C > 0 use normal distribution (eSP)
» for C > 0 use integer compositions (IC)

sum(B): evaluation

having sum(l_quantity) = b:

having sum(l_quantity) = b
maximum g-error for b-ranges

b-range Fent | [-D | eSP(1) | eSP(2) IC
[1,200] | 153 | 6.02| 1.30| 1.30|1.04
[200,249] | 2.96 | 4.03 1.36 1.29 | 1.07
[250,300] | 104.6 | 179.9 2.33 2.33 | 1.96

Outlook

> other aggregate functions: avg, min, max
» having-clause with and, or

» where-clause

