
Research track – Query Processing and Optimization I
Cardinality Estimation for Having-Clauses

G. Moerkotte

Problem to solve

Estimate the result cardinality of

select A,. . .
from R
[where p]
group by A
having aggr(B) [= b | between l and u]

▶ Approach: extend simple profile (eSP)

▶ Motivation: simple profile is default in many DBMSs

The Simple Profile (System R)

consists of

▶ cardinality |R|
▶ for every attribute X : minX , maxX , dX (number of distinct

values)

Cardinality estimation and propagation over algebraic operators
require assumptions:

▶ uniform distribution assumption (UDA)
(of attribute values in base relations)

▶ independence assumption (IA)
(if not obviously violated)

▶ . . .

Query for Count

We start with the aggregate function count and consider the
following example query:

select . . .
from Lineitem
group by l orderkey
having count(*) [= b | between l and u]

Note:

▶ TPC-H attribute values are uniformly distributed

▶ TPC-H is well-known

count(∗): data analysis

Query Qc Result of Qc

select C, count(*) as Fc
from (select count(*) as C

from Lineitem
group by l orderkey)

group by C
order by C

C Fc
1 214’172
2 214’434
3 214’379
4 213’728
5 214’217
6 214’449
7 214’621

We observe that

▶ the values of C are all in [1, 7], and

▶ the values of Fc are all about equal.

An estimate for Fc is denoted by F̂c . If we assume the counts C to
be uniformly distributed, then all Fc (F̂c) are equal, we use F (F̂)
to denote that number.

Extended Simple Profile (eSP)

relations and attributes

R relation in the from clause
A attribute(s) of R in the group by clause
B (derived) attribute of R in some aggregate function

in the having clause
C defined as count(*) as C (see Query QE)

simple profile for R, X ∈ {A,B}
|R| cardinality of relation R
minX minimum value of attribute X
maxX maximum value of attribute X
dX number of distinct values of attribute X

extension

minC minimum value of count(*)
maxC maximum value of count(*)
dC number of distinct values for count(*)

Calculation of Extensions using DuckDB

Query QE :

select min(C), max(C), count(distinct C)
from (select count(*) as C

from R
group by A)

Thus, no big extension to DBMS necessary.

count: Cardinality Estimation Alternatives

blind Use some constant for the selectivity (e.g. 0.3).

one eyed guess some distribution for C and its moments
(without looking at the result of Query Qc)

eSP Store the result of Query QE (minimum, maximum, number
of distinct values of C) and assume a uniform distribution.

cmp Compactify the result of Query Qc using
▶ a histogram,
▶ some standard approximation techniques, or
▶ some parameterized distribution (preferable: finite support,

discrete)

all Completely store the result of Qc (if it is small).

count: Cardinality Estimation with UDA (eSP)

The estimates for the number of result tuples of our query
template for

▶ having count(*) = c or

▶ having count(*) between l and u

are then produced by

Ê [cnt](c) =
dA

maxC −minC + 1
// independent of c

Ê [cnt](l , u) =
u∑

k=l

Ê [cnt](k) = (u − l + 1)F̂

count: Cardinality Estimation Precision (q-error)

having count(*) = c

c White Fent β-D eSP

0 inf inf 1 1
1 3.678 3.677 1.389 1.001
2 1.182 1.182 1.001 1.001
3 1.222 1.222 1.321 1
4 1.385 1.385 1.407 1.003
5 1.223 1.223 1.320 1
6 1.181 1.181 1.001 1.001
7 2.180 2.180 1.386 1.002
8 inf inf 1 1

White 2017 (SqlServer); Fent, Neumann PVLDB 2019; eSP:
extended simple profile (UDA for C).

Query for Sum

select . . .
from Lineitem
group by l orderkey
having sum(l quantity) [= b | between l and u]

sum(B): data analysis: distribution of l quantity

Query Qq Result of Qq

select l quantity,
count(*)

from Lineitem
group by l quantity
order by l quantity

l quantity count(*)

1 120’401
2 119’460
3 120’047

.
48 120’191
49 119’624
50 119’846

We observe that the values of l quantity are all in [1, 50].
Further, they are uniformly distributed.

sum(B): distribution of sum(l quantity)

select C, sum quant, count(*) as cnt
from (select l orderkey,

count(*) as C,
sum(l quantity) as sum quant

from Lineitem
group by l orderkey)

group by C, sum quant
order by C, sum quant;

sum(B): distribution of sum(l quantity)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300 350

C=1
C=2
C=3
C=4
C=5
C=6
C=7

cn
t

sum_quant

Observation: except for small C: sum is normally distributed

sum(B): solutions

▶ for C = 0 use uniform distribution to produce estimate
▶ for C > 0 we have a choice:

▶ for C > 0 use normal distribution (eSP)
▶ for C > 0 use integer compositions (IC)

sum(B): evaluation

having sum(l quantity) = b:

having sum(l quantity) = b

maximum q-error for b-ranges

b-range Fent β-D eSP(1) eSP(2) IC

[1, 200] 1.53 6.02 1.30 1.30 1.04
[200, 249] 2.96 4.03 1.36 1.29 1.07
[250, 300] 104.6 179.9 2.33 2.33 1.96

Outlook

▶ other aggregate functions: avg, min, max

▶ having-clause with and, or

▶ where-clause

